1
|
Bagde ND, Bagde MN, Agrawal S, Nayak P, Negi SS, Rajbhar S, Hussain N. Role of Geminin as a Tool for Augmenting Accurate Diagnosis of Cervical Neoplasia. Cureus 2024; 16:e56864. [PMID: 38659554 PMCID: PMC11040424 DOI: 10.7759/cureus.56864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
AIM To determine the role of geminin as a tool for differentiating various types of cervical intraepithelial neoplasia (CIN) and cervical carcinoma (CC). METHODS Seventy women newly diagnosed with CIN or CC undergoing cervical biopsy were included; their clinical profile, human papilloma virus (HPV) positivity, and colposcopy findings were noted, and biopsy tissue was analyzed for geminin content. RESULTS On geminin immunohistochemistry, 100% of women with CIN3 and 96.29% of women with CC had geminin two plus or more. When analyzed as ordinal variables, there was a significant correlation (spearman's rho 0.35, p 0.01) between geminin and biopsy results (CIN1, CIN2, CIN3, and CC). CONCLUSIONS Screening tests for cervical cancer, like conventional pap smears, liquid-based pap smears, and triaging with HPV, have limitations. It is important to be able to differentiate between high-grade lesions, invasive cancer, and low-grade lesions. The detection of geminin in these cells may aid in the confirmation of the diagnosis and ensure adequate treatment. Cervical intraepithelial lesions and carcinoma cervix demonstrated a correlation between increased geminin expression in CIN1 vs. CC and CIN2 vs. CC. Geminin may be a potential surrogate marker for higher-grade cervical lesions, and further research is needed to corroborate evidence in this direction.
Collapse
Affiliation(s)
- Nilajkumar D Bagde
- Obstetrics and Gynaecology, All India Institute of Medical Sciences Raipur, Raipur, IND
| | - Madhuri N Bagde
- Obstetrics and Gynaecology, Raipur Institute of Medical Sciences, Raipur, IND
| | - Sarita Agrawal
- Obstetrics and Gynaecology, All India Institute of Medical Sciences Raipur, Raipur, IND
| | - Prasanta Nayak
- Obstetrics and Gynaecology, Oasis Fertility Hospital, Bhubaneswar, IND
| | - Sanjay Singh Negi
- Microbiology, All India Institute of Medical Sciences Raipur, Raipur, IND
| | - Sarita Rajbhar
- Obstetrics and Gynaecology, All India Institute of Medical Sciences Raipur, Raipur, IND
| | - Nighat Hussain
- Pathology and Laboratory Medicine, All India Institute of Medical Sciences Raipur, Raipur, IND
| |
Collapse
|
2
|
Nathanailidou P, Dhakshnamoorthy J, Xiao H, Zofall M, Holla S, O’Neill M, Andresson T, Wheeler D, Grewal SIS. Specialized replication of heterochromatin domains ensures self-templated chromatin assembly and epigenetic inheritance. Proc Natl Acad Sci U S A 2024; 121:e2315596121. [PMID: 38285941 PMCID: PMC10861883 DOI: 10.1073/pnas.2315596121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
Heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), spreads across large domains and can be epigenetically inherited in a self-propagating manner. Heterochromatin propagation depends upon a read-write mechanism, where the Clr4/Suv39h methyltransferase binds to preexisting trimethylated H3K9 (H3K9me3) and further deposits H3K9me. How the parental methylated histone template is preserved during DNA replication is not well understood. Here, we demonstrate using Schizosaccharomyces pombe that heterochromatic regions are specialized replication domains demarcated by their surrounding boundary elements. DNA replication throughout these domains is distinguished by an abundance of replisome components and is coordinated by Swi6/HP1. Although mutations in the replicative helicase subunit Mcm2 that affect histone binding impede the maintenance of a heterochromatin domain at an artificially targeted ectopic site, they have only a modest impact on heterochromatin propagation via the read-write mechanism at an endogenous site. Instead, our findings suggest a crucial role for the replication factor Mcl1 in retaining parental histones and promoting heterochromatin propagation via a mechanism involving the histone chaperone FACT. Engagement of FACT with heterochromatin requires boundary elements, which position the heterochromatic domain at the nuclear peripheral subdomain enriched for heterochromatin factors. Our findings highlight the importance of replisome components and boundary elements in creating a specialized environment for the retention of parental methylated histones, which facilitates epigenetic inheritance of heterochromatin.
Collapse
Affiliation(s)
- Patroula Nathanailidou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Maura O’Neill
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Thorkell Andresson
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Shiv I. S. Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
3
|
Birtwistle MR. Modeling the Dynamics of Eukaryotic DNA Synthesis in Remembrance of Tunde Ogunnaike. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Marc R. Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina29631, United States
- Department of Bioengineering, Clemson University, Clemson, South Carolina29631, United States
| |
Collapse
|
4
|
Liu XY, Huo YY, Yang J, Li TT, Xu FR, Wan HP, Li JN, Wu CH, Zhang YH, Dong X. Integrated physiological, metabolomic, and proteome analysis of Alpinia officinarum Hance essential oil inhibits the growth of Fusarium oxysporum of Panax notoginseng. Front Microbiol 2022; 13:1031474. [DOI: 10.3389/fmicb.2022.1031474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Fusarium oxysporum is the main pathogen of Panax notoginseng root rot, and chemical fungicides remain the primary measures to control the disease. Plant essential oil (EO) is a volatile plant secondary metabolic product that does not produce any residue to replace chemical pesticide. To comprehensively understand the antifungal mechanism of Alpinia officinarum Hance EO, the physiological indicators, proteome and metabolome were analyzed using F. oxysporum spores and hyphae treated with different EO concentrations. The cell membrane was damaged after both low and high concentrations of EO treatment, along with leakage of the cell contents. To resist the destruction of membrane structure, fungi can increase the function of steroid biosynthesis and expression of these catalytic enzymes, including squalene monooxygenase (SQLE), sterol 14alpha-demethylase (CYP51, CYP61A), delta14-sterol reductase (TM7SF2, ERG4), methylsterol monooxygenase (MESO1), and sterol 24-C-methyltransferase (SMT1). Furthermore, the tricarboxylic acid cycle (TCA) was influenced by inhibiting the expression of glutamate synthase (GLT1), 4-aminobutyrate aminotransferase (ABAT), and succinate-semialdehyde dehydrogenase (gabD); increasing malate and gamma-aminobutyric acid (GABA); and decreasing citrate content. The spore germination rate and mycelia growth were decreased because the expression of cohesin complex subunit SA-1/2 (IRR1) and cohesion complex subunit (YCS4, BRN1, YCG1) were inhibited. Particularly, under high EO concentrations, cyclin-dependent kinase (CDC28) and DNA replication licensing factor (MCM) were further inhibited to disrupt the cell cycle and meiosis, thus affecting cell division. The results of this study will enrich the understanding of the antifungal mechanism of EOs and provide an important basis to develop new plant-derived fungicides.
Collapse
|
5
|
Rapsomaniki MA, Maxouri S, Nathanailidou P, Garrastacho MR, Giakoumakis NN, Taraviras S, Lygeros J, Lygerou Z. In silico analysis of DNA re-replication across a complete genome reveals cell-to-cell heterogeneity and genome plasticity. NAR Genom Bioinform 2021; 3:lqaa112. [PMID: 33554116 PMCID: PMC7846089 DOI: 10.1093/nargab/lqaa112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023] Open
Abstract
DNA replication is a complex and remarkably robust process: despite its inherent uncertainty, manifested through stochastic replication timing at a single-cell level, multiple control mechanisms ensure its accurate and timely completion across a population. Disruptions in these mechanisms lead to DNA re-replication, closely connected to genomic instability and oncogenesis. Here, we present a stochastic hybrid model of DNA re-replication that accurately portrays the interplay between discrete dynamics, continuous dynamics and uncertainty. Using experimental data on the fission yeast genome, model simulations show how different regions respond to re-replication and permit insight into the key mechanisms affecting re-replication dynamics. Simulated and experimental population-level profiles exhibit a good correlation along the genome, robust to model parameters, validating our approach. At a single-cell level, copy numbers of individual loci are affected by intrinsic properties of each locus, in cis effects from adjoining loci and in trans effects from distant loci. In silico analysis and single-cell imaging reveal that cell-to-cell heterogeneity is inherent in re-replication and can lead to genome plasticity and a plethora of genotypic variations.
