1
|
Gao H, Lu H, Fang N, Su J, Li R, Wang W, Zhang Y. The potential of Terminalia chebula in alleviating mild cognitive impairment: a review. Front Pharmacol 2024; 15:1484040. [PMID: 39494343 PMCID: PMC11528016 DOI: 10.3389/fphar.2024.1484040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Terminalia chebula Retz. (T. Chebula, ཨ་རུ་ར།) is highly utilized in ethnic medicine. Its medicinal value is gradually being recognized and shows great potential in the improvement of mild cognitive impairment (MCI) disorders. Tibetan medicine theory classifies this type of disease as one of the "Jie Xie Syndrome (བརྗེད་བྱེད།)." The role of T. Chebula in such diseases has been increasingly studied. This work aimed to elucidate the research progress of T. Chebula in alleviating MCI. The review offers a critical update on the current understanding of the effect of T. Chebula on MCI and highlights new opportunities for exploring its therapeutic potential. This review discusses the role of T. Chebula in alleviating MCI and provides a comprehensive overview of the traditional medicinal uses, chemical composition, toxicology, and quality control aspects of T. Chebula. This review covers 171 chemical constituents and 11 active constituents targeting MCI, such as flavonoids, which can alleviate MCI, primarily through its antioxidative, anti-inflammatory, and neuroprotective properties. T. Chebula shows potential as a natural medicine for the treatment and prevention of MCI. As an important part of ethnomedicinal resources, this work offers valuable insights for future research on T. Chebula-containing ethnomedicines. Research on traditional drug treatments, optimized treatment standards, improved societal knowledge about MCI, and development of an early detection system is essential to the diagnosis and treatment of MCI. These efforts will provide better treatment resources for patients with MCI.
Collapse
Affiliation(s)
- Huimin Gao
- College of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Lu
- School of Ethmic Medicine, Chengdu University of Taditional Chinese Medicine, Chengdu, Sichuan, China
| | - Nengqiao Fang
- College of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinsong Su
- Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- College of Pharmacy and Meishan Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wang
- School of Ethmic Medicine, Chengdu University of Taditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Zhang
- School of Ethmic Medicine, Chengdu University of Taditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Jiang H, Lu C, Wu H, Ding J, Li J, Ding J, Gao Y, Wang G, Luo Q. Decreased cold-inducible RNA-binding protein (CIRP) binding to GluRl on neuronal membranes mediates memory impairment resulting from prolonged hypobaric hypoxia exposure. CNS Neurosci Ther 2024; 30:e70059. [PMID: 39315498 PMCID: PMC11420629 DOI: 10.1111/cns.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
AIM To investigate the molecular mechanisms underlying memory impairment induced by high-altitude (HA) hypoxia, specifically focusing on the role of cold-inducible RNA-binding protein (CIRP) in regulating the AMPA receptor subunit GluR1 and its potential as a therapeutic target. METHODS A mouse model was exposed to 14 days of hypobaric hypoxia (HH), simulating conditions at an altitude of 6000 m. Behavioral tests were conducted to evaluate memory function. The expression, distribution, and interaction of CIRP with GluR1 in neuronal cells were analyzed. The binding of CIRP to GluR1 mRNA and its impact on GluR1 protein expression were examined. Additionally, the role of CIRP in GluR1 regulation was assessed using Cirp knockout mice. The efficacy of the Tat-C16 peptide, which consists of the Tat sequence combined with the CIRP 110-125 amino acid sequence, was also tested for its ability to mitigate HH-induced memory decline. RESULTS CIRP was primarily localized in neurons, with its expression significantly reduced following HH exposure. This reduction was associated with decreased GluR1 protein expression on the cell membrane and increased localization in the cytoplasm. The interaction between CIRP and GluR1 was diminished under HH conditions, leading to reduced GluR1 stability on the cell membrane and increased cytoplasmic relocation. These changes resulted in a decreased number of synapses and dendritic spines, impairing learning and memory functions. Administration of the Tat-C16 peptide effectively ameliorated these impairments by modulating GluR1 expression and distribution in HH-exposed mice. CONCLUSION CIRP plays a critical role in maintaining synaptic integrity under hypoxic conditions by regulating GluR1 expression and distribution. The Tat-C16 peptide shows promise as a therapeutic strategy for alleviating cognitive decline associated with HA hypoxia.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
- College of High‐Altitude Military MedicineInstitute of Medicine and Hygienic Equipment for High Altitude Region, Army Medical UniversityChongqingChina
| | - Chenyan Lu
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Haoyang Wu
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jie Ding
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jiayan Li
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jianfeng Ding
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Yuqi Gao
- College of High‐Altitude Military MedicineInstitute of Medicine and Hygienic Equipment for High Altitude Region, Army Medical UniversityChongqingChina
- Key Laboratory of Extreme Environmental Medicine and High‐Altitude Medicine, Ministry of Education of ChinaChongqingChina
| | - Guohua Wang
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Qianqian Luo
- Department of Hypoxic BiomedicineInstitute of Special Environmental Medicine and Co‐innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
3
|
Yin Y, Zhu Y, Liu J, Fan Q, Wu X, Zhao S, Wang J, Liu Y, Li Y, Lu W. Long-term spaceflight composite stress induces depressive behaviors in model rats through disrupting hippocampus synaptic plasticity. CNS Neurosci Ther 2024; 30:e14438. [PMID: 37849237 PMCID: PMC10916436 DOI: 10.1111/cns.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 10/19/2023] Open
Abstract
INTRODUCTION Long-term spaceflight composite stress (LSCS) can cause adverse effects on human systems, including the central nervous system, which could trigger anxiety and depression. AIMS This study aimed to identify changes in hippocampus synaptic plasticity under LSCS. METHODS The present study simulated the real long-term space station environment by conducting a 42-day experiment that involved simulating microgravity, isolation, noise, circadian rhythm disruptions, and low pressure. The mood and behavior of the rats were assessed by behavior test. Transmission electron microscopy and patch-clamp were used to detect the changes in synapse morphology and electrophysiology, and finally, the expression of NMDA receptor channel proteins was detected by western blotting. RESULTS The results showed that significant weight loss, anxiety, and depressive behaviors in rats were observed after being exposed to LSCS environment for 42 days. The synaptic structure was severely damaged, manifested as an obvious decrease in postsynaptic density thickness and synaptic interface curvature (p < 0.05; p < 0.05, respectively). Meanwhile, LTP was significantly impaired (p < 0.0001), and currents in the NMDAR channel were also significantly reduced (p < 0.0001). Further analysis found that LSCS decreased the expression of two key subtype proteins on this channel. CONCLUSION These results suggested that LSCS-induced depressive behaviors by impairing synaptic plasticity in rat hippocampus.
Collapse
Affiliation(s)
- Yi‐Shu Yin
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
- School of Medicine and HealthHarbin Institute of TechnologyHarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbinChina
| | - Yuan‐Bing Zhu
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
- School of Medicine and HealthHarbin Institute of TechnologyHarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbinChina
| | - Jun‐Lian Liu
- China Astronaut Research and Training CenterBeijingChina
| | - Quan‐Chun Fan
- China Astronaut Research and Training CenterBeijingChina
| | - Xiao‐Rui Wu
- China Astronaut Research and Training CenterBeijingChina
| | - Shuang Zhao
- China Astronaut Research and Training CenterBeijingChina
| | - Jia‐Ping Wang
- China Astronaut Research and Training CenterBeijingChina
| | - Yu Liu
- China Astronaut Research and Training CenterBeijingChina
| | - Yong‐Zhi Li
- China Astronaut Research and Training CenterBeijingChina
| | - Wei‐Hong Lu
- School of Medicine and HealthHarbin Institute of TechnologyHarbinChina
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental NutrientsHarbinChina
- The Intelligent Equipment Research Center for the Exploitation of Characteristic Food & Medicine Resources, Chongqing Research Institute, Harbin Institute of TechnologyChongqingChina
| |
Collapse
|
4
|
Pitzer EM, Shafer TJ, Herr DW. Identification of neurotoxicology (NT)/developmental neurotoxicology (DNT) adverse outcome pathways and key event linkages with in vitro DNT screening assays. Neurotoxicology 2023; 99:184-194. [PMID: 37866692 DOI: 10.1016/j.neuro.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/14/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
There is a need to assess compounds reliably and quickly for neurotoxicity (NT) and developmental neurotoxicity (DNT). Adverse outcome pathways (AOPs) enable the mapping of molecular events to an apical endpoint in a chemical agnostic manner and have begun to be applied in NT and DNT testing frameworks. We assessed the status of NT/DNT AOPs in the AOP-Wiki (ca. 2/1/23; https://aopwiki.org/), to characterize the state of AOP development, identify strengths and knowledge gaps, elucidate areas for improvement, and describe areas for future focus. AOPs in the Wiki database were assessed for inclusion of NT/DNT molecular events and endpoints, AOP development and endorsement, as well as the linkages of key neurodevelopmental processes with in vitro new approach methods (NAMs). This review found that 41 AOPs have been proposed detailing NT/DNT, of which eight were endorsed by working parties in OECD. Further, this review determined that learning and memory is included as an adverse outcome in eight NT/DNT AOPS, often without distinction regarding the varying forms of learning and memory, regional specification, temporal dynamics, or acquisition mechanisms involved. There is also an overlap with key events (KEs) and in vitro NAMs, which synaptogenesis appeared as a common process. Overall, progress on NT/DNT AOPs could be expanded, adding in modes of action that are missing, improvement in defining apical endpoints, as well as utilizing NAMs further to develop AOPs and identify gaps in current knowledge.
Collapse
Affiliation(s)
- Emily M Pitzer
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - David W Herr
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
5
|
Zaccard CR, Gippo I, Song A, Geula C, Penzes P. Dendritic spinule-mediated structural synaptic plasticity: Implications for development, aging, and psychiatric disease. Front Mol Neurosci 2023; 16:1059730. [PMID: 36741924 PMCID: PMC9895827 DOI: 10.3389/fnmol.2023.1059730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are highly dynamic and changes in their density, size, and shape underlie structural synaptic plasticity in cognition and memory. Fine membranous protrusions of spines, termed dendritic spinules, can contact neighboring neurons or glial cells and are positively regulated by neuronal activity. Spinules are thinner than filopodia, variable in length, and often emerge from large mushroom spines. Due to their nanoscale, spinules have frequently been overlooked in diffraction-limited microscopy datasets. Until recently, our knowledge of spinules has been interpreted largely from single snapshots in time captured by electron microscopy. We summarize herein the current knowledge about the molecular mechanisms of spinule formation. Additionally, we discuss possible spinule functions in structural synaptic plasticity in the context of development, adulthood, aging, and psychiatric disorders. The literature collectively implicates spinules as a mode of structural synaptic plasticity and suggests the existence of morphologically and functionally distinct spinule subsets. A recent time-lapse, enhanced resolution imaging study demonstrated that the majority of spinules are small, short-lived, and dynamic, potentially exploring their environment or mediating retrograde signaling and membrane remodeling via trans-endocytosis. A subset of activity-enhanced, elongated, long-lived spinules is associated with complex PSDs, and preferentially contacts adjacent axonal boutons not presynaptic to the spine head. Hence, long-lived spinules can form secondary synapses with the potential to alter synaptic connectivity. Published studies further suggest that decreased spinules are associated with impaired synaptic plasticity and intellectual disability, while increased spinules are linked to hyperexcitability and neurodegenerative diseases. In summary, the literature indicates that spinules mediate structural synaptic plasticity and perturbations in spinules can contribute to synaptic dysfunction and psychiatric disease. Additional studies would be beneficial to further delineate the molecular mechanisms of spinule formation and determine the exact role of spinules in development, adulthood, aging, and psychiatric disorders.
Collapse
Affiliation(s)
- Colleen R. Zaccard
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Isabel Gippo
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Amy Song
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,*Correspondence: Peter Penzes,
| |
Collapse
|
6
|
The Neuroprotective Effects of Spray-Dried Porcine Plasma Supplementation Involve the Microbiota-Gut-Brain Axis. Nutrients 2022; 14:nu14112211. [PMID: 35684013 PMCID: PMC9183112 DOI: 10.3390/nu14112211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Dietary supplementation with spray-dried porcine plasma (SDP) reduces the Alzheimer’s disease (AD) hallmarks in SAMP8 mice. Since gut microbiota can play a critical role in the AD progression, we have studied if the neuroprotective effects of SDP involve the microbiota−gut−brain axis. Experiments were performed on two-month-old SAMP8 mice fed a standard diet and on six-month-old SAMP8 mice fed a control diet or an 8% SDP supplemented diet for four months. Senescence impaired short- and long-term memory, reduced cortical brain-derived neurotrophic factor (BDNF) abundance, increased interleukin (Il)-1β, Il-6, and Toll-like receptor 2 (Tlr2) expression, and reduced transforming growth factor β (Tgf-β) expression and IL-10 concentration (all p < 0.05) and these effects were mitigated by SDP (all p < 0.05). Aging also increased pro-inflammatory cytokines in serum and colon (all p < 0.05). SDP attenuated both colonic and systemic inflammation in aged mice (all p < 0.05). SDP induced the proliferation of health-promoting bacteria, such as Lactobacillus and Pediococcus, while reducing the abundance of inflammation-associated bacteria, such as Johnsonella and Erysipelothrix (both q < 0.1). In conclusion, SDP has mucosal and systemic anti-inflammatory effects as well as neuroprotective properties in senescent mice; these effects are well correlated with SDP promotion of the abundance of probiotic species, which indicates that the gut−brain axis could be involved in the peripheral effects of SDP supplementation.
Collapse
|
7
|
Jia Y, Wang X, Chen Y, Qiu W, Ge W, Ma C. Proteomic and Transcriptomic Analyses Reveal Pathological Changes in the Entorhinal Cortex Region that Correlate Well with Dysregulation of Ion Transport in Patients with Alzheimer's Disease. Mol Neurobiol 2021; 58:4007-4027. [PMID: 33904022 DOI: 10.1007/s12035-021-02356-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/10/2021] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The earliest neuropathology of AD appears in entorhinal cortex (EC) regions. Therapeutic strategies and preventive measures to protect against entorhinal degeneration would be of substantial value in the early stages of AD. In this study, transcriptome based on the Illumina RNA-seq and proteome based on TMT-labelling were performed for RNA and protein profiling on AD EC samples and non-AD control EC samples. Immunohistochemistry was used to validate proteins expressions. After integrated analysis, 57 genes were detected both in transcriptome and proteome data, including 51 in similar altering trends (7 upregulated, 44 downregulated) and 6 in inverse trends when compared AD vs. control. The top 6 genes (GABRG2, CACNG3, CACNB4, GABRB2, GRIK2, and SLC17A6) within the 51 genes were selected and related to "ion transport". Correlation analysis demonstrated negative relationship of protein expression level with the neuropathologic changes. In conclusion, the integrate transcriptome and proteome analysis provided evidence for dysregulation of ion transport across brain regions in AD, which might be a critical signaling pathway that initiates pathology. This study might provide new insight into the earliest changes occurring in the EC of AD and novel targets for AD prevention and treatment.
Collapse
Affiliation(s)
- Yangjie Jia
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Yanyu Chen
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| |
Collapse
|
8
|
Lamarre J, Cheema SK, Robertson GJ, Wilson DR. Omega-3 fatty acids accelerate fledging in an avian marine predator: a potential role of cognition. J Exp Biol 2021; 224:jeb.235929. [PMID: 33462136 PMCID: PMC7929930 DOI: 10.1242/jeb.235929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Consuming omega-3 fatty acids (n-3 LCPUFAs) during development improves cognition in mammals, but the effect remains untested in other taxa. In aquatic ecosystems, n-3 LCPUFAs are produced by phytoplankton and bioaccumulate in the food web. Alarmingly, the warming and acidification of aquatic systems caused by climate change impair n-3 LCPUFA production, with an anticipated decrease of 80% by the year 2100. We tested whether n-3 LCPUFA consumption affects the physiology, morphology, behaviour and cognition of the chicks of a top marine predator, the ring-billed gull. Using a colony with little access to n-3 LCPUFAs, we supplemented siblings from 22 fenced nests with contrasting treatments from hatching until fledging; one sibling received n-3 LCPUFA-rich fish oil and the other, a control sucrose solution without n-3 LCPUFAs. Halfway through the nestling period, half the chicks receiving fish oil were switched to the sucrose solution to test whether n-3 LCPUFA intake remains crucial past the main growth phase (chronic versus transient treatments). Upon fledging, n-3 LCPUFAs were elevated in the blood and brains of chicks receiving the chronic treatment, but were comparable to control levels among those receiving the transient treatment. Across the entire sample, chicks with elevated n-3 LCPUFAs in their tissues fledged earlier despite their morphology and activity levels being unrelated to fledging age. Fledging required chicks to escape fences encircling their nest. We therefore interpret fledging age as a possible indicator of cognition, with chicks with improved cognition fledging earlier. These results provide insight into whether declining dietary n-3 LCPUFAs will compromise top predators' problem-solving skills, and thus their ability to survive in a rapidly changing world.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada, A1N 4T3
| | - David R Wilson
- Department of Psychology, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| |
Collapse
|
9
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
10
|
Glausier JR, Datta D, Fish KN, Chung DW, Melchitzky DS, Lewis DA. Laminar Differences in the Targeting of Dendritic Spines by Cortical Pyramidal Neurons and Interneurons in Human Dorsolateral Prefrontal Cortex. Neuroscience 2021; 452:181-191. [PMID: 33212224 PMCID: PMC7770119 DOI: 10.1016/j.neuroscience.2020.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 01/05/2023]
Abstract
Activation of specific neural circuits in different layers of the primate dorsolateral prefrontal cortex (DLPFC) is essential for working memory, a core cognitive function. Recurrent excitation between pyramidal neurons in middle and deep layers of the DLPFC contributes to the laminar-specific activity associated with different working memory subprocesses. Excitation between cortical pyramidal neurons is mediated by glutamatergic synapses on dendritic spines, but whether the relative abundance of spines receiving cortical inputs differs between middle and deep cortical layers in human DLPFC is unknown. Additionally, GABAergic inputs to spines sculpt pyramidal neuron activity. Whether dendritic spines that receive a glutamatergic input from a cortical pyramidal neuron are targeted by GABAergic interneurons in the human DLPFC is unknown. Using triple-label fluorescence confocal microscopy, we found that 1) the density of spines receiving an input from a cortical pyramidal neuron is greater in the middle than in the deep laminar zone, 2) dendritic spines dually innervated by a cortical pyramidal neuron and an interneuron are present in the human DLPFC, and 3) the density of spines dually innervated by a cortical pyramidal neuron and an interneuron is also greater in the middle than in the deep laminar zone. Ultrastructural analyses support the presence of spines that receive a cortical pyramidal neuron synapse and an interneuron synapse in human and monkey DLPFC. These data support the notion that the DLPFC middle laminar zone is particularly endowed with a microcircuit structure that supports the gating, integrating and fine-tuning of synaptic information in recurrent excitatory microcircuits.
Collapse
Affiliation(s)
- Jill R Glausier
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Biomedical Science Tower W1654, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Dibyadeep Datta
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Biomedical Science Tower W1654, 3811 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA; Department of Neuroscience, Yale University, Sterling Hall of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Kenneth N Fish
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Biomedical Science Tower W1654, 3811 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Daniel W Chung
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Biomedical Science Tower W1654, 3811 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA
| | - Darlene S Melchitzky
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Biomedical Science Tower W1654, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - David A Lewis
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Biomedical Science Tower W1654, 3811 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| |
Collapse
|
11
|
Glutamatergic Dysfunction and Synaptic Ultrastructural Alterations in Schizophrenia and Autism Spectrum Disorder: Evidence from Human and Rodent Studies. Int J Mol Sci 2020; 22:ijms22010059. [PMID: 33374598 PMCID: PMC7793137 DOI: 10.3390/ijms22010059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The correlation between dysfunction in the glutamatergic system and neuropsychiatric disorders, including schizophrenia and autism spectrum disorder, is undisputed. Both disorders are associated with molecular and ultrastructural alterations that affect synaptic plasticity and thus the molecular and physiological basis of learning and memory. Altered synaptic plasticity, accompanied by changes in protein synthesis and trafficking of postsynaptic proteins, as well as structural modifications of excitatory synapses, are critically involved in the postnatal development of the mammalian nervous system. In this review, we summarize glutamatergic alterations and ultrastructural changes in synapses in schizophrenia and autism spectrum disorder of genetic or drug-related origin, and briefly comment on the possible reversibility of these neuropsychiatric disorders in the light of findings in regular synaptic physiology.
Collapse
|
12
|
Zhang Y, Liu Y, Jia Y, Zhao Y, Ma C, Bao X, Meng X, Dou W, Wang X, Ge W. Proteomic profiling of sclerotic hippocampus revealed dysregulated packaging of vesicular neurotransmitters in temporal lobe epilepsy. Epilepsy Res 2020; 166:106412. [DOI: 10.1016/j.eplepsyres.2020.106412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022]
|
13
|
Li Y, Li L, Wu J, Zhu Z, Feng X, Qin L, Zhu Y, Sun L, Liu Y, Qiu Z, Duan S, Yu YQ. Activation of astrocytes in hippocampus decreases fear memory through adenosine A 1 receptors. eLife 2020; 9:57155. [PMID: 32869747 PMCID: PMC7505657 DOI: 10.7554/elife.57155] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Astrocytes respond to and regulate neuronal activity, yet their role in mammalian behavior remains incompletely understood. Especially unclear is whether, and if so how, astrocyte activity regulates contextual fear memory, the dysregulation of which leads to pathological fear-related disorders. We generated GFAP-ChR2-EYFP rats to allow the specific activation of astrocytes in vivo by optogenetics. We found that after memory acquisition within a temporal window, astrocyte activation disrupted memory consolidation and persistently decreased contextual but not cued fear memory accompanied by reduced fear-related anxiety behavior. In vivo microdialysis experiments showed astrocyte photoactivation increased extracellular ATP and adenosine concentrations. Intracerebral blockade of adenosine A1 receptors (A1Rs) reversed the attenuation of fear memory. Furthermore, intracerebral or intraperitoneal injection of A1R agonist mimicked the effects of astrocyte activation. Therefore, our findings provide a deeper understanding of the astrocyte-mediated regulation of fear memory and suggest a new and important therapeutic strategy against pathological fear-related disorders. Memory is the record of what we learn over time and is essential to our survival. But not all memories are helpful. Repeatedly recalling a traumatic event – such as an assault – can be harmful. About 1 in 3 people who experience severe trauma go on to develop post-traumatic stress disorder (PTSD), in which they re-live the traumatic event in the form of flashbacks and nightmares. Others develop panic disorder, phobias or depression. Preventing this chain of events is challenging because fear memories form rapidly and last a long time. Current treatments involve re-exposing individuals to the traumatic event. This could be real-life exposure in the case of a phobia. Or it could involve visualizing the event, in the case of PTSD. Controlled re-exposure can help individuals learn new coping strategies. But it does not erase the initial fear memory. A better approach might be to take advantage of the fact that new memories are unstable. To form a long-lasting memory trace, newly acquired information must go through a process called consolidation to stabilize it. This process takes place in an area of the brain called the hippocampus. If consolidation does not occur, new memory traces can fade away. Li, Li et al. now show that preventing consolidation in the rat brain stops the animals from forming lasting memories of a stressful event, namely a foot shock. In the study, the rats first learned to associate a foot shock with a tone. This training took place inside a specific chamber. After learning the association, the rats began to freeze – a sign of fear – whenever they entered the chamber. This happened even if the tone was not played. But Li, Li et al. showed that they could reduce this fear response by activating cells in the hippocampus known as astrocytes, shortly after the learning episode. Activating the astrocytes made them release a substance called adenosine. Molecules of adenosine then bound to and activated proteins called adenosine A1 receptors. Administering a drug that activated these receptors directly had the same effect as activating the astrocytes themselves. This suggests that drugs of this type could one day help patients with fear-related disorders such as PTSD and phobias. For this to become a reality, new studies must test different drugs and find the best ways of administering them. After testing in animal models, the next step will be preliminary clinical trials in people.
Collapse
Affiliation(s)
- Yulan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Lixuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Jintao Wu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Zhenggang Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiang Feng
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Liming Qin
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yuwei Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Li Sun
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yijun Liu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Yan-Qin Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Zaccard CR, Shapiro L, Martin-de-Saavedra MD, Pratt C, Myczek K, Song A, Forrest MP, Penzes P. Rapid 3D Enhanced Resolution Microscopy Reveals Diversity in Dendritic Spinule Dynamics, Regulation, and Function. Neuron 2020; 107:522-537.e6. [PMID: 32464088 DOI: 10.1016/j.neuron.2020.04.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/19/2019] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
Abstract
Dendritic spinules are thin protrusions, formed by neuronal spines, not adequately resolved by diffraction-limited light microscopy, which has limited our understanding of their behavior. Here we performed rapid structured illumination microscopy and enhanced resolution confocal microscopy to study spatiotemporal spinule dynamics in cortical pyramidal neurons. Spinules recurred at the same locations on mushroom spine heads. Most were short-lived, dynamic, exploratory, and originated near simple PSDs, whereas a subset was long-lived, elongated, and associated with complex PSDs. These subtypes were differentially regulated by Ca2+ transients. Furthermore, the postsynaptic Rac1-GEF kalirin-7 regulated spinule formation, elongation, and recurrence. Long-lived spinules often contained PSD fragments, contacted distal presynaptic terminals, and formed secondary synapses. NMDAR activation increased spinule number, length, and contact with distal presynaptic elements. Spinule subsets, dynamics, and recurrence were validated in cortical neurons of acute brain slices. Thus, we identified unique properties, regulatory mechanisms, and functions of spinule subtypes, supporting roles in neuronal connectivity.
Collapse
Affiliation(s)
- Colleen R Zaccard
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Lauren Shapiro
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | | | - Christopher Pratt
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Kristoffer Myczek
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Amy Song
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|