1
|
Neri S, Guidotti S, Panichi V, Minguzzi M, Cattini L, Platano D, Ursini F, Arciola CR, Borzì RM. IKKα affects the susceptibility of primary human osteoarthritis chondrocytes to oxidative stress-induced DNA damage by tuning autophagy. Free Radic Biol Med 2024; 225:726-740. [PMID: 39461484 DOI: 10.1016/j.freeradbiomed.2024.10.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The functional derangement affecting human chondrocytes during osteoarthritis (OA) onset and progression is sustained by the failure of major homeostatic mechanisms. This makes them more susceptible to oxidative stress (OS), which can induce DNA damage responses and exacerbate stress-induced senescence. The knockdown (KD) of IκB kinase α (IKKα), a dispensable protein in healthy articular cartilage physiology, was shown to increase the survival and replication potential of human primary OA chondrocytes. Our recent findings showed that the DNA Mismatch Repair pathway only partially accounts for the reduced susceptibility to OS of IKKαKD cells. Here we therefore investigated other ROS-mediated DNA damage and repair mechanisms. We exposed IKKαWT and IKKαKD chondrocytes to sub-cytotoxic hydrogen peroxide and evaluated the occurrence of double-strand breaks (DSB), 8-oxo-2'-deoxyguanosine (8-oxo-dG) and telomere shortening. ROS exposure was able to significantly increase the number of γH2AX foci (directly related to the number of DSB) in both cell types, but IKKα deficient cells undergoing cell division were able to better recover compared to their IKKα proficient counterpart. 8-oxo-dG signal proved to be the highest DNA damage signal among those investigated, located in the mitochondria and with a slightly higher intensity in IKKα proficient cells immediately after OS exposure. Furthermore, ROS significantly reduced telomere length both in IKKαWT and IKKαKD, with the former showing more pervasive effects, especially in dividing cells. Assessment of the HIF-1α>Beclin-1>LC3B axis after recovery from OS showed that IKKα deficient cells exhibited a more efficient autophagic machinery that allowed them to better cope with oxidative stress, possibly through the turnover of damaged mitochondria. Higher Beclin-1 levels likely helped in rescuing dividing cells (identified by coupled cell cycle analysis) because of Beclin-1's involvement in both autophagy and mitotic spindle organization. Therefore, our data further confirm the higher capacity of IKKαKD chondrocytes to cope with oxidative stress-induced DNA damage.
Collapse
Affiliation(s)
- Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Serena Guidotti
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Veronica Panichi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Manuela Minguzzi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Daniela Platano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), AlmaMater Studiorum University of Bologna, 40126, Bologna, Italy; Laboratory of Immunorheumatology and Tissue Regeneration, Physical Medicine and Rehabilitation Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Francesco Ursini
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), AlmaMater Studiorum University of Bologna, 40126, Bologna, Italy.
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration and Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), AlmaMater Studiorum University of Bologna, 40126, Bologna, Italy.
| | - Rosa Maria Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| |
Collapse
|
2
|
Chen H, Shu J, Maley CC, Liu L. A Mouse-Specific Model to Detect Genes under Selection in Tumors. Cancers (Basel) 2023; 15:5156. [PMID: 37958330 PMCID: PMC10647215 DOI: 10.3390/cancers15215156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
The mouse is a widely used model organism in cancer research. However, no computational methods exist to identify cancer driver genes in mice due to a lack of labeled training data. To address this knowledge gap, we adapted the GUST (Genes Under Selection in Tumors) model, originally trained on human exomes, to mouse exomes via transfer learning. The resulting tool, called GUST-mouse, can estimate long-term and short-term evolutionary selection in mouse tumors, and distinguish between oncogenes, tumor suppressor genes, and passenger genes using high-throughput sequencing data. We applied GUST-mouse to analyze 65 exomes of mouse primary breast cancer models and 17 exomes of mouse leukemia models. Comparing the predictions between cancer types and between human and mouse tumors revealed common and unique driver genes. The GUST-mouse method is available as an open-source R package on github.