Collapse
Affiliation(s)
- Maria Anna Rapsomaniki
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Stella Maxouri
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Patroula Nathanailidou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | | | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - John Lygeros
- Automatic Control Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| |
Collapse
|
6
|
Rispal J, Escaffit F, Trouche D. Chromatin Dynamics in Intestinal Epithelial Homeostasis: A Paradigm of Cell Fate Determination versus Cell Plasticity. Stem Cell Rev Rep 2020; 16:1062-1080. [PMID: 33051755 PMCID: PMC7667136 DOI: 10.1007/s12015-020-10055-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
The rapid renewal of intestinal epithelium is mediated by a pool of stem cells, located at the bottom of crypts, giving rise to highly proliferative progenitor cells, which in turn differentiate during their migration along the villus. The equilibrium between renewal and differentiation is critical for establishment and maintenance of tissue homeostasis, and is regulated by signaling pathways (Wnt, Notch, Bmp…) and specific transcription factors (TCF4, CDX2…). Such regulation controls intestinal cell identities by modulating the cellular transcriptome. Recently, chromatin modification and dynamics have been identified as major actors linking signaling pathways and transcriptional regulation in the control of intestinal homeostasis. In this review, we synthesize the many facets of chromatin dynamics involved in controlling intestinal cell fate, such as stemness maintenance, progenitor identity, lineage choice and commitment, and terminal differentiation. In addition, we present recent data underlying the fundamental role of chromatin dynamics in intestinal cell plasticity. Indeed, this plasticity, which includes dedifferentiation processes or the response to environmental cues (like microbiota’s presence or food ingestion), is central for the organ’s physiology. Finally, we discuss the role of chromatin dynamics in the appearance and treatment of diseases caused by deficiencies in the aforementioned mechanisms, such as gastrointestinal cancer, inflammatory bowel disease or irritable bowel syndrome. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jérémie Rispal
- LBCMCP, Centre of Integrative Biology (CBI), Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| | - Fabrice Escaffit
- LBCMCP, Centre of Integrative Biology (CBI), Université de Toulouse, CNRS, UPS, Toulouse, 31062, France.
| | - Didier Trouche
- LBCMCP, Centre of Integrative Biology (CBI), Université de Toulouse, CNRS, UPS, Toulouse, 31062, France
| |
Collapse
|
7
|
Martin JC, Hoegel TJ, Lynch ML, Woloszynska A, Melendy T, Ohm JE. Exploiting Replication Stress as a Novel Therapeutic Intervention. Mol Cancer Res 2020; 19:192-206. [PMID: 33020173 DOI: 10.1158/1541-7786.mcr-20-0651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/01/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
Ewing sarcoma is an aggressive pediatric tumor of the bone and soft tissue. The current standard of care is radiation and chemotherapy, and patients generally lack targeted therapies. One of the defining molecular features of this tumor type is the presence of significantly elevated levels of replication stress as compared with both normal cells and many other types of cancers, but the source of this stress is poorly understood. Tumors that harbor elevated levels of replication stress rely on the replication stress and DNA damage response pathways to retain viability. Understanding the source of the replication stress in Ewing sarcoma may reveal novel therapeutic targets. Ewing sarcomagenesis is complex, and in this review, we discuss the current state of our knowledge regarding elevated replication stress and the DNA damage response in Ewing sarcoma, one contributor to the disease process. We will also describe how these pathways are being successfully targeted therapeutically in other tumor types, and discuss possible novel, evidence-based therapeutic interventions in Ewing sarcoma. We hope that this consolidation will spark investigations that uncover new therapeutic targets and lead to the development of better treatment options for patients with Ewing sarcoma. IMPLICATIONS: This review uncovers new therapeutic targets in Ewing sarcoma and highlights replication stress as an exploitable vulnerability across multiple cancers.
Collapse
Affiliation(s)
- Jeffrey C Martin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tamara J Hoegel
- Department of Pediatric Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Miranda L Lynch
- Hauptman-Woodward Medical Research Institute, Buffalo, New York
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Thomas Melendy
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, New York
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| |
Collapse
|
8
|
Hayashi A, Giakoumakis NN, Heidebrecht T, Ishii T, Panagopoulos A, Caillat C, Takahara M, Hibbert RG, Suenaga N, Stadnik-Spiewak M, Takahashi T, Shiomi Y, Taraviras S, von Castelmur E, Lygerou Z, Perrakis A, Nishitani H. Direct binding of Cdt2 to PCNA is important for targeting the CRL4 Cdt2 E3 ligase activity to Cdt1. Life Sci Alliance 2018; 1:e201800238. [PMID: 30623174 PMCID: PMC6312923 DOI: 10.26508/lsa.201800238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/18/2023] Open
Abstract
The C-terminal end of Cdt2 contains a PIP box for binding to PCNA to promote CRL4Cdt2 function, creating a new paradigm where the substrate receptor and substrates bind to a common multivalent docking platform for ubiquitination. The CRL4Cdt2 ubiquitin ligase complex is an essential regulator of cell-cycle progression and genome stability, ubiquitinating substrates such as p21, Set8, and Cdt1, via a display of substrate degrons on proliferating cell nuclear antigens (PCNAs). Here, we examine the hierarchy of the ligase and substrate recruitment kinetics onto PCNA at sites of DNA replication. We demonstrate that the C-terminal end of Cdt2 bears a PCNA interaction protein motif (PIP box, Cdt2PIP), which is necessary and sufficient for the binding of Cdt2 to PCNA. Cdt2PIP binds PCNA directly with high affinity, two orders of magnitude tighter than the PIP box of Cdt1. X-ray crystallographic structures of PCNA bound to Cdt2PIP and Cdt1PIP show that the peptides occupy all three binding sites of the trimeric PCNA ring. Mutating Cdt2PIP weakens the interaction with PCNA, rendering CRL4Cdt2 less effective in Cdt1 ubiquitination and leading to defects in Cdt1 degradation. The molecular mechanism we present suggests a new paradigm for bringing substrates to the CRL4-type ligase, where the substrate receptor and substrates bind to a common multivalent docking platform to enable subsequent ubiquitination.
Collapse
Affiliation(s)
- Akiyo Hayashi
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | | | - Tatjana Heidebrecht
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Takashi Ishii
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | | | - Christophe Caillat
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michiyo Takahara
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Richard G Hibbert
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Naohiro Suenaga
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Magda Stadnik-Spiewak
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Yasushi Shiomi
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | | | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Anastassis Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hideo Nishitani
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| |
Collapse
|
9
|
The Temporal Regulation of S Phase Proteins During G 1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:335-369. [PMID: 29357066 DOI: 10.1007/978-981-10-6955-0_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Successful DNA replication requires intimate coordination with cell-cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell-cycle entry and cell-cycle progression.
Collapse
|
10
|
Younis LT, Abu Hassan MI, Taiyeb Ali TB, Bustami TJ. 3D TECA hydrogel reduces cellular senescence and enhances fibroblasts migration in wound healing. Asian J Pharm Sci 2017; 13:317-325. [PMID: 32104405 PMCID: PMC7032142 DOI: 10.1016/j.ajps.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/08/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate the effect of 3D TECA hydrogel on the inflammatory-induced senescence marker, and to assess the influence of the gel on the periodontal ligament fibroblasts (PDLFs) migration in wound healing in vitro. PDLFs were cultured with 20 ng/ml TNF-α to induce inflammation in the presence and absence of 50 µM 3D TECA gel for 14 d. The gel effect on the senescence maker secretory associated-β-galactosidase (SA-β-gal) activity was measured by a histochemical staining. Chromatin condensation and DNA synthesis of the cells were assessed by 4′,6-diamidino-2-phenylindole and 5-ethynyl-2′-deoxyuridine fluorescent staining respectively. For evaluating fibroblasts migration, scratch wound healing assay and Pro-Plus Imaging software were used. The activity of senescence marker, SA-β-gal, was positive in the samples with TNF-α-induced inflammation. SA-β-gal percentage is suppressed (>65%, P < 0.05) in the treated cells with TECA gel as compared to the non-treated cells. Chromatin foci were obvious in the non-treated samples. DNA synthesis was markedly recognized by the fluorescent staining in the treated compared to non-treated cultures. Scratch wound test indicated that the cells migration rate was significantly higher (14.9 µm2/h, P < 0.05) in the treated versus (11 µm2/h) for control PDLFs. The new formula of 3D TECA suppresses the inflammatory-mediated cellular senescence and enhanced fibroblasts proliferation and migration. Therefore, 3D TECA may be used as an adjunct to accelerate repair and healing of periodontal tissues.
