1
|
Moscovicz F, Taborda C, Fernández F, Borda N, Auzmendi J, Lazarowski A. Ironing out the Links: Ferroptosis in epilepsy and SUDEP. Epilepsy Behav 2024; 157:109890. [PMID: 38905915 DOI: 10.1016/j.yebeh.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
Iron is a crucial element for almost all organisms because it plays a vital role in oxygen transport, enzymatic processes, and energy generation due to its electron transfer capabilities. However, its dysregulation can lead to a form of programmed cell death known as ferroptosis, which is characterized by cellular iron accumulation, reactive oxygen species (ROS) production, and unrestricted lipid peroxidation. Both iron and ferroptosis have been identified as key players in the pathogenesis of various neurodegenerative diseases. While in epilepsy this phenomenon remains relatively understudied, seizures can be considered hypoxic-ischemic episodes resulting in increased ROS production, lipid peroxidation, membrane disorganization, and cell death. All of this is accompanied by elevated intracellular free Fe2+ concentration and hemosiderin precipitation, as existing reports suggest a significant accumulation of iron in the brain and heart associated with epilepsy. Generalized tonic-clonic seizures (GTCS), a primary risk factor for Sudden Unexpected Death in Epilepsy (SUDEP), not only have an impact on the brain but also lead to cardiogenic dysfunctions associated with "Iron Overload and Cardiomyopathy" (IOC) and "Epileptic heart" characterized by electrical and mechanical dysfunction and a high risk of malignant bradycardia. In line with this phenomenon, studies conducted by our research group have demonstrated that recurrent seizures induce hypoxia in cardiomyocytes, resulting in P-glycoprotein (P-gp) overexpression, prolonged Q-T interval, severe bradycardia, and hemosiderin precipitation, correlating with an elevated spontaneous death ratio. In this article, we explore the intricate connections among ferroptosis, epilepsy, and SUDEP. By synthesizing current knowledge and drawing insights from recent publications, this study provides a comprehensive understanding of the molecular underpinnings. Furthermore, this review offers insights into potential therapeutic avenues and outlines future research directions.
Collapse
Affiliation(s)
- F Moscovicz
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - C Taborda
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina
| | - F Fernández
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina
| | - N Borda
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina
| | - J Auzmendi
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - A Lazarowski
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Chowdhury M, Das PK. Hypoxia: Intriguing Feature in Cancer Cell Biology. ChemMedChem 2024; 19:e202300551. [PMID: 38328976 DOI: 10.1002/cmdc.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Hypoxia, a key aspect of the tumor microenvironment, plays a vital role in cell proliferation, angiogenesis, metabolism, and the immune response within tumors. These factors collectively promote tumor advancement, aggressiveness, metastasis and result in a poor prognosis. Hypoxia inducible factor 1α (HIF-1α), activated under low oxygen conditions, mediates many of these effects by altering drug target expression, metabolic regulation, and oxygen consumption. These changes promote cancer cell growth and survival. Hypoxic tumor cells develop aggressive traits and resistance to chemotherapy and radiotherapy, leading to increased mortality. Targeting hypoxic tumor offers a potential solution to overcome the challenges posed by tumor heterogeneity and can be used in designing diagnostic and therapeutic nanocarriers for various solid cancers. This concept provides an overview of the intricate relationship between hypoxia and the tumor microenvironment, highlighting its potential as a promising tool for cancer therapies. The article explores the development of hypoxia in cancer cells and its role in cancer progression, along with the latest advancements in hypoxia-triggered cancer treatment.