Collapse
Affiliation(s)
- Hai Chen
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.C.); (J.S.)
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
| | - Jingmin Shu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.C.); (J.S.)
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
| | - Carlo C. Maley
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (H.C.); (J.S.)
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA;
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
3
|
Shi G, Hu Y. TNFR1 and TNFR2, Which Link NF-κB Activation, Drive Lung Cancer Progression, Cell Dedifferentiation, and Metastasis. Cancers (Basel) 2023; 15:4299. [PMID: 37686574 PMCID: PMC10487001 DOI: 10.3390/cancers15174299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
TNFR1 and TNFR2, encoded by TNFRSF1A and TNFRSF1B, respectively, are the most well-characterized members among the TNFR superfamily. TNFR1 is expressed in most cell types, while TNFR2 has been reported to be preferentially expressed in leukocytes. Lung cancer remains the leading cause of cancer mortality worldwide but TNFRs' activities in lung cancer development have not been fully evaluated. Recently, overexpressed TNFR1 was reported in a large proportion of human lung squamous cell carcinomas. Increased TNFR1 coupled with increased UBCH10 caused lung SCC cell dedifferentiation with epithelial-mesenchymal transition features and the metastasis in a combined spontaneous lung SCC and TNFR1 transgenic mouse model. UBCH10, an E2 ubiquitin-conjugating enzyme that is an oncogene, increased Sox2, c-Myc, Twist1, and Bcl2 levels. Increased TNFR1 upregulated UBCH10 expression by activating c-Rel and p65 NF-κB. Lung SCC patients overexpressing TNFRSF1A and one of these target genes died early compared to lung SCC patients expressing lower levels of these genes. Recently, we also revealed that TNFR2 was required for lung adenocarcinoma progression, delivering a signaling pathway of TNF/TNFR2/NF-κB-c-Rel, in which macrophage-produced ROS and TNF converted CD4 T cells to Foxp3 Treg cells, generating an immunosuppressive tumor microenvironment and promoting lung ADC progression. In human lung ADC cohorts, TNFRSF1B expression was highly correlated with TNF, FOXP3, and CD4 expression. Of note, TNF stimulated the activities of TNFR1 and TNFR2, two membrane-binding receptors, which accelerate tumorigenesis through diverse mechanisms. This review focuses on these new findings regarding the roles of TNFR1 and TNFR2 in lung SCC and ADC development in humans and mice, and highlights the potential therapeutic targets of human lung cancers.
Collapse
Affiliation(s)
| | - Yinling Hu
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| |
Collapse
|
4
|
IKKα-deficient lung adenocarcinomas generate an immunosuppressive microenvironment by overproducing Treg-inducing cytokines. Proc Natl Acad Sci U S A 2022; 119:2120956119. [PMID: 35121655 PMCID: PMC8833198 DOI: 10.1073/pnas.2120956119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
The tumor microenvironment (TME) provides potential targets for cancer therapy. However, how signals originating in cancer cells affect tumor-directed immunity is largely unknown. Deletions in the CHUK locus, coding for IκB kinase α (IKKα), correlate with reduced lung adenocarcinoma (ADC) patient survival and promote KrasG12D-initiated ADC development in mice, but it is unknown how reduced IKKα expression affects the TME. Here, we report that low IKKα expression in human and mouse lung ADC cells correlates with increased monocyte-derived macrophage and regulatory T cell (Treg) scores and elevated transcription of genes coding for macrophage-recruiting and Treg-inducing cytokines (CSF1, CCL22, TNF, and IL-23A). By stimulating recruitment of monocyte-derived macrophages from the bone marrow and enforcing a TNF/TNFR2/c-Rel signaling cascade that stimulates Treg generation, these cytokines promote lung ADC progression. Depletion of TNFR2, c-Rel, or TNF in CD4+ T cells or monocyte-derived macrophages dampens Treg generation and lung tumorigenesis. Treg depletion also attenuates carcinogenesis. In conclusion, reduced cancer cell IKKα activity enhances formation of a protumorigenic TME through a pathway whose constituents may serve as therapeutic targets for KRAS-initiated lung ADC.