Collapse
Affiliation(s)
- Luay Thanoon Younis
- Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | | | - Tara Bai Taiyeb Ali
- Faculty of Dentistry, Universiti Teknologi MARA, MAHSA University, Jenjarom 42610, Malaysia
| | | |
Collapse
|
11
|
You Z, Ode KL, Shindo M, Takisawa H, Masai H. Characterization of conserved arginine residues on Cdt1 that affect licensing activity and interaction with Geminin or Mcm complex. Cell Cycle 2017; 15:1213-26. [PMID: 26940553 DOI: 10.1080/15384101.2015.1106652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2∼7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity.
Collapse
Affiliation(s)
- Zhiying You
- a Department of Genome Medicine , Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Koji L Ode
- b Department of Biological Sciences , Graduate School of Science, Osaka University , Toyonaka , Osaka , Japan
| | - Mayumi Shindo
- c Laboratory of Protein Analysis, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Haruhiko Takisawa
- b Department of Biological Sciences , Graduate School of Science, Osaka University , Toyonaka , Osaka , Japan
| | - Hisao Masai
- a Department of Genome Medicine , Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| |
Collapse
|
12
|
Graindorge D, Martineau S, Machon C, Arnoux P, Guitton J, Francesconi S, Frochot C, Sage E, Girard PM. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication. PLoS One 2015; 10:e0140645. [PMID: 26485711 PMCID: PMC4618472 DOI: 10.1371/journal.pone.0140645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023] Open
Abstract
UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.
Collapse
Affiliation(s)
- Dany Graindorge
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Sylvain Martineau
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Christelle Machon
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de chimie analytique, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Philippe Arnoux
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Jérôme Guitton
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de Toxicologie, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Stefania Francesconi
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Céline Frochot
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Evelyne Sage
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Pierre-Marie Girard
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
- * E-mail:
| |
Collapse
|
13
|
Ren CE, Zhu X, Li J, Lyle C, Dowdy S, Podratz KC, Byck D, Chen HB, Jiang SW. Microarray analysis on gene regulation by estrogen, progesterone and tamoxifen in human endometrial stromal cells. Int J Mol Sci 2015; 16:5864-85. [PMID: 25782154 PMCID: PMC4394510 DOI: 10.3390/ijms16035864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/29/2015] [Accepted: 02/25/2015] [Indexed: 02/05/2023] Open
Abstract
Epithelial stromal cells represent a major cellular component of human uterine endometrium that is subject to tight hormonal regulation. Through cell-cell contacts and/or paracrine mechanisms, stromal cells play a significant role in the malignant transformation of epithelial cells. We isolated stromal cells from normal human endometrium and investigated the morphological and transcriptional changes induced by estrogen, progesterone and tamoxifen. We demonstrated that stromal cells express appreciable levels of estrogen and progesterone receptors and undergo different morphological changes upon hormonal stimulation. Microarray analysis indicated that both estrogen and progesterone induced dramatic alterations in a variety of genes associated with cell structure, transcription, cell cycle, and signaling. However, divergent patterns of changes, and in some genes opposite effects, were observed for the two hormones. A large number of genes are identified as novel targets for hormonal regulation. These hormone-responsive genes may be involved in normal uterine function and the development of endometrial malignancies.
Collapse
Affiliation(s)
- Chun-E Ren
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang 261043, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325001, China.
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA 31404, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Christian Lyle
- Department of Biology, Savannah State University, Savannah, GA 31419, USA.
| | - Sean Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Karl C Podratz
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55905, USA.
| | - David Byck
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA 31404, USA.
| | - Hai-Bin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China.
| | - Shi-Wen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA.
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, GA 31404, USA.
- Curtis and Elizabeth Anderson Cancer Institute, Department of Laboratory Oncology Research, Memorial University Medical Center, Savannah, GA 31404, USA.
| |
Collapse
|
14
|
Gérard C, Tyson JJ, Coudreuse D, Novák B. Cell cycle control by a minimal Cdk network. PLoS Comput Biol 2015; 11:e1004056. [PMID: 25658582 PMCID: PMC4319789 DOI: 10.1371/journal.pcbi.1004056] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/21/2014] [Indexed: 12/14/2022] Open
Abstract
In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk) families, and the Anaphase Promoting Complex (APC). Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model's predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities.
Collapse
Affiliation(s)
- Claude Gérard
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - John J. Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Damien Coudreuse
- Institut de Génétique et Développement de Rennes, CNRS UMR 6290, Rennes, France
- * E-mail: (DC); (BN)
| | - Béla Novák
- Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail: (DC); (BN)
| |
Collapse
|
15
|
Abstract
The Hippo pathway regulates cell proliferation and apoptosis through the Yes-associated protein (YAP) transcriptional activator. YAP has a well-described role in promoting cell proliferation and survival, but the precise mechanisms and transcriptional targets that underlie these properties are still unclear and likely context-dependent. We found, using siRNA-mediated knockdown, that YAP is required for proliferation in endothelial cells but not HeLa cells. Specifically, YAP is required for S-phase entry and its absence causes cells to accumulate in G1. Microarray analysis suggests that YAP mediates this effect by regulating the transcription of genes involved in the assembly and/or firing of replication origins and homologous recombination of DNA. These findings thus provide insight into the molecular mechanisms by which YAP regulates cell cycle progression.
Collapse
|
16
|
Abstract
Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate.
Collapse
|
17
|
Zhang X, Xiao D, Wang Z, Zou Y, Huang L, Lin W, Deng Q, Pan H, Zhou J, Liang C, He J. MicroRNA-26a/b regulate DNA replication licensing, tumorigenesis, and prognosis by targeting CDC6 in lung cancer. Mol Cancer Res 2014; 12:1535-46. [PMID: 25100863 DOI: 10.1158/1541-7786.mcr-13-0641] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Cancer is characterized by mutations, genome rearrangements, epigenetic changes, and altered gene expression that enhance cell proliferation, invasion, and metastasis. To accommodate deregulated cellular proliferation, many DNA replication-initiation proteins are overexpressed in human cancers. However, the mechanism that represses the expression of these proteins in normal cells and the cellular changes that result in their overexpression are largely unknown. One possible mechanism is through miRNA expression differences. Here, it is demonstrated that miR26a and miR26b inhibit replication licensing and the proliferation, migration, and invasion of lung cancer cells by targeting CDC6. Importantly, miR26a/b expression is significantly decreased in human lung cancer tissue specimens compared with the paired adjacent normal tissues, and miR26a/b downregulation and the consequential upregulation of CDC6 are associated with poorer prognosis of patients with lung cancer. These results indicate that miR26a/b repress replication licensing and tumorigenesis by targeting CDC6. IMPLICATIONS The current study suggests that miR26a, miR26b, and CDC6 and factors regulating their expression represent potential cancer diagnostic and prognostic markers as well as anticancer targets.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Dakai Xiao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Ziyi Wang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China. Division of Life Science and Center for Cancer Research, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongxin Zou
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China. Division of Life Science and Center for Cancer Research, Hong Kong University of Science and Technology, Hong Kong, China
| | - Liyan Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Weixuan Lin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Qiuhua Deng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Hui Pan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Jiangfen Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Chun Liang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China. Division of Life Science and Center for Cancer Research, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Jianxing He
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| |
Collapse
|
18
|
Myc induced replicative stress response: How to cope with it and exploit it. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:517-24. [PMID: 24735945 DOI: 10.1016/j.bbagrm.2014.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
Myc is a cellular oncogene frequently deregulated in cancer that has the ability to stimulate cellular growth by promoting a number of proliferative and pro-survival pathways. Here we will focus on how Myc controls a number of diverse cellular processes that converge to ensure processivity and robustness of DNA synthesis, thus preventing the inherent replicative stress responses usually evoked by oncogenic lesions. While these processes provide cancer cells with a long-term proliferative advantage, they also represent cancer liabilities that can be exploited to devise innovative therapeutic approaches to target Myc overexpressing tumors. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
19
|
Champeris Tsaniras S, Kanellakis N, Symeonidou IE, Nikolopoulou P, Lygerou Z, Taraviras S. Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? Semin Cell Dev Biol 2014; 30:174-80. [PMID: 24641889 DOI: 10.1016/j.semcdb.2014.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
Recent findings provide evidence for a functional interplay between DNA replication and the seemingly distinct areas of cancer, development and pluripotency. Protein complexes participating in DNA replication origin licensing are now known to have roles in development, while their deregulation can lead to cancer. Moreover, transcription factors implicated in the maintenance of or reversal to the pluripotent state have links to the pre-replicative machinery. Several studies have shown that overexpression of these factors is associated to cancer.
Collapse
Affiliation(s)
- S Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - N Kanellakis
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - I E Symeonidou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - P Nikolopoulou
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - Z Lygerou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - S Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| |
Collapse
|
20
|
Symeonidou IE, Kotsantis P, Roukos V, Rapsomaniki MA, Grecco HE, Bastiaens P, Taraviras S, Lygerou Z. Multi-step loading of human minichromosome maintenance proteins in live human cells. J Biol Chem 2013; 288:35852-67. [PMID: 24158436 DOI: 10.1074/jbc.m113.474825] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Once-per-cell cycle replication is regulated through the assembly onto chromatin of multisubunit protein complexes that license DNA for a further round of replication. Licensing consists of the loading of the hexameric MCM2-7 complex onto chromatin during G1 phase and is dependent on the licensing factor Cdt1. In vitro experiments have suggested a two-step binding mode for minichromosome maintenance (MCM) proteins, with transient initial interactions converted to stable chromatin loading. Here, we assess MCM loading in live human cells using an in vivo licensing assay on the basis of fluorescence recovery after photobleaching of GFP-tagged MCM protein subunits through the cell cycle. We show that, in telophase, MCM2 and MCM4 maintain transient interactions with chromatin, exhibiting kinetics similar to Cdt1. These are converted to stable interactions from early G1 phase. The immobile fraction of MCM2 and MCM4 increases during G1 phase, suggestive of reiterative licensing. In late G1 phase, a large fraction of MCM proteins are loaded onto chromatin, with maximal licensing observed just prior to S phase onset. Fluorescence loss in photobleaching experiments show subnuclear concentrations of MCM-chromatin interactions that differ as G1 phase progresses and do not colocalize with sites of DNA synthesis in S phase.
Collapse
|
21
|
Guo Y, Fan Y, Zhang J, Chang L, Lin JD, Chen YE. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) protein attenuates vascular lesion formation by inhibition of chromatin loading of minichromosome maintenance complex in smooth muscle cells. J Biol Chem 2012; 288:4625-36. [PMID: 23264620 DOI: 10.1074/jbc.m112.407452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) in response to vascular injury plays a critical role in vascular lesion formation. Emerging data suggest that peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) is a key regulator of energy metabolism and other biological processes. However, the physiological role of PGC-1β in VSMCs remains unknown. A decrease in PGC-1β expression was observed in balloon-injured rat carotid arteries. PGC-1β overexpression substantially inhibited neointima formation in vivo and markedly inhibited VSMC proliferation and induced cell cycle arrest at the G(1)/S transition phase in vitro. Accordingly, overexpression of PGC-1β decreased the expression of minichromosome maintenance 4 (MCM4), which leads to a decreased loading of the MCM complex onto chromatin at the replication origins and decreased cyclin D1 levels, whereas PGC-1β loss of function by adenovirus containing PGC-1β shRNA resulted in the opposite effect. The transcription factor AP-1 was involved in the down-regulation of MCM4 expression. Furthermore, PGC-1β is up-regulated by metformin, and metformin-associated anti-proliferative activity in VSMCs is at least partially dependent on PGC-1β. Our data show that PGC-1β is a critical component in regulating DNA replication, VSMC proliferation, and vascular lesion formation, suggesting that PGC-1β may emerge as a novel therapeutic target for control of proliferative vascular diseases.
Collapse
Affiliation(s)
- Yanhong Guo
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
22
|
Huo L, Wu R, Yu Z, Zhai Y, Yang X, Chan TC, Yeung JTF, Kan J, Liang C. The Rix1 (Ipi1p-2p-3p) complex is a critical determinant of DNA replication licensing independent of their roles in ribosome biogenesis. Cell Cycle 2012; 11:1325-39. [PMID: 22421151 DOI: 10.4161/cc.19709] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Several replication-initiation proteins are assembled stepwise onto replicators to form pre-replicative complexes (pre-RCs) to license eukaryotic DNA replication. We performed a yeast functional proteomic screen and identified the Rix1 complex members (Ipi1p-Ipi2p/Rix1-Ipi3p) as pre-RC components and critical determinants of replication licensing and replication-initiation frequency. Ipi3p interacts with pre-RC proteins, binds chromatin predominantly at ARS sequences in a cell cycle-regulated and ORC- and Noc3p-dependent manner and is required for loading Cdc6p, Cdt1p and MCM onto chromatin to form pre-RC during the M-to-G₁ transition and for pre-RC maintenance in G₁ phase-independent of its role in ribosome biogenesis. Moreover, Ipi1p and Ipi2p, but not other ribosome biogenesis proteins Rea1p and Utp1p, are also required for pre-RC formation and maintenance, and Ipi1p, -2p and -3p are interdependent for their chromatin association and function in pre-RC formation. These results establish a new framework for the hierarchy of pre-RC proteins, where the Ipi1p-2p-3p complex provides a critical link between ORC-Noc3p and Cdc6p-Cdt1p-MCM in replication licensing.
Collapse
Affiliation(s)
- Lin Huo
- Division of Life Science, Center for Cancer Research and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tuteja N, Tran NQ, Dang HQ, Tuteja R. Plant MCM proteins: role in DNA replication and beyond. PLANT MOLECULAR BIOLOGY 2011; 77:537-45. [PMID: 22038093 DOI: 10.1007/s11103-011-9836-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/09/2011] [Indexed: 05/18/2023]
Abstract
Mini-chromosome maintenance (MCM) proteins form heterohexameric complex (MCM2-7) to serve as licensing factor for DNA replication to make sure that genomic DNA is replicated completely and accurately once during S phase in a single cell cycle. MCMs were initially identified in yeast for their role in plasmid replication or cell cycle progression. Each of six MCM contains highly conserved sequence called "MCM box", which contains two ATPase consensus Walker A and Walker B motifs. Studies on MCM proteins showed that (a) the replication origins are licensed by stable binding of MCM2-7 to form pre-RC (pre-replicative complex) during G1 phase of the cell cycle, (b) the activation of MCM proteins by CDKs (cyclin-dependent kinases) and DDKs (Dbf4-dependent kinases) and their helicase activity are important for pre-RC to initiate the DNA replication, and (c) the release of MCMs from chromatin renders the origins "unlicensed". DNA replication licensing in plant is, in general, less characterized. The MCMs have been reported from Arabidopsis, maize, tobacco, pea and rice, where they are found to be highly expressed in dividing tissues such as shoot apex and root tips, localized in nucleus and cytosol and play important role in DNA replication, megagametophyte and embryo development. The identification of six MCM coding genes from pea and Arabidopsis suggest six distinct classes of MCM protein in higher plant, and the conserved function right across the eukaryotes. This overview of MCMs contains an emphasis on MCMs from plants and the novel role of MCM6 in abiotic stress tolerance.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | | | |
Collapse
|
24
|
Lee AYL, Chiba T, Truong LN, Cheng AN, Do J, Cho MJ, Chen L, Wu X. Dbf4 is direct downstream target of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) protein to regulate intra-S-phase checkpoint. J Biol Chem 2011; 287:2531-43. [PMID: 22123827 DOI: 10.1074/jbc.m111.291104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dbf4/Cdc7 (Dbf4-dependent kinase (DDK)) is activated at the onset of S-phase, and its kinase activity is required for DNA replication initiation from each origin. We showed that DDK is an important target for the S-phase checkpoint in mammalian cells to suppress replication initiation and to protect replication forks. We demonstrated that ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) proteins directly phosphorylate Dbf4 in response to ionizing radiation and replication stress. We identified novel ATM/ATR phosphorylation sites on Dbf4 and showed that ATM/ATR-mediated phosphorylation of Dbf4 is critical for the intra-S-phase checkpoint to inhibit DNA replication. The kinase activity of DDK, which is not suppressed upon DNA damage, is required for fork protection under replication stress. We further demonstrated that ATM/ATR-mediated phosphorylation of Dbf4 is important for preventing DNA rereplication upon loss of replication licensing through the activation of the S-phase checkpoint. These studies indicate that DDK is a direct substrate of ATM and ATR to mediate the intra-S-phase checkpoint in mammalian cells.
Collapse
Affiliation(s)
- Alan Yueh-Luen Lee
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lo PK, Lee JS, Sukumar S. The p53-p21WAF1 checkpoint pathway plays a protective role in preventing DNA rereplication induced by abrogation of FOXF1 function. Cell Signal 2011; 24:316-24. [PMID: 21964066 DOI: 10.1016/j.cellsig.2011.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/11/2011] [Indexed: 01/01/2023]
Abstract
We previously identified FOXF1 as a potential tumor suppressor gene with an essential role in preventing DNA rereplication to maintain genomic stability, which is frequently inactivated in breast cancer through the epigenetic mechanism. Here we further addressed the role of the p53-p21(WAF1) checkpoint pathway in DNA rereplication induced by silencing of FOXF1. Knockdown of FOXF1 by small interference RNA (siRNA) rendered colorectal p53-null and p21(WAF1)-null HCT116 cancer cells more susceptible to rereplication and apoptosis than the wild-type parental cells. In parental HCT116 cells with a functional p53 checkpoint, the p53-p21(WAF1) checkpoint pathway was activated upon FOXF1 knockdown, which was concurrent with suppression of the CDK2-Rb cascade and induction of G(1) arrest. In contrast, these events were not observed in FOXF1-depleted HCT116-p53-/- and HCT116-p21-/- cells, indicating that the p53-dependent checkpoint function is vital for inhibiting CDK2 to induce G(1) arrest and protect cells from rereplication. The pharmacologic inhibitor (caffeine) of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) protein kinases abolished activation of the p53-p21(WAF1) pathway upon FOXF1 knockdown, suggesting that suppression of FOXF1 function triggered the ATM/ATR-mediated DNA damage response. Cosilencing of p53 by siRNA synergistically enhanced the effect of FOXF1 depletion on the stimulation of DNA rereplication and apoptosis in wild-type HCT116. Finally, we show that FOXF1 expression is predominantly silenced in breast and colorectal cancer cell lines with inactive p53. Our study demonstrated that the p53-p21(WAF1) checkpoint pathway is an intrinsically protective mechanism to prevent DNA rereplication induced by silencing of FOXF1.
Collapse
Affiliation(s)
- Pang-Kuo Lo
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | |
Collapse
|
26
|
Roukos V, Kinkhabwala A, Colombelli J, Kotsantis P, Taraviras S, Nishitani H, Stelzer E, Bastiaens P, Lygerou Z. Dynamic recruitment of licensing factor Cdt1 to sites of DNA damage. J Cell Sci 2011; 124:422-34. [PMID: 21224399 DOI: 10.1242/jcs.074229] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For genomic integrity to be maintained, the cell cycle and DNA damage responses must be linked. Cdt1, a G1-specific cell-cycle factor, is targeted for proteolysis by the Cul4-Ddb1(Cdt2) ubiquitin ligase following DNA damage. Using a laser nanosurgery microscope to generate spatially restricted DNA damage within the living cell nucleus, we show that Cdt1 is recruited onto damaged sites in G1 phase cells, within seconds of DNA damage induction. PCNA, Cdt2, Cul4, DDB1 and p21(Cip1) also accumulate rapidly to damaged sites. Cdt1 recruitment is PCNA-dependent, whereas PCNA and Cdt2 recruitment are independent of Cdt1. Fitting of fluorescence recovery after photobleaching profiles to an analytic reaction-diffusion model shows that Cdt1 and p21(Cip1) exhibit highly dynamic binding at the site of damage, whereas PCNA appears immobile. Cdt2 exhibits both a rapidly exchanging and an apparently immobile subpopulation. Our data suggest that PCNA provides an immobile binding interface for dynamic Cdt1 interactions at the site of damage, which leads to rapid Cdt1 recruitment to damaged DNA, preceding Cdt1 degradation.
Collapse
Affiliation(s)
- Vassilis Roukos
- Department of General Biology, School of Medicine, University of Patras, 26500 Rio, Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Michishita M, Morimoto A, Ishii T, Komori H, Shiomi Y, Higuchi Y, Nishitani H. Positively charged residues located downstream of PIP box, together with TD amino acids within PIP box, are important for CRL4(Cdt2) -mediated proteolysis. Genes Cells 2010; 16:12-22. [PMID: 21143559 DOI: 10.1111/j.1365-2443.2010.01464.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PCNA links Cdt1 and p21 for proteolysis by Cul4-DDB1-Cdt2 (CRL4(Cdt2) ) in the S phase and after DNA damage in mammalian cells. However, other PCNA-interacting proteins, such as ligase I, are not targets of CRL4(Cdt2) . In this study, we created chimera constructs composed of Cdt1 and ligase I and examined how the proteolysis of PCNA-interacting proteins is regulated. Consistent with a recent report using the Xenopus egg system (Havens & Walter 2009), two amino acid elements are also required for degradation in HeLa cells: TD amino acid residues in the PIP box and the basic amino acid at +4 downstream of the PIP box. In addition, we demonstrate that a basic amino acid at +3 is also required for degradation and that an acidic amino acid residue following the basic amino acids abolishes the degradation. Electrostatic surface images suggest that the basic amino acid at +4 is involved in a contact with PCNA, while +3 position extending to opposite direction is important to create a positively charged surface. When all these required elements were introduced in ligase I peptide, the substituted form became degraded. Our results demonstrate that PCNA-dependent degron is strictly composed to avoid illegitimate destruction of PCNA-interacting proteins.
Collapse
Affiliation(s)
- Masato Michishita
- Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Ishii T, Shiomi Y, Takami T, Murakami Y, Ohnishi N, Nishitani H. Proliferating cell nuclear antigen-dependent rapid recruitment of Cdt1 and CRL4Cdt2 at DNA-damaged sites after UV irradiation in HeLa cells. J Biol Chem 2010; 285:41993-2000. [PMID: 20929861 DOI: 10.1074/jbc.m110.161661] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The licensing factor Cdt1 is degraded by CRL4(Cdt2) ubiquitin ligase dependent on proliferating cell nuclear antigen (PCNA) during S phase and when DNA damage is induced in G(1) phase. Association of both Cdt2 and PCNA with chromatin was observed in S phase and after UV irradiation. Here we used a micropore UV irradiation assay to examine Cdt2 accumulation at cyclobutane pyrimidine dimer-containing DNA-damaged sites in the process of Cdt1 degradation in HeLa cells. Cdt2, present in the nucleus throughout the cell cycle, accumulated rapidly at damaged DNA sites during G(1) phase. The recruitment of Cdt2 is dependent on prior PCNA chromatin binding because Cdt2 association was prevented when PCNA was silenced. Cdt1 was also recruited to damaged sites soon after UV irradiation through its PIP-box. As Cdt1 was degraded, the Cdt2 signal at damaged sites was reduced, but PCNA, cyclobutane pyrimidine dimer, and XPA (xeroderma pigmentosum, complementation group A) signals remained at the same levels. These findings suggest that Cdt1 degradation following UV irradiation occurs rapidly at damaged sites due to PCNA chromatin loading and the recruitment of Cdt1 and CRL4(Cdt2), before DNA damage repair is completed.
Collapse
Affiliation(s)
- Takashi Ishii
- Graduate School of Life Science, University of Hyogo, Kouto 3-2-1, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Karamitros D, Kotantaki P, Lygerou Z, Veiga-Fernandes H, Pachnis V, Kioussis D, Taraviras S. Life without geminin. Cell Cycle 2010; 9:3181-5. [PMID: 20697201 DOI: 10.4161/cc.9.16.12554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The interplay of proliferation and differentiation is essential for normal development and organogenesis. Geminin is a cell cycle regulator which controls licensing of origins for DNA replication, safeguarding genomic stability. Geminin has also been shown to regulate cellular decisions of self-renewal versus commitment of neuronal progenitor cells. We discuss here our recent analysis of mice with conditional inactivation of the Geminin gene in the immune system. Our data indicate that Geminin is not indispensable for every cell division: in the absence of Geminin, development of progenitor T cells appears largely unaffected. In contrast, rapid cell divisions, taking place in vitro upon TCR receptor activation or in vivo during homeostatic proliferation, are defective.
Collapse
Affiliation(s)
- Dimitris Karamitros
- Department of Physiology, Medical School, University of Patras, Patras, Greece.
| | | | | | | | | | | | | |
Collapse
|
30
|
Gillespie PJ, Blow JJ. Clusters, factories and domains: The complex structure of S-phase comes into focus. Cell Cycle 2010; 9:3218-26. [PMID: 20724827 PMCID: PMC3041163 DOI: 10.4161/cc.9.16.12644] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 12/24/2022] Open
Abstract
During S-phase of the cell cycle, chromosomal DNA is replicated according to a complex replication timing program, with megabase-sized domains replicating at different times. DNA fibre analysis reveals that clusters of adjacent replication origins fire near-synchronously. Analysis of replicating cells by light microscopy shows that DNA synthesis occurs in discrete foci or factories. The relationship between timing domains, origin clusters and replication foci is currently unclear. Recent work, using a hybrid Xenopus/hamster replication system, has shown that when CDK levels are manipulated during S-phase the activation of replication factories can be uncoupled from progression through the replication timing program. Here, we use data from this hybrid system to investigate potential relationships between timing domains, origin clusters and replication foci. We suggest that each timing domain typically comprises several replicon clusters, which are usually processed sequentially by replication factories. We discuss how replication might be regulated at different levels to create this complex organisation and the potential involvement of CDKs in this process.
Collapse
Affiliation(s)
- Peter J Gillespie
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
31
|
Lo PK, Lee JS, Liang X, Han L, Mori T, Fackler MJ, Sadik H, Argani P, Pandita TK, Sukumar S. Epigenetic inactivation of the potential tumor suppressor gene FOXF1 in breast cancer. Cancer Res 2010; 70:6047-58. [PMID: 20587515 DOI: 10.1158/0008-5472.can-10-1576] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of several members of the FOX gene family is known to be altered in a variety of cancers. We show that in breast cancer, FOXF1 gene is a target of epigenetic inactivation and that its gene product exhibits tumor-suppressive properties. Loss or downregulation of FOXF1 expression is associated with FOXF1 promoter hypermethylation in breast cancer cell lines and in invasive ductal carcinomas. Methylation of FOXF1 in invasive ductal carcinoma (37.6% of 117 cases) correlated with high tumor grade. Pharmacologic unmasking of epigenetic silencing in breast cancer cells restored FOXF1 expression. Re-expression of FOXF1 in breast cancer cells with epigenetically silenced FOXF1 genes led to G(1) arrest concurrent with or without apoptosis to suppress both in vitro cell growth and in vivo tumor formation. FOXF1-induced G(1) arrest resulted from a blockage at G(1)-S transition of the cell cycle through inhibition of the CDK2-RB-E2F cascade. Small interfering RNA-mediated depletion of FOXF1 in breast cancer cells led to increased DNA re-replication, suggesting that FOXF1 is required for maintaining the stringency of DNA replication and genomic stability. Furthermore, expression profiling of cell cycle regulatory genes showed that abrogation of FOXF1 function resulted in increased expression of E2F-induced genes involved in promoting the progression of S and G(2) phases. Therefore, our studies have identified FOXF1 as a potential tumor suppressor gene that is epigenetically silenced in breast cancer, which plays an essential role in regulating cell cycle progression to maintain genomic stability.
Collapse
Affiliation(s)
- Pang-Kuo Lo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jee J, Mizuno T, Kamada K, Tochio H, Chiba Y, Yanagi KI, Yasuda G, Hiroaki H, Hanaoka F, Shirakawa M. Structure and mutagenesis studies of the C-terminal region of licensing factor Cdt1 enable the identification of key residues for binding to replicative helicase Mcm proteins. J Biol Chem 2010; 285:15931-40. [PMID: 20335175 DOI: 10.1074/jbc.m109.075333] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In eukaryotes, DNA replication is fired once in a single cell cycle before cell division starts to maintain stability of the genome. This event is tightly controlled by a series of proteins. Cdt1 is one of the licensing factors and is involved in recruiting replicative DNA helicase Mcm2-7 proteins into the pre-replicative complex together with Cdc6. In Cdt1, the C-terminal region serves as a binding site for Mcm2-7 proteins, although the details of these interactions remain largely unknown. Here, we report the structure of the region and the key residues for binding to Mcm proteins. We determined the solution structure of the C-terminal fragment, residues 450-557, of mouse Cdt1 by NMR. The structure consists of a winged-helix domain and shows unexpected similarity to those of the C-terminal domain of Cdc6 and the central fragment of Cdt1, thereby implying functional and evolutionary relationships. Structure-based mutagenesis and an in vitro binding assay enabled us to pinpoint the region that interacts with Mcm proteins. Moreover, by performing in vitro binding and budding yeast viability experiments, we showed that approximately 45 residues located in the N-terminal direction of the structural region are equally crucial for recognizing Mcm proteins. Our data suggest the possibility that winged-helix domain plays a role as a common module to interact with replicative helicase in the DNA replication-licensing process.
Collapse
Affiliation(s)
- Jungoo Jee
- Center for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Karamitros D, Kotantaki P, Lygerou Z, Veiga-Fernandes H, Pachnis V, Kioussis D, Taraviras S. Differential geminin requirement for proliferation of thymocytes and mature T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:2432-41. [PMID: 20107189 DOI: 10.4049/jimmunol.0901983] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stem/progenitor cells coordinate proliferation and differentiation, giving rise to appropriate cell numbers of functionally specialized cells during organogenesis. In different experimental systems, Geminin was shown to maintain progenitor cells and participate in fate determination decisions and organogenesis. Although the exact mechanisms are unclear, Geminin has been postulated to influence proliferation versus differentiation decisions. To gain insight into the in vivo role of Geminin in progenitor cell division and differentiation, we have generated mice that specifically lack Geminin in cells of lymphoid lineage through Cre-mediated recombination. T cells lacking Geminin expression upregulate early activation markers efficiently upon TCR stimulation in vitro and are able to enter the S phase of cell cycle, but show a marked defect in completing the cycle, leading to a large proportion of T cells accumulating in S/G2/M phases. Accordingly, T cells deficient in Geminin show a reduced ability to repopulate lymphopenic hosts in vivo. Contrary to expectations, Geminin deficiency does not alter development and differentiation of T cells in vivo. Our data suggest that Geminin is required for the proliferation events taking place either in vitro upon TCR receptor activation or during homeostatic expansion, but appears to be redundant for the proliferation and differentiation of the majority of progenitor T cell populations.
Collapse
Affiliation(s)
- Dimitris Karamitros
- Department of Pharmacology, Medical Research Council/National Institute for Medical Research, The Ridgeway, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
Thomson AM, Gillespie PJ, Blow JJ. Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels. ACTA ACUST UNITED AC 2010; 188:209-21. [PMID: 20083602 PMCID: PMC2812520 DOI: 10.1083/jcb.200911037] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cdk activity can differentially regulate the number of active replication factories, replication rates, and the rate of progression through the timing program during S phase. In the metazoan replication timing program, clusters of replication origins located in different subchromosomal domains fire at different times during S phase. We have used Xenopus laevis egg extracts to drive an accelerated replication timing program in mammalian nuclei. Although replicative stress caused checkpoint-induced slowing of the timing program, inhibition of checkpoint kinases in an unperturbed S phase did not accelerate it. Lowering cyclin-dependent kinase (Cdk) activity slowed both replication rate and progression through the timing program, whereas raising Cdk activity increased them. Surprisingly, modest alteration of Cdk activity changed the amount of DNA synthesized during different stages of the timing program. This was associated with a change in the number of active replication factories, whereas the distribution of origins within active factories remained relatively normal. The ability of Cdks to differentially effect replication initiation, factory activation, and progression through the timing program provides new insights into the way that chromosomal DNA replication is organized during S phase.
Collapse
Affiliation(s)
- Alexander M Thomson
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | |
Collapse
|
35
|
Chuang LC, Teixeira LK, Wohlschlegel JA, Henze M, Yates JR, Méndez J, Reed SI. Phosphorylation of Mcm2 by Cdc7 promotes pre-replication complex assembly during cell-cycle re-entry. Mol Cell 2009; 35:206-16. [PMID: 19647517 DOI: 10.1016/j.molcel.2009.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/21/2009] [Accepted: 06/10/2009] [Indexed: 01/16/2023]
Abstract
Cyclin E has been shown to have a role in pre-replication complex (Pre-RC) assembly in cells re-entering the cell cycle from quiescence. The assembly of the pre-RC, which involves the loading of six MCM subunits (Mcm2-7), is a prerequisite for DNA replication. We found that cyclin E, through activation of Cdk2, promotes Mcm2 loading onto chromatin. This function is mediated in part by promoting the accumulation of Cdc7 messenger RNA and protein, which then phosphorylates Mcm2. Consistent with this, a phosphomimetic mutant of Mcm2 can bypass the requirement for Cdc7 in terms of Mcm2 loading. Furthermore, ectopic expression of both Cdc6 and Cdc7 can rescue the MCM loading defect associated with expression of dominant-negative Cdk2. These results are consistent with a role for cyclin E-Cdk2 in promoting the accumulation of Cdc6 and Cdc7, which is required for Mcm2 loading when cells re-enter the cell cycle from quiescence.
Collapse
Affiliation(s)
- Li-Chiou Chuang
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
DNA replication is fundamental to cellular life on earth, and replication initiation provides the primary point of control over this process. Replication initiation in all organisms involves the interaction of initiator proteins with one or more origins of replication in the DNA, with subsequent regulated assembly of two replisome complexes at each origin, melting of the DNA, and primed initiation of DNA synthesis on leading and lagging strands. Archaea and Eukarya share homologous systems for DNA replication initiation, but differ in the complexity of these; Bacteria appear to have analogous, rather than homologous, mechanisms for replication initiation. This chapter provides an overview of current knowledge of initiation of chromosomal DNA replication in the three domains of life.
Collapse
|
37
|
Rakotomalala L, Studach L, Wang WH, Gregori G, Hullinger RL, Andrisani O. Hepatitis B virus X protein increases the Cdt1-to-geminin ratio inducing DNA re-replication and polyploidy. J Biol Chem 2008; 283:28729-40. [PMID: 18693245 PMCID: PMC2568909 DOI: 10.1074/jbc.m802751200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/24/2008] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus X protein (pX) is implicated in hepatocellular carcinoma pathogenesis by an unknown mechanism. Employing the tetracycline-regulated pX-expressing 4pX-1 cell line, derived from the murine AML12 hepatocyte cell line, we demonstrate that pX induces partial polyploidy (>4N DNA). Depletion of p53 in 4pX-1 cells increases by 5-fold the polyploid cells in response to pX expression, indicating that p53 antagonizes pX-induced polyploidy. Dual-parameter flow cytometric analyses show pX-dependent bromodeoxyuridine (BrdUrd) incorporation in 4pX-1 cells containing 4N and >4N DNA, suggesting pX induces DNA re-replication. Interestingly, pX increases expression of endogenous replication initiation factors Cdc6 and Cdtl while suppressing geminin expression, a negative regulator of rereplication. In comparison to a geminin knockdown 4pX-1 cell line used as DNA re-replication control, the Cdt1/geminin ratio is greater in 4pX-1 cells expressing pX, indicating that pX promotes DNA re-replication. In support of this conclusion, pX-expressing 4pX-1 cells, similar to the geminin knockdown 4pX-1 cells, continue to incorporate BrdUrd in the G2 phase and exhibit nuclear Cdc6 and MCM5 co-localization and the absence of geminin. In addition, pX expression activates the ATR kinase, the sensor of DNA re-replication, which in turn phosphorylates RAD17 and H2AX. Interestingly, phospho-H2AX-positive and BrdUrd -positive cells progress through mitosis, demonstrating a link between pX-induced DNA re-replication and polyploidy. Our studies high-light a novel function of pX that likely contributes to hepatocellular carcinoma pathogenesis.
Collapse
Affiliation(s)
- Lova Rakotomalala
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Correct regulation of the replication licensing system ensures that chromosomal DNA is precisely duplicated in each cell division cycle. Licensing proteins are inappropriately expressed at an early stage of tumorigenesis in a wide variety of cancers. Here we discuss evidence that misregulation of replication licensing is a consequence of oncogene-induced cell proliferation. This misregulation can cause either under- or over-replication of chromosomal DNA, and could explain the genetic instability commonly seen in cancer cells.
Collapse
Affiliation(s)
- J Julian Blow
- Wellcome Trust Centre for Gene Regulation & Expression, University of Dundee, DD1 5EH, UK.
| | | |
Collapse
|
39
|
Masuda HP, Cabral LM, De Veylder L, Tanurdzic M, de Almeida Engler J, Geelen D, Inzé D, Martienssen RA, Ferreira PCG, Hemerly AS. ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription. EMBO J 2008; 27:2746-56. [PMID: 18818695 DOI: 10.1038/emboj.2008.191] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 09/01/2008] [Indexed: 12/20/2022] Open
Abstract
In multicellular organisms, organogenesis requires a tight control of the balance between cell division and cell differentiation. Distinct signalling pathways that connect both cellular processes with developmental cues might have evolved to suit different developmental plans. Here, we identified and characterized a novel protein that interacts with pre-replication complex (pre-RC) subunits, designated Armadillo BTB Arabidopsis protein 1 (ABAP1). Overexpression of ABAP1 in plants limited mitotic DNA replication and decreased cell proliferation in leaves, whereas ABAP1 downregulation increased cell division rates. Activity of ABAP1 in transcription was supported by its association with the transcription factor AtTCP24. The ABAP1-AtTCP24 complex bound specifically to the promoters of AtCDT1a and AtCDT1b in vitro and in vivo. Moreover, expression levels of AtCDT1a and AtCDT1b were reduced in ABAP1-overexpressing plants and they were increased in plants with reduced levels of ABAP1. We propose that ABAP1 participates in a negative feedback loop regulating mitotic DNA replication during leaf development, either by repressing transcription of pre-RC genes and possibly by regulating pre-RC utilization through direct association with pre-RC components.
Collapse
Affiliation(s)
- Hana Paula Masuda
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liu E, Lee AYL, Chiba T, Olson E, Sun P, Wu X. The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted. ACTA ACUST UNITED AC 2007; 179:643-57. [PMID: 18025301 PMCID: PMC2080923 DOI: 10.1083/jcb.200704138] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA replication in eukaryotic cells is tightly controlled by a licensing mechanism, ensuring that each origin fires once and only once per cell cycle. We demonstrate that the ataxia telangiectasia and Rad3 related (ATR)–mediated S phase checkpoint acts as a surveillance mechanism to prevent rereplication. Thus, disruption of licensing control will not induce significant rereplication in mammalian cells when the ATR checkpoint is intact. We also demonstrate that single-stranded DNA (ssDNA) is the initial signal that activates the checkpoint when licensing control is compromised in mammalian cells. We demonstrate that uncontrolled DNA unwinding by minichromosome maintenance proteins upon Cdt1 overexpression is an important mechanism that leads to ssDNA accumulation and checkpoint activation. Furthermore, we show that replication protein A 2 and retinoblastoma protein are both downstream targets for ATR that are important for the inhibition of DNA rereplication. We reveal the molecular mechanisms by which the ATR-mediated S phase checkpoint pathway prevents DNA rereplication and thus significantly improve our understanding of how rereplication is prevented in mammalian cells.
Collapse
Affiliation(s)
- Enbo Liu
- Department of Molecular Experimental Medicine and 2Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
41
|
Costa S, Blow JJ. The elusive determinants of replication origins. EMBO Rep 2007; 8:332-4. [PMID: 17401406 PMCID: PMC1852751 DOI: 10.1038/sj.embor.7400954] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 02/27/2007] [Indexed: 01/25/2023] Open
Affiliation(s)
- Silvia Costa
- Silvia Costa and J. Julian Blow are at the Division of Gene Regulation and Expression, College of Life Sciences, Dundee DD1 5EH, UK
| | - J Julian Blow
- Silvia Costa and J. Julian Blow are at the Division of Gene Regulation and Expression, College of Life Sciences, Dundee DD1 5EH, UK
- Tel: +44 (0)1382 385797; Fax: +44 (0)1382 388072;
e-mail:
| |
Collapse
|
42
|
Legouras I, Xouri G, Dimopoulos S, Lygeros J, Lygerou Z. DNA replication in the fission yeast: robustness in the face of uncertainty. Yeast 2007; 23:951-62. [PMID: 17072888 DOI: 10.1002/yea.1416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
DNA replication, the process of duplication of a cell's genetic content, must be carried out with great precision every time the cell divides, so that genetic information is preserved. Control mechanisms must ensure that every base of the genome is replicated within the allocated time (S-phase) and only once per cell cycle, thereby safeguarding genomic integrity. In eukaryotes, replication starts from many points along the chromosome, termed origins of replication, and then proceeds continuously bidirectionally until an opposing moving fork is encountered. In contrast to bacteria, where a specific site on the genome serves as an origin in every cell division, in most eukaryotes origin selection appears highly stochastic: many potential origins exist, of which only a subset is selected to fire in any given cell, giving rise to an apparently random distribution of initiation events across the genome. Origin states change throughout the cell cycle, through the ordered formation and modification of origin-associated multisubunit protein complexes. State transitions are governed by fluctuations of cyclin-dependent kinase (CDK) activity and guards in these transitions ensure system memory. We present here DNA replication dynamics, emphasizing recent data from the fission yeast Schizosaccharomyces pombe, and discuss how robustness may be ensured in spite of (or even assisted by) system randomness.
Collapse
Affiliation(s)
- Ioannis Legouras
- School of Medicine, Laboratory of General Biology, University of Patras, Rio, Patras, Greece
| | | | | | | | | |
Collapse
|
43
|
Davidson IF, Li A, Blow JJ. Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol Cell 2006; 24:433-43. [PMID: 17081992 PMCID: PMC1819398 DOI: 10.1016/j.molcel.2006.09.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/07/2006] [Accepted: 09/18/2006] [Indexed: 12/29/2022]
Abstract
Correct regulation of the replication licensing system ensures that no DNA is rereplicated in a single cell cycle. When the licensing protein Cdt1 is overexpressed in G2 phase of the cell cycle, replication origins are relicensed and the DNA is rereplicated. At the same time, checkpoint pathways are activated that block further cell cycle progression. We have studied the consequence of deregulating the licensing system by adding recombinant Cdt1 to Xenopus egg extracts. We show that Cdt1 induces checkpoint activation and the appearance of small fragments of double-stranded DNA. DNA fragmentation and strong checkpoint activation are dependent on uncontrolled rereplication and do not occur after a single coordinated round of rereplication. The DNA fragments are composed exclusively of rereplicated DNA. The unusual characteristics of these fragments suggest that they result from head-to-tail collision (rear ending) of replication forks chasing one another along the same DNA template.
Collapse
Affiliation(s)
- Iain F. Davidson
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Anatoliy Li
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - J. Julian Blow
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
- Corresponding author
| |
Collapse
|
44
|
Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, Tsurimoto T, Nakayama KI, Nakayama K, Fujita M, Lygerou Z, Nishimoto T. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 2006; 25:1126-36. [PMID: 16482215 PMCID: PMC1409712 DOI: 10.1038/sj.emboj.7601002] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/23/2006] [Indexed: 12/25/2022] Open
Abstract
Replication licensing is carefully regulated to restrict replication to once in a cell cycle. In higher eukaryotes, regulation of the licensing factor Cdt1 by proteolysis and Geminin is essential to prevent re-replication. We show here that the N-terminal 100 amino acids of human Cdt1 are recognized for proteolysis by two distinct E3 ubiquitin ligases during S-G2 phases. Six highly conserved amino acids within the 10 first amino acids of Cdt1 are essential for DDB1-Cul4-mediated proteolysis. This region is also involved in proteolysis following DNA damage. The second E3 is SCF-Skp2, which recognizes the Cy-motif-mediated Cyclin E/A-cyclin-dependent kinase-phosphorylated region. Consistently, in HeLa cells cosilenced of Skp2 and Cul4, Cdt1 remained stable in S-G2 phases. The Cul4-containing E3 is active during ongoing replication, while SCF-Skp2 operates both in S and G2 phases. PCNA binds to Cdt1 through the six conserved N-terminal amino acids. PCNA is essential for Cul4- but not Skp2-directed degradation during DNA replication and following ultraviolet-irradiation. Our data unravel multiple distinct pathways regulating Cdt1 to block re-replication.
Collapse
Affiliation(s)
- Hideo Nishitani
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Blow JJ, Tanaka TU. The chromosome cycle: coordinating replication and segregation. Second in the cycles review series. EMBO Rep 2005; 6:1028-34. [PMID: 16264427 PMCID: PMC1371039 DOI: 10.1038/sj.embor.7400557] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 08/25/2005] [Indexed: 11/08/2022] Open
Abstract
During the cell-division cycle, chromosomal DNA must initially be precisely duplicated and then correctly segregated to daughter cells. The accuracy of these two events is maintained by two interlinked cycles: the replication licensing cycle, which ensures precise duplication of DNA, and the cohesion cycle, which ensures correct segregation. Here we provide a general overview of how these two systems are coordinated to maintain genetic stability during the cell cycle.
Collapse
Affiliation(s)
- J Julian Blow
- University of Dundee, Wellcome Trust Biocentre, Dow Street, Dundee DD1 5EH, UK.
| | | |
Collapse
|
46
|
Abstract
To ensure its duplication, chromosomal DNA must be precisely duplicated in each cell cycle, with no sections left unreplicated, and no sections replicated more than once. Eukaryotic cells achieve this by dividing replication into two non-overlapping phases. During late mitosis and G1, replication origins are 'licensed' for replication by loading the minichromosome maintenance (Mcm) 2-7 proteins to form a pre-replicative complex. Mcm2-7 proteins are then essential for initiating and elongating replication forks during S phase. Recent data have provided biochemical and structural insight into the process of replication licensing and the mechanisms that regulate it during the cell cycle.
Collapse
Affiliation(s)
- J Julian Blow
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK.
| | | |
Collapse
|