1
|
Lazennec G, Rajarathnam K, Richmond A. CXCR2 chemokine receptor - a master regulator in cancer and physiology. Trends Mol Med 2024; 30:37-55. [PMID: 37872025 PMCID: PMC10841707 DOI: 10.1016/j.molmed.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers. The recent unfolding of the role of CXCR2 in numerous cancers has led to extensive evaluation of multiple CXCR2 antagonists in preclinical and clinical studies. In this review we discuss the potential of targeting CXCR2 for cancer treatment.
Collapse
Affiliation(s)
- Gwendal Lazennec
- Centre National de la Recherche Scientifique (CNRS), Sys2Diag-ALCEDIAG, Cap Delta, Montpellier, France; CNRS Groupement de Recherche (GDR) 3697 'Microenvironment of Tumor Niches', Micronit, France.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Saksis R, Rogoza O, Niedra H, Megnis K, Mandrika I, Balcere I, Steina L, Stukens J, Breiksa A, Nazarovs J, Sokolovska J, Konrade I, Peculis R, Rovite V. Transcriptome of GH-producing pituitary neuroendocrine tumours and models are significantly affected by somatostatin analogues. Cancer Cell Int 2023; 23:25. [PMID: 36774501 PMCID: PMC9922463 DOI: 10.1186/s12935-023-02863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
Pituitary neuroendocrine tumours (PitNETs) are neoplasms of the pituitary that overproduce hormones or cause unspecific symptoms due to mass effect. Growth hormone overproducing GH-producing PitNETs cause acromegaly leading to connective tissue, metabolic or oncologic disorders. The medical treatment of acromegaly is somatostatin analogues (SSA) in specific cases combined with dopamine agonists (DA), but almost half of patients display partial or full SSA resistance and potential causes of this are unknown. In this study we investigated transcriptomic landscape of GH-producing PitNETs on several levels and functional models-tumour tissue of patients with and without SSA preoperative treatment, tumour derived pituispheres and GH3 cell line incubated with SSA to study effect of medication on gene expression. MGI sequencing platform was used to sequence total RNA from PitNET tissue, pituispheres, mesenchymal stromal stem-like cells (MSC), and GH3 cell cultures, and data were analysed with Salmon-DeSeq2 pipeline. We observed that the GH-producing PitNETs have distinct changes in growth hormone related pathways related to its functional status alongside inner cell signalling, ion transport, cell adhesion and extracellular matrix characteristic patterns. In pituispheres model, treatment regimens (octreotide and cabergoline) affect specific cell proliferation (MKI67) and core functionality pathways (RYR2, COL8A2, HLA-G, ARFGAP1, TGFBR2). In GH3 cells we observed that medication did not have transcriptomic effects similar to preoperative treatment in PitNET tissue or pituisphere model. This study highlights the importance of correct model system selection for cell transcriptomic profiling and data interpretation that could be achieved in future by incorporating NGS methods and detailed cell omics profiling in PitNET model research.
Collapse
Affiliation(s)
- Rihards Saksis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Olesja Rogoza
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Helvijs Niedra
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Kaspars Megnis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Ilona Mandrika
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Inga Balcere
- grid.488518.80000 0004 0375 2558Riga East Clinical University Hospital, Hipokrata Str 2, Riga, 1038 Latvia ,grid.17330.360000 0001 2173 9398Riga Stradins University, Dzirciema Str. 16, Riga, 1007 Latvia
| | - Liva Steina
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia ,grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Janis Stukens
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Austra Breiksa
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Jurijs Nazarovs
- grid.477807.b0000 0000 8673 8997Pauls Stradins Clinical University Hospital, Pilsonu Str 13, Riga, 1002 Latvia
| | - Jelizaveta Sokolovska
- grid.9845.00000 0001 0775 3222Faculty of Medicine, University of Latvia, Raina Blvd 19, Riga, 1586 Latvia
| | - Ilze Konrade
- grid.488518.80000 0004 0375 2558Riga East Clinical University Hospital, Hipokrata Str 2, Riga, 1038 Latvia ,grid.17330.360000 0001 2173 9398Riga Stradins University, Dzirciema Str. 16, Riga, 1007 Latvia
| | - Raitis Peculis
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067 Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1-k1, Riga, 1067, Latvia.
| |
Collapse
|
3
|
Willis TL, Lodge EJ, Andoniadou CL, Yianni V. Cellular interactions in the pituitary stem cell niche. Cell Mol Life Sci 2022; 79:612. [PMID: 36451046 PMCID: PMC9712314 DOI: 10.1007/s00018-022-04612-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022]
Abstract
Stem cells in the anterior pituitary gland can give rise to all resident endocrine cells and are integral components for the appropriate development and subsequent maintenance of the organ. Located in discreet niches within the gland, stem cells are involved in bi-directional signalling with their surrounding neighbours, interactions which underpin pituitary gland homeostasis and response to organ challenge or physiological demand. In this review we highlight core signalling pathways that steer pituitary progenitors towards specific endocrine fate decisions throughout development. We further elaborate on those which are conserved in the stem cell niche postnatally, including WNT, YAP/TAZ and Notch signalling. Furthermore, we have collated a directory of single cell RNA sequencing studies carried out on pituitaries across multiple organisms, which have the potential to provide a vast database to study stem cell niche components in an unbiased manner. Reviewing published data, we highlight that stem cells are one of the main signalling hubs within the anterior pituitary. In future, coupling single cell sequencing approaches with genetic manipulation tools in vivo, will enable elucidation of how previously understudied signalling pathways function within the anterior pituitary stem cell niche.
Collapse
Affiliation(s)
- Thea L Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
4
|
Delobel P, Ginter B, Rubio E, Balabanian K, Lazennec G. CXCR2 intrinsically drives the maturation and function of neutrophils in mice. Front Immunol 2022; 13:1005551. [PMID: 36311783 PMCID: PMC9606682 DOI: 10.3389/fimmu.2022.1005551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophils play a major role in the protection from infections but also in inflammation related to tumor microenvironment. However, cell-extrinsic and -intrinsic cues driving their function at steady state is still fragmentary. Using Cxcr2 knock-out mice, we have evaluated the function of the chemokine receptor Cxcr2 in neutrophil physiology. We show here that Cxcr2 deficiency decreases the percentage of mature neutrophils in the spleen, but not in the bone marrow (BM). There is also an increase of aged CD62Llo CXCR4hi neutrophils in the spleen of KO animals. Spleen Cxcr2-/- neutrophils display a reduced phagocytic ability, whereas BM neutrophils show an enhanced phagocytic ability compared to WT neutrophils. Spleen Cxcr2-/- neutrophils show reduced reactive oxygen species production, F-actin and α-tubulin levels. Moreover, spleen Cxcr2-/- neutrophils display an altered signaling with reduced phosphorylation of ERK1/2 and p38 MAPK, impaired PI3K-AKT, NF-κB, TGFβ and IFNγ pathways. Altogether, these results suggest that Cxcr2 is essential for neutrophil physiology.
Collapse
Affiliation(s)
- Pauline Delobel
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
| | - Benjamin Ginter
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
| | - Eliane Rubio
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
| | - Karl Balabanian
- CNRS, GDR 3697 “Microenvironment of tumor niches”, Micronit, France
- Université Paris-Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
| | - Gwendal Lazennec
- CNRS, UMR9005, Sys2Diag-ALCEN, Cap delta, Montpellier, France
- CNRS, GDR 3697 “Microenvironment of tumor niches”, Micronit, France
- *Correspondence: Gwendal Lazennec,
| |
Collapse
|
5
|
Timaxian C, Vogel CFA, Orcel C, Vetter D, Durochat C, Chinal C, NGuyen P, Aknin ML, Mercier-Nomé F, Davy M, Raymond-Letron I, Van TNN, Diermeier SD, Godefroy A, Gary-Bobo M, Molina F, Balabanian K, Lazennec G. Pivotal Role for Cxcr2 in Regulating Tumor-Associated Neutrophil in Breast Cancer. Cancers (Basel) 2021; 13:cancers13112584. [PMID: 34070438 PMCID: PMC8197482 DOI: 10.3390/cancers13112584] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Chemokines present in the tumor microenvironment are essential for the control of tumor progression. We show here that several ligands of the chemokine receptor Cxcr2 were up-regulated in the PyMT (polyoma middle T oncogene) model of breast cancer. Interestingly, the knock-down of Cxcr2 in PyMT animals led to an increased growth of the primary tumor and lung metastasis. The analysis of tumor content of PyMT-Cxcr2-/- animals highlighted an increased infiltration of tumor associated neutrophils (TANs), mirrored by a decreased recruitment of tumor associated macrophages (TAMs) compared to PyMT animals. Analysis of PyMT-Cxcr2-/- TANs revealed that they lost their killing ability compared to PyMT-Cxcr2+/+ TANs. The transcriptomic analysis of PyMT-Cxcr2-/- TANs showed that they had a more pronounced pro-tumor TAN2 profile compared to PyMT TANs. In particular, PyMT-Cxcr2-/- TANs displayed an up-regulation of the pathways involved in reactive oxygen species (ROS) production and angiogenesis and factors favoring metastasis, but reduced apoptosis. In summary, our data reveal that a lack of Cxcr2 provides TANs with pro-tumor effects.
Collapse
Affiliation(s)
- Colin Timaxian
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
| | - Christoph F. A. Vogel
- Center for Health and the Environment, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Charlotte Orcel
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Diana Vetter
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Camille Durochat
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Clarisse Chinal
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Phuong NGuyen
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Marie-Laure Aknin
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Françoise Mercier-Nomé
- CNRS, Institut Paris Saclay d’Innovation Thérapeutique, Université Paris-Saclay, Inserm, 92296 Châtenay-Malabry, France; (M.-L.A.); (F.M.-N.)
| | - Martin Davy
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Isabelle Raymond-Letron
- Department of Histopathology, National Veterinary School of Toulouse, 31076 Toulouse, France;
- Platform of Experimental and Compared Histopathology, STROMALab, UMR UPS/CNRS 5223, EFS, Inserm U1031, 31076 Toulouse, France
| | - Thi-Nhu-Ngoc Van
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Anastasia Godefroy
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (M.G.-B.)
| | - Franck Molina
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
| | - Karl Balabanian
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Institut de Recherche Saint-Louis, Université de Paris, EMiLy, Inserm U1160, 75010 Paris, France
| | - Gwendal Lazennec
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 rue de la Valsière, 34184 Montpellier, France; (C.T.); (C.O.); (D.V.); (C.D.); (C.C.); (P.N.); (M.D.); (T.-N.-N.V.); (F.M.)
- CNRS, GDR 3697 Microenvironment of Tumor Niches, Micronit, France;
- Correspondence:
| |
Collapse
|
6
|
Boissière-Michot F, Jacot W, Massol O, Mollevi C, Lazennec G. CXCR2 Levels Correlate with Immune Infiltration and a Better Prognosis of Triple-Negative Breast Cancers. Cancers (Basel) 2021; 13:cancers13102328. [PMID: 34066060 PMCID: PMC8151934 DOI: 10.3390/cancers13102328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tumor microenvironment is critical for cancer progression. The role of the chemokine receptors in breast cancers is still under investigation. The aim of this study was to focus on a retrospective cohort of triple-negative breast cancers (TNBCs) and analyze the involvement of CXCR2 and its link with immune infiltration and immune checkpoint markers. High densities of CXCR2-positive cells were associated with high-grade tumors. Higher quantities of CXCR2-positive cells were correlated with elevated density of tumor-infiltrating lymphocytes (TILs), CD8+ cytotoxic lymphocytes, expression of PD-L1 by tumor and stromal cells and of PD-1 by stromal cells. In univariate analysis, low levels of CXCR2 were correlated with poor OS and RFS. In multivariate analysis, low levels of CXCR2 were associated with poor OS. Overall, our data highlight the potential beneficial association of high levels of CXCR2 with a subgroup of TNBC patients characterized by a better prognosis. Abstract Chemokines and their receptors are key players in breast cancer progression and outcome. Previous studies have shown that the chemokine receptor CXCR2 was expressed at higher levels by cells of the tumor microenvironment in triple-negative breast cancers (TNBCs). The aim of this study was to focus our attention on a retrospective cohort of 290 TNBC cases and analyze the involvement of CXCR2, CD11b (a marker of granulocytes) and CD66b (a marker of neutrophils) and their link with immune infiltration and immune checkpoint markers. We report that high densities of CXCR2-, CD11b- and CD66b-positive cells were associated with high-grade tumors. Moreover, molecular apocrine TNBCs, defined here as tumors that express both AR and FOXA1 biomarkers, exhibited low levels of CXCR2 and CD11b. High CXCR2 and CD11b levels were correlated with elevated density of tumor-infiltrating lymphocytes (TILs), CD8+ cytotoxic lymphocytes, expression of PD-L1 by tumor and stromal cells and of PD-1 by stromal cells. On the other hand, CD66b levels were associated only with CD8+, stromal PD-L1 and PD-1 expression. In univariate analysis, low levels of CXCR2 were correlated with poor OS and RFS. In multivariate analysis, low levels of CXCR2 were associated with poor OS. Finally, in TNBC treated with adjuvant chemotherapy, CXCR2 density was associated with longer RFS. Overall, our data highlight the potential beneficial association of high levels of CXCR2 with a subgroup of TNBC patients characterized by a better prognosis.
Collapse
Affiliation(s)
- Florence Boissière-Michot
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
| | - William Jacot
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
- Montpellier University, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, 34298 Montpellier, France
| | - Océane Massol
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
| | - Caroline Mollevi
- Institut Régional du Cancer de Montpellier (ICM), Val d’Aurelle, 34298 Montpellier, France; (F.B.-M.); (W.J.); (O.M.); (C.M.)
- Institut Desbrest d’Epidémiologie et de Santé Publique, UMR Inserm—Université de Montpellier, 34090 Montpellier, France
| | - Gwendal Lazennec
- CNRS, SYS2DIAG, ALCEDIAG, Cap Delta, 1682 Rue de la Valsière, 34184 Montpellier, France
- CNRS, GDR 3697 “Microenvironment of Tumor Niches”, Micronit, France
- Correspondence:
| |
Collapse
|
7
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|