Collapse
|
5
|
Yi H, Ma S. Assisted differential network analysis for gene expression data. Genet Epidemiol 2021; 45:604-620. [PMID: 34174112 PMCID: PMC8376770 DOI: 10.1002/gepi.22419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/12/2022]
Abstract
In the analysis of gene expression data, when there are two or more disease conditions/groups (e.g., diseased and normal, responder and nonresponder, and multiple stages/subtypes), differential analysis has been extensively conducted to identify key differences and has important implications. Network analysis takes a system perspective and can be more informative than that limited to simple statistics such as mean and variance. In differential network analysis, a common practice is to first estimate a gene expression network for each condition/group, and then spectral clustering can be applied to the network difference(s) to identify key genes and biological mechanisms that lead to the differences. Compared to "simple" analysis such as regression, differential network analysis can be more challenging with the significantly larger number of parameters. In this study, taking advantage of the increasing popularity of multidimensional profiling data, we develop an assisted analysis strategy and propose incorporating regulator information to improve the identification of key genes (that lead to the differences in gene expression networks). An effective computational algorithm is developed. Comprehensive simulation is conducted, showing that the proposed approach can outperform the benchmark alternatives in identification accuracy. With the The Cancer Genome Atlas lung adenocarcinoma data, we analyze the expressions of genes in the KEGG cell cycle pathway, assisted by copy number variation data. The proposed assisted analysis leads to identification results similar to the alternatives but different estimations. Overall, this study can deliver an efficient and cost-effective way of improving differential network analysis.
Collapse
Affiliation(s)
- Huangdi Yi
- Department of Biostatistics, Yale University
| | - Shuangge Ma
- Department of Biostatistics, Yale University
| |
Collapse
|
6
|
Roupakia E, Chavdoula E, Karpathiou G, Vatsellas G, Chatzopoulos D, Mela A, Gillette JM, Kriegsmann K, Kriegsmann M, Batistatou A, Goussia A, Marcu KB, Karteris E, Klinakis A, Kolettas E. Canonical NF-κB Promotes Lung Epithelial Cell Tumour Growth by Downregulating the Metastasis Suppressor CD82 and Enhancing Epithelial-to-Mesenchymal Cell Transition. Cancers (Basel) 2021; 13:cancers13174302. [PMID: 34503110 PMCID: PMC8428346 DOI: 10.3390/cancers13174302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Canonical NF-κB signalling pathway acts as a tumour promoter in several types of cancer including non-small cell lung cancer (NSCLC), but the mechanism(s) by which it contributes to NSCLC is still under investigation. We show here that NF-κB RelA/p65 is required for the tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq transcriptome profile analysis identified the metastasis suppressor CD82/KAI1/TSPAN27 as a canonical NF-κB target. Loss of CD82 correlated with malignancy. RelA/p65 stimulates cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling, thus, identifying a mechanism mediating NF-κB RelA/p65 lung tumour promoting function. Abstract Background: The development of non-small cell lung cancer (NSCLC) involves the progressive accumulation of genetic and epigenetic changes. These include somatic oncogenic KRAS and EGFR mutations and inactivating TP53 tumour suppressor mutations, leading to activation of canonical NF-κB. However, the mechanism(s) by which canonical NF-κB contributes to NSCLC is still under investigation. Methods: Human NSCLC cells were used to knock-down RelA/p65 (RelA/p65KD) and investigate its impact on cell growth, and its mechanism of action by employing RNA-seq analysis, qPCR, immunoblotting, immunohistochemistry, immunofluorescence and functional assays. Results: RelA/p65KD reduced the proliferation and tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq analysis identified canonical NF-κB targets mediating its tumour promoting function. RelA/p65KD resulted in the upregulation of the metastasis suppressor CD82/KAI1/TSPAN27 and downregulation of the proto-oncogene ROS1, and LGR6 involved in Wnt/β-catenin signalling. Immunohistochemical and bioinformatics analysis of human NSCLC samples showed that CD82 loss correlated with malignancy. RelA/p65KD suppressed cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling involving the mitogenic ERK, Akt1 and Rac1 proteins. Conclusions: Canonical NF-κB signalling promotes NSCLC, in part, by downregulating the metastasis suppressor CD82/KAI1 which inhibits cell migration, EMT and tumour growth.
Collapse
Affiliation(s)
- Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, University Campus, 45110 Ioannina, Greece;
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
| | - Evangelia Chavdoula
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Georgia Karpathiou
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Giannis Vatsellas
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Dimitrios Chatzopoulos
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Angeliki Mela
- Department of Pathology and Cell Biology Columbia University Medical Center, Irving Comprehensive Cancer Research Center, Columbia University, New York, NY 10032, USA;
| | - Jennifer M. Gillette
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Katharina Kriegsmann
- Department of Internal Medicine V, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Anna Batistatou
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Anna Goussia
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Kenneth B. Marcu
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
- Department of Biochemistry and Cell Biology, Microbiology and Pathology, Stony Brook University, New York, NY 11794, USA
| | - Emmanouil Karteris
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, London UB8 PH, UK;
| | - Apostolos Klinakis
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, University Campus, 45110 Ioannina, Greece;
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
- Correspondence: ; Tel.: +30-26510-07578; Fax: +30-26510-07863
| |
Collapse
|
7
|
Li X, Hu Y. Attribution of NF-κB Activity to CHUK/IKKα-Involved Carcinogenesis. Cancers (Basel) 2021; 13:cancers13061411. [PMID: 33808757 PMCID: PMC8003426 DOI: 10.3390/cancers13061411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary CHUK/IKKα has emerged as a novel tumor suppressor in several organs of humans and mice. In general, activation of NF-κB promotes inflammation and tumorigenesis. IKKα reduction stimulates inflammatory responses including NF-κB’s targets and NF-κB-independent pathways for tumor promotion. Specific phenomena from genetically-modified mice and human TCGA database show the crosstalk between IKKα and NF-κB although their nature paths for normal organ development and the disease and cancer pathogenesis remains largely under investigation. In this review, we focus on the interplay between IKKα and NF-κB signaling during carcinogenesis. A better understanding of their relationship will provide insight into therapeutic targets of cancer. Abstract Studies analyzing human cancer genome sequences and genetically modified mouse models have extensively expanded our understanding of human tumorigenesis, even challenging or reversing the dogma of certain genes as originally characterized by in vitro studies. Inhibitor-κB kinase α (IKKα), which is encoded by the conserved helix-loop-helix ubiquitous kinase (CHUK) gene, is first identified as a serine/threonine protein kinase in the inhibitor-κB kinase complex (IKK), which is composed of IKKα, IKKβ, and IKKγ (NEMO). IKK phosphorylates serine residues 32 and 36 of IκBα, a nuclear factor-κB (NF-κB) inhibitor, to induce IκBα protein degradation, resulting in the nuclear translocation of NF-κB dimers that function as transcriptional factors to regulate immunity, infection, lymphoid organ/cell development, cell death/growth, and tumorigenesis. NF-κB and IKK are broadly and differentially expressed in the cells of our body. For a long time, the idea that the IKK complex acts as a direct upstream activator of NF-κB in carcinogenesis has been predominately accepted in the field. Surprisingly, IKKα has emerged as a novel suppressor for skin, lung, esophageal, and nasopharyngeal squamous cell carcinoma, as well as lung and pancreatic adenocarcinoma (ADC). Thus, Ikkα loss is a tumor driver in mice. On the other hand, lacking the RANKL/RANK/IKKα pathway impairs mammary gland development and attenuates oncogene- and chemical carcinogen-induced breast and prostate tumorigenesis and metastasis. In general, NF-κB activation leads one of the major inflammatory pathways and stimulates tumorigenesis. Since IKKα and NF-κB play significant roles in human health, revealing the interplay between them greatly benefits the diagnosis, treatment, and prevention of human cancer. In this review, we discuss the intriguing attribution of NF-κB to CHUK/IKKα-involved carcinogenesis.
Collapse
|