Collapse
Affiliation(s)
- Monalisa Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India
| |
Collapse
|
3
|
Thiamine insufficiency induces Hypoxia Inducible Factor-1α as an upstream mediator for neurotoxicity and AD-like pathology. Mol Cell Neurosci 2022; 123:103785. [PMID: 36241022 DOI: 10.1016/j.mcn.2022.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Insufficiencies of the micronutrient thiamine (Vitamin B1) have been associated with inducing Alzheimer's disease (AD)-like neuropathology. The hypometabolic state associated with chronic thiamine insufficiency (TI) has been demonstrated to be a contributor towards the development of amyloid plaque deposition and neurotoxicity. However, the molecular mechanism underlying TI induced AD pathology is still unresolved. Previously, we have established that TI stabilizes the metabolic stress transcriptional factor, Hypoxia Inducible Factor-1α (HIF1α). Utilizing neuronal hippocampal cells (HT22), TI-induced HIF1α activation triggered the amyloidogenic cascade through transcriptional expression and increased activity of β-secretase (BACE1). Knockdown and pharmacological inhibition of HIF1α during TI significantly reduced BACE1 and C-terminal Fragment of 99 amino acids (C99) formation. TI also increased the expression of the HIF1α regulated pro-apoptotic protein, BCL2/adenovirus E1B 19 kDa protein-interacting protein (BNIP3). Correspondingly, cell toxicity during TI conditions was significantly reduced with HIF1α and BNIP3 knockdown. The role of BNIP3 in TI-mediated toxicity was further highlighted by localization of dimeric BNIP3 into the mitochondria and nuclear accumulation of Endonuclease G. Subsequently, TI decreased mitochondrial membrane potential and enhanced chromatin fragmentation. However, cell toxicity via the HIF1α/BNIP3 cascade required TI induced oxidative stress. HIF1α, BACE1 and BNIP3 expression was induced in 3xTg-AD mice after TI and administration with the HIF1α inhibitor YC1 significantly attenuated HIF1α and target genes levels in vivo. Overall, these findings demonstrate a critical stress response during TI involving the induction of HIF1α transcriptional activity that directly promotes neurotoxicity and AD-like pathology.
Collapse
|
4
|
Neuroprotective Efficacy of Betulinic Acid Hydroxamate, a B55α/PP2A Activator, in Acute Hypoxia-Ischemia-Induced Brain Damage in Newborn Rats. Transl Stroke Res 2022; 14:397-408. [PMID: 35419730 DOI: 10.1007/s12975-022-01017-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
There is an increasing evidence of the neuroprotective effects of hypoxia inducing factor prolyl-hydroxylase inhibitors (HIF-PHDi) after hypoxic-ischemic (HI) brain damage (HIBD). We studied the neuroprotective effects of betulinic hydroxamate (BAH), a novel B55α/PP2A activator that dephosphorylates and inhibits PHD2 activity, in a rat model of neonatal HIBD. Seven-day-old (P7) Wistar rats were exposed to hypoxia after left carotid artery electrocoagulation and then received vehicle (HI + VEH) or BAH 3 mg/kg i.p. 30 min post-insult. Brain damage was assessed by magnetic resonance imaging (MRI) and neurobehavioral studies testing motor and cognitive performance at P14 and P37, as well as immunohistochemical studies (TUNEL and myelin basic protein (MBP) signal) at P37. Mechanisms of damage were assessed at P14 determining excitotoxicity (glutamate/N-acetylaspartate ratio by H+-magnetic resonance spectroscopy), oxidative stress (protein nitrosylation by Oxyblot), and inflammation (cytokine and chemokine concentration). BAH reduced brain damage volume and cell death, preventing the development of motor and working memory deficits. BAH showed a robust protective effect on myelination, restoring MBP expression at P37. BAH modulated excitotoxicity, oxidative stress, and inflammation. Most neuroprotective effects were still present despite BAH administration was delayed for 12 h, whereas beneficial effects on motor strength at P14 and on cell death and myelination at P37 were preserved even when BAH administration was delayed for 24 h. In conclusion, BAH appears as an effective neuroprotective treatment for neonatal HIBD in a manner associated with the modulation of excitotoxicity, oxidative stress, and inflammation, showing a broad therapeutic window.
Collapse
|
5
|
Wu L, Hu Y, Jiang L, Liang N, Liu P, Hong H, Yang S, Chen W. Zhuyu Annao decoction promotes angiogenesis in mice with cerebral hemorrhage by inhibiting the activity of PHD3. Hum Exp Toxicol 2021; 40:1867-1879. [PMID: 33896237 DOI: 10.1177/09603271211008523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Some traditional Chinese decoctions, such as Zhuyu Annao, exert favorable therapeutic effects on acute cerebral hemorrhage, hemorrhagic stroke, and other neurological diseases, but the underlying mechanism remains unclear. This study aimed to determine whether Zhuyu Annao decoction (ZYAND) protects the injured brain by promoting angiogenesis following intracerebral hemorrhage (ICH) and elucidate its specific mechanism. The effect of ZYAND on the nervous system of mice after ICH was explored through behavioral experiments, such as the Morris water maze and Rotarod tests, and its effects on oxidative stress were explored by detecting several oxidative stress markers, including malondialdehyde, nitric oxide, glutathