1
|
Su B, Fan Z, Wu J, Zhan H. Genetic association of lipid-lowering drug target genes with pancreatic cancer: a Mendelian randomization study. Sci Rep 2025; 15:3282. [PMID: 39863728 PMCID: PMC11762976 DOI: 10.1038/s41598-025-87490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Previous studies have found that dyslipidemia is a risk factor for pancreatic cancer (PC), and that lipid-lowering drugs may reduce the risk of PC. However, it is not clear whether dyslipidemia causes PC. The Mendelian randomization (MR) study aimed to investigate the causal role of lipid traits in pancreatic cancer and to assess the potential impact of lipid-lowering drug targets on pancreatic cancer. Genetic variants associated with lipid traits and variants of genes encoding lipid-lowering drug targets were extracted from the Global Lipids Genetics Consortium genome-wide association study (GWAS). Summary statistics for PC were obtained from an independent GWAS datasets. Colocalization analyses were performed to validate the robustness of the results. No significant effect of lipid-lowering drug targets on PC risk was found. Genetic mimicry of lipoprotein lipase (LPL) was potentially associated with PC risks. Significant MR associations were observed in the discovery dataset (OR 1.64 [95% CI 1.24-2.16], p = 4.48*10-4) with PC in one dataset. However, the finding was not verified in the replication dataset. Our findings do not support dyslipidemia as a causal factor for PC. Among lipid-lowering drug targets, LPL is the potential drug target in PC.
Collapse
Affiliation(s)
- Bohan Su
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jiexi Wu
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Zhang Y, Yang Z, Liu Y, Pei J, Li R, Yang Y. Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment. Lipids Health Dis 2025; 24:12. [PMID: 39806478 PMCID: PMC11727729 DOI: 10.1186/s12944-024-02426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function. Standard treatments for PC such as surgical resection, chemotherapy, and radiotherapy. However, these therapies often face significant challenges, including biochemical recurrence and drug resistance.Given these limitations, new therapeutic approaches are being developed to target tumor metabolism. Dysregulation of cholesterol biosynthesis and alterations in fatty acids (FAs), such as palmitate, stearate, omega-3, and omega-6, have been observed in pancreatic cancer. These lipids serve as energy sources, signaling molecules, and essential components of cell membranes. Their accumulation fosters an immunosuppressive tumor microenvironment that supports cancer cell proliferation and metastasis.Moreover, lipid metabolism dysregulation within immune cells, particularly T cells, impairs immune surveillance and weakens the body's defenses against cancer. Abnormal lipid metabolism also contributes to drug resistance in PC. Despite these challenges, targeting lipid metabolism may offer a promising therapeutic strategy. By enhancing lipid peroxidation, the induction of ferroptosis-a form of regulated cell death-could impair the survival of PC cells and hinder disease progression.
Collapse
Affiliation(s)
- Yanyan Zhang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Zhichao Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Yuchen Liu
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Ruojie Li
- Interventional Therapy Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, P.R. China.
| | - Yanhui Yang
- Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.
| |
Collapse
|
3
|
Daya T, Breytenbach A, Gu L, Kaur M. Cholesterol metabolism in pancreatic cancer and associated therapeutic strategies. Biochim Biophys Acta Mol Cell Biol Lipids 2024:159578. [PMID: 39542394 DOI: 10.1016/j.bbalip.2024.159578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Pancreatic cancer remains one of the most lethal cancers due to late diagnosis and high chemoresistance. Despite recent progression in the development of chemotherapies, immunotherapies, and potential nanoparticles-based approaches, the success rate of therapeutic response is limited which is further compounded by cancer drug resistance. Understanding of emerging biological and molecular pathways causative of pancreatic cancer's aggressive and chemoresistance is vital to improve the effectiveness of existing therapeutics and to develop new therapies. One such under-investigated and relatively less explored area of research is documenting the effect that lipids, specifically cholesterol, and its metabolism, impose on pancreatic cancer. Dysregulated cholesterol metabolism has a profound role in supporting cellular proliferation, survival, and promoting chemoresistance and this has been well established in various other cancers. Thus, we aimed to provide an in-depth review focusing on the significance of cholesterol metabolism in pancreatic cancer and relevant genes at play, molecular processes contributing to cellular cholesterol homeostasis, and current research efforts to develop new cholesterol-targeting therapeutics. We highlight the caveats, weigh in different experimental therapeutic strategies, and provide possible suggestions for future research highlighting cholesterol's importance as a therapeutic target against pancreatic cancer resistance and cancer progression.
Collapse
Affiliation(s)
- Tasvi Daya
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Andrea Breytenbach
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Liang Gu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa.
| |
Collapse
|
4
|
Ye XW, Wang ZY, Shao YX, Tang YC, Dong XJ, Zhu YN. Monocyte to high-density lipoprotein ratio based prognostic nomogram for patients following allogeneic vascular replacement pancreaticoduodenectomy. Front Genet 2024; 15:1465318. [PMID: 39253716 PMCID: PMC11381275 DOI: 10.3389/fgene.2024.1465318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Background Preoperative immune-inflammatory condition influencing the metabolism of malignancies. We sought to investigate the prognostic value of a novel immune-inflammatory metabolic marker, the monocyte-to-high-density lipoprotein ratio (MHR), in patients with locally advanced pancreatic cancer. Methods A retrospective analysis was conducted on the clinical data of 118 patients with locally advanced pancreatic cancer and obstructive jaundice who underwent allogeneic vascular replacement pancreaticoduodenectomy in our hospital from Apr. 2011 to Dec. 2023. To assess the predictive capacity of immune-inflammatory metabolic marker, we utilized the area under the receiver operating characteristic curve (AUC-ROC) and assessed the predictive potential of MHR in forecasting outcomes through both univariate and multivariate Cox proportional hazard analyses. Results The area under AUC for MHR in predicting 1-year postoperative survival was 0.714, with an optimal cutoff value of 1.184, yielding a sensitivity of 78.9% and specificity of 66.2%. Based on this cutoff value, patients were divided into a low MHR group (MHR ≤1.184, n = 61) and a high MHR group (MHR >1.184, n = 57). The median survival times for the low and high MHR groups were 27.0 months and 12.0 months, respectively (χ2 = 30.575, p < 0.001), and the median DFS were 18.0 months and 8.0 months, respectively (χ2 = 26.330, p < 0.001). Univariate and multivariate analyses indicated that preoperative MHR, preoperative creatinine, operation duration, and TNM stage were independent predictors of postoperative mortality, while preoperative MHR, preoperative creatinine, and TNM stage were independent predictors of postoperative recurrence risk. Conclusion MHR, as an independent immune-inflammatory metabolic predictor of OS and DFS in patients with advanced PC after pancreaticoduodenectomy. Early monitoring and reduction of MHR may be of great significance in improving prognosis.
Collapse
Affiliation(s)
- Xiao-Wen Ye
- Department of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Zu-Yu Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yun-Xia Shao
- Department of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Ying-Chun Tang
- Department of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Xiong-Jun Dong
- Department of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| | - Ya-Ning Zhu
- Department of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, China
| |
Collapse
|
5
|
Kounatidis D, Tentolouris N, Vallianou NG, Mourouzis I, Karampela I, Stratigou T, Rebelos E, Kouveletsou M, Stamatopoulos V, Tsaroucha E, Dalamaga M. The Pleiotropic Effects of Lipid-Modifying Interventions: Exploring Traditional and Emerging Hypolipidemic Therapies. Metabolites 2024; 14:388. [PMID: 39057711 PMCID: PMC11278853 DOI: 10.3390/metabo14070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerotic cardiovascular disease poses a significant global health issue, with dyslipidemia standing out as a major risk factor. In recent decades, lipid-lowering therapies have evolved significantly, with statins emerging as the cornerstone treatment. These interventions play a crucial role in both primary and secondary prevention by effectively reducing cardiovascular risk through lipid profile enhancements. Beyond their primary lipid-lowering effects, extensive research indicates that these therapies exhibit pleiotropic actions, offering additional health benefits. These include anti-inflammatory properties, improvements in vascular health and glucose metabolism, and potential implications in cancer management. While statins and ezetimibe have been extensively studied, newer lipid-lowering agents also demonstrate similar pleiotropic effects, even in the absence of direct cardiovascular benefits. This narrative review explores the diverse pleiotropic properties of lipid-modifying therapies, emphasizing their non-lipid effects that contribute to reducing cardiovascular burden and exploring emerging benefits for non-cardiovascular conditions. Mechanistic insights into these actions are discussed alongside their potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | | | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
6
|
Huang X, Wang Y, Huang Z, Chen X, Lin Q, Huang H, Fan L. Low serum apolipoprotein A1 level predicts poor prognosis of patients with diffuse large B-cell lymphoma in the real world: a retrospective study. BMC Cancer 2024; 24:62. [PMID: 38212711 PMCID: PMC10785512 DOI: 10.1186/s12885-024-11818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Apolipoprotein A1 (ApoA1) is a member of the apolipoprotein family with diverse functions. It is associated with the pathogenesis and prognosis of several types of tumors. However, the role of serum apolipoprotein A1 (ApoA1) in the prognosis of patients with diffuse large B-cell lymphoma (DLBCL) remains unclear. This study aimed to elucidate its influence on clinical outcomes in patients with DLBCL. METHODS We retrospectively analyzed a cohort of 1583 consecutive DLBCL patients admitted to the Fujian Medical University Union Hospital between January 2011 and December 2021. 949 newly diagnosed DLBCL patients who met the inclusion criteria were enrolled for statistical analysis. Receiver operating characteristic curve analysis was performed to determine the optimal cut-off value for serum ApoA1 levels for prognostic prediction among patients with DLBCL. The correlations between serum ApoA1 levels and clinical and laboratory parameters were analyzed. Prognostic significance was analyzed using univariate and multivariate Cox proportional hazards models. RESULTS Newly diagnosed patients with DLBCL demonstrated low serum ApoA1 levels (< 0.925 g/L), had more B symptoms, higher levels of serum lactate dehydrogenase (LDH) (>upper limit of normal), poorer performance status (Eastern Cooperative Oncology Group score of 2-4), higher percentage of advanced stage and non-germinal center B-cell (non-GCB) subtype, more cases of > 1 extranodal site, higher International Prognostic Index (IPI) score (3-5), and higher incidence of relapse or refractory diseases compared with those with high serum ApoA1 levels (≥ 0.925 g/L). Low serum ApoA1 levels were an independent adverse prognostic factor for overall survival (OS) but not progression-free survival (PFS). CONCLUSIONS Low serum ApoA1 levels were associated with poor treatment response and inferior survival in newly diagnosed patients with DLBCL.
Collapse
Affiliation(s)
- Xiaoling Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Ying Wang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Zhenyu Huang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing County, Fuzhou City, 350300, Fujian Province, China
| | - Xuzheng Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou City, 350122, Fujian Province, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou City, 350122, Fujian Province, China
| | - Qiuyan Lin
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Liping Fan
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
7
|
Li Y, Amrutkar M, Finstadsveen AV, Dalen KT, Verbeke CS, Gladhaug IP. Fatty acids abrogate the growth-suppressive effects induced by inhibition of cholesterol flux in pancreatic cancer cells. Cancer Cell Int 2023; 23:276. [PMID: 37978383 PMCID: PMC10657020 DOI: 10.1186/s12935-023-03138-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Despite therapeutic advances, the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. Metabolic reprogramming is increasingly recognized as a key contributor to tumor progression and therapy resistance in PDAC. One of the main metabolic changes essential for tumor growth is altered cholesterol flux. Targeting cholesterol flux appears an attractive therapeutic approach, however, the complex regulation of cholesterol balance in PDAC cells remains poorly understood. METHODS The lipid content in human pancreatic duct epithelial (HPDE) cells and human PDAC cell lines (BxPC-3, MIA PaCa-2, and PANC-1) was determined. Cells exposed to eight different inhibitors targeting different regulators of lipid flux, in the presence or absence of oleic acid (OA) stimulation were assessed for changes in viability, proliferation, migration, and invasion. Intracellular content and distribution of cholesterol was assessed. Lastly, proteome profiling of PANC-1 exposed to the sterol O-acyltransferase 1 (SOAT1) inhibitor avasimibe, in presence or absence of OA, was performed. RESULTS PDAC cells contain more free cholesterol but less cholesteryl esters and lipid droplets than HPDE cells. Exposure to different lipid flux inhibitors increased cell death and suppressed proliferation, with different efficiency in the tested PDAC cell lines. Avasimibe had the strongest ability to suppress proliferation across the three PDAC cell lines. All inhibitors showing cell suppressive effect disturbed intracellular cholesterol flux and increased cholesterol aggregation. OA improved overall cholesterol balance, reduced free cholesterol aggregation, and reversed cell death induced by the inhibitors. Treatment with avasimibe changed the cellular proteome substantially, mainly for proteins related to biosynthesis and metabolism of lipids and fatty acids, apoptosis, and cell adhesion. Most of these changes were restored by OA. CONCLUSIONS The study reveals that disturbing the cholesterol flux by inhibiting the actions of its key regulators can yield growth suppressive effects on PDAC cells. The presence of fatty acids restores intracellular cholesterol balance and abrogates the alternations induced by cholesterol flux inhibitors. Taken together, targeting cholesterol flux might be an attractive strategy to develop new therapeutics against PDAC. However, the impact of fatty acids in the tumor microenvironment must be taken into consideration.
Collapse
Affiliation(s)
- Yuchuan Li
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Manoj Amrutkar
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, The Norwegian Transgenic Center, University of Oslo, Oslo, Norway
| | - Caroline S Verbeke
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ivar P Gladhaug
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
8
|
Li L, Yu Z, Ren J, Niu T. Low cholesterol levels are associated with increasing risk of plasma cell neoplasm: A UK biobank cohort study. Cancer Med 2023; 12:20964-20975. [PMID: 37908181 PMCID: PMC10709719 DOI: 10.1002/cam4.6649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Plasma cell neoplasms are a group of hematologic neoplasms that often develop in the elderly population. The relationship between cholesterol levels and hematologic malignancy has been identified in population studies. However, it is still unclear if there is a relationship between cholesterol levels and plasma cell neoplasm in European ancestry. METHODS Prospective cohorts included 502,507 individuals from the UK Biobank who were followed up to 2019 and assessed total cholesterol(TC) levels, low-density lipoprotein (LDL) levels, high-density lipoprotein (HDL) levels, apolipoprotein A (ApoA) and apolipoprotein B (ApoB) as risk factors for plasma cell neoplasms with Cox proportional hazard regression and restricted cubic spline model. We also used two-sample Mendelian randomization to determine if the cholesterol level has a causal effect on developing plasma cell neoplasms. RESULTS We observed 1819 plasma cell neoplasm cases during 14.2 years of follow-up in the UK Biobank. We found higher blood serum cholesterol levels at baseline were associated with a lower risk of plasma cell neoplasm in our study. All lipid profiles we analyzed in this study were inversely associated with plasma cell neoplasm risk (all ptrend <0.005) but triglycerides did not have such association. However, there was no suggestive association of genetically predicted serum LDL, HDL, and total cholesterol levels with multiple myeloma. CONCLUSION Low serum total cholesterol, LDL, HDL, ApoA, and ApoB levels were all associated with increasing the risk of plasma cell neoplasm.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Hematology, Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Zhengyu Yu
- Department of Hematology, Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| | - Jianjun Ren
- Department of Otolaryngology‐Head and Neck Surgery, West China Hospital, West China Medical SchoolSichuan UniversityChengduChina
| | - Ting Niu
- Department of Hematology, Institute of Hematology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Sun R, Xu H, Liu F, Zhou B, Li M, Sun X. Unveiling the intricate causal nexus between pancreatic cancer and peripheral metabolites through a comprehensive bidirectional two-sample Mendelian randomization analysis. Front Mol Biosci 2023; 10:1279157. [PMID: 37954977 PMCID: PMC10634252 DOI: 10.3389/fmolb.2023.1279157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Aim: Pancreatic cancer (PC) is a devastating malignancy characterized by its aggressive nature and poor prognosis. However, the relationship of PC with peripheral metabolites remains not fully investigated. The study aimed to explore the causal linkage between PC and peripheral metabolite profiles. Methods: Employing publicly accessible genome-wide association studies (GWAS) data, we conducted a bidirectional two-sample Mendelian randomization (MR) analysis. The primary analysis employed the inverse-variance weighted (IVW) method. To address potential concerns about horizontal pleiotropy, we also employed supplementary methods such as maximum likelihood, weighted median, MR-Egger regression, and MR pleiotropy residual sum and outlier (MR-PRESSO). Results: We ascertained 20 genetically determined peripheral metabolites with causal linkages to PC while high-density lipoprotein (HDL) and very low-density lipoprotein (VLDL) particles accounted for the vast majority. Specifically, HDL particles exhibited an elevated PC risk while VLDL particles displayed an opposing pattern. The converse MR analysis underscored a notable alteration in 17 peripheral metabolites due to PC, including branch chain amino acids and derivatives of glycerophospholipid. Cross-referencing the bidirectional MR results revealed a reciprocal causation of PC and X-02269 which might form a self-perpetuating loop in PC development. Additionally, 1-arachidonoylglycerophosphocholine indicated a reduced PC risk and an increase under PC influence, possibly serving as a negative feedback regulator. Conclusion: Our findings suggest a complex interplay between pancreatic cancer and peripheral metabolites, with potential implications for understanding the etiology of pancreatic cancer and identifying novel early diagnosis and therapeutic targets. Moreover, X-02269 may hold a pivotal role in PC onset and progression.
Collapse
Affiliation(s)
| | | | | | | | - Minli Li
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiangdong Sun
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Liang W, Sun F. Do metabolic factors increase the risk of thyroid cancer? a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1234000. [PMID: 37780617 PMCID: PMC10541021 DOI: 10.3389/fendo.2023.1234000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Background Epidemiological studies emphasize the link between metabolic factors and thyroid cancer. Using Mendelian randomization (MR), we assessed the possible causal impact of metabolic factors on thyroid cancer for the first time. Methods Summary statistics for metabolic factors and thyroid cancer were obtained from published Genome-wide association studies. The causal relationships were assessed using the inverse-variance weighted (IVW) method as the primary method through a two-sample Mendelian Randomization (MR) analysis. To account for the potential existence of horizontal pleiotropy, four additional methods were employed, including Mendelian Randomization-Egger (MR-Egger), weighted median method (WM), simple mode, and weighted mode method. Given the presence of interactions between metabolic factors, a multivariable MR analysis was subsequently conducted. Results The results showed there was a genetic link between HDL level and protection effect of thyroid cancer using IVW (OR= 0.75, 95% confidence intervals [CIs] 0.60-0.93, p=0.01) and MR-Egger method (OR= 0.70, 95% confidence intervals [CIs] 0.50- 0.97, p=0.03). The results remained robust in multivariable MR analysis for the genetic link between HDL level and protection effect of thyroid cancer (OR= 0.74, 95% confidence intervals [CIs] 0.55-0.99, p=0.04). Conclusions This study suggests a protection role for HDL on thyroid cancer. The study findings provide evidence for the public health suggestion for thyroid cancer prevention. HDL's potential as a pharmacological target needs further validation.
Collapse
Affiliation(s)
- Weiwei Liang
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - FangFang Sun
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Xu R, Song J, Ruze R, Chen Y, Yin X, Wang C, Zhao Y. SQLE promotes pancreatic cancer growth by attenuating ER stress and activating lipid rafts-regulated Src/PI3K/Akt signaling pathway. Cell Death Dis 2023; 14:497. [PMID: 37542052 PMCID: PMC10403582 DOI: 10.1038/s41419-023-05987-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
Pancreatic cancer (PC), a highly lethal malignancy, commonly exhibits metabolic reprogramming that results in therapeutic vulnerabilities. Nevertheless, the mechanisms underlying the impacts of aberrant cholesterol metabolism on PC development and progression remain elusive. In this study, we found that squalene epoxidase (SQLE) is a crucial mediator of cholesterol metabolism in PC growth. We observed a profound upregulation of SQLE in PC tissues, and its high expression was correlated with poor patient outcomes. Our functional experiments demonstrated that SQLE facilitated cell proliferation, induced cell cycle progression, and inhibited apoptosis in vitro, while promoting tumor growth in vivo. Mechanistically, SQLE was found to have a dual role. First, its inhibition led to squalene accumulation-induced endoplasmic reticulum (ER) stress and subsequent apoptosis. Second, it enhanced de novo cholesterol biosynthesis and maintained lipid raft stability, thereby activating the Src/PI3K/Akt signaling pathway. Significantly, employing SQLE inhibitors effectively suppressed PC cell proliferation and xenograft tumor growth. In summary, this study reveals SQLE as a novel oncogene that promotes PC growth by mitigating ER stress and activating lipid raft-regulated Src/PI3K/Akt signaling pathway, highlighting the potential of SQLE as a therapeutic target for PC.
Collapse
Affiliation(s)
- Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China.
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P. R. China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P. R. China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100023, P. R. China.
| |
Collapse
|
12
|
Hou Z, Lin J, Ma Y, Fang H, Wu Y, Chen Z, Lin X, Lu F, Wen S, Yu X, Huang H, Pan Y. Single-cell RNA sequencing revealed subclonal heterogeneity and gene signatures of gemcitabine sensitivity in pancreatic cancer. Front Pharmacol 2023; 14:1193791. [PMID: 37324492 PMCID: PMC10267405 DOI: 10.3389/fphar.2023.1193791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Resistance to gemcitabine is common and critically limits its therapeutic efficacy in pancreatic ductal adenocarcinoma (PDAC). Methods: We constructed 17 patient-derived xenograft (PDX) models from PDAC patient samples and identified the most notable responder to gemcitabine by screening the PDX sets in vivo. To analyze tumor evolution and microenvironmental changes pre- and post-chemotherapy, single-cell RNA sequencing (scRNA-seq) was performed. Results: ScRNA-seq revealed that gemcitabine promoted the expansion of subclones associated with drug resistance and recruited macrophages related to tumor progression and metastasis. We further investigated the particular drug-resistant subclone and established a gemcitabine sensitivity gene panel (GSGP) (SLC46A1, PCSK1N, KRT7, CAV2, and LDHA), dividing PDAC patients into two groups to predict the overall survival (OS) in The Cancer Genome Atlas (TCGA) training dataset. The signature was successfully validated in three independent datasets. We also found that 5-GSGP predicted the sensitivity to gemcitabine in PDAC patients in the TCGA training dataset who were treated with gemcitabine. Discussion and conclusion: Our study provides new insight into the natural selection of tumor cell subclones and remodeling of tumor microenvironment (TME) cells induced by gemcitabine. We revealed a specific drug resistance subclone, and based on the characteristics of this subclone, we constructed a GSGP that can robustly predict gemcitabine sensitivity and prognosis in pancreatic cancer, which provides a theoretical basis for individualized clinical treatment.
Collapse
Affiliation(s)
- Zelin Hou
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiajing Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuan Ma
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haizhong Fang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuwei Wu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhijiang Chen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xianchao Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shi Wen
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | | | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
13
|
Fessler MB. We need to talk about lung cancer's cholesterol-hoarding problem. Cell Stem Cell 2023; 30:745-747. [PMID: 37267910 DOI: 10.1016/j.stem.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
Proliferative cells require excess cholesterol to support rapid membrane biogenesis. Using a mutant KRAS mouse model of non-small cell lung cancer, Guilbaud et al. show that lung cancers accumulate cholesterol by locally and distally reprogramming lipid trafficking and that cholesterol-removing interventions may hold promise as a therapeutic strategy.
Collapse
Affiliation(s)
- Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
14
|
Amrutkar M, Verbeke CS, Finstadsveen AV, Dorg L, Labori KJ, Gladhaug IP. Neoadjuvant chemotherapy is associated with an altered metabolic profile and increased cancer stemness in patients with pancreatic ductal adenocarcinoma. Mol Oncol 2022; 17:59-81. [PMID: 36400567 PMCID: PMC9812839 DOI: 10.1002/1878-0261.13344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022] Open
Abstract
The modest clinical benefits of neoadjuvant chemotherapy (NAT) in pancreatic ductal adenocarcinoma (PDAC) are associated with a lack of robust data on treatment-induced changes in the tumor. To this end, comparative proteomic profiling of tumor tissue samples from treatment-naïve (TN, n = 20) and NAT-treated (n = 22) PDACs was performed. Differentially expressed proteins were identified and correlation with overall survival (OS) was performed. Tumors were also examined for histopathological changes and expression of cancer stem cell (CSC) markers. Serum from 33 matched patients was analyzed for metabolic markers. Cytotoxicity, proliferation, and expression of CSC markers were assessed in chemoresistant Panc-1 and Mia PaCa-2 cells. Of the 2265 proteins identified, 227 and 144 proteins showed significantly altered expression and differential phosphorylation, respectively, in NAT compared with TN samples. The majority of these were metabolism-related proteins, and 14 of these correlated moderately with OS. NAT-treated tumors and chemoresistant cancer cells showed increased expression of CSC markers. Serum ALDH1A1 was higher in NAT compared with TN. Differentially phosphorylated proteins were mainly involved in cytoskeleton organization, cell locomotion, motility, and migration, and 17 of these showed a strong positive correlation with OS. This study provides evidence of the effects of NAT on PDAC metabolism at both the tumor and the systemic levels. NAT-treated tumors showed significantly lower expression of metabolic proteins, and patients who underwent NAT showed reduced serum lactate and high-density lipoprotein-cholesterol. Lastly, cancer cells that survived cytotoxic treatment expressed higher CSC markers, both in vivo and in vitro.
Collapse
Affiliation(s)
- Manoj Amrutkar
- Department of PathologyOslo University HospitalNorway,Department of Pharmacology, Institute of Clinical MedicineUniversity of OsloNorway
| | - Caroline S. Verbeke
- Department of PathologyOslo University HospitalNorway,Department of Pathology, Institute of Clinical MedicineUniversity of OsloNorway
| | | | - Linda Dorg
- Department of Pathology, Institute of Clinical MedicineUniversity of OsloNorway
| | - Knut Jørgen Labori
- Department of Hepato‐Pancreato‐Biliary Surgery, Institute of Clinical MedicineUniversity of OsloNorway,Department of Hepato‐Pancreato‐Biliary SurgeryOslo University HospitalNorway
| | - Ivar P. Gladhaug
- Department of Hepato‐Pancreato‐Biliary Surgery, Institute of Clinical MedicineUniversity of OsloNorway,Department of Hepato‐Pancreato‐Biliary SurgeryOslo University HospitalNorway
| |
Collapse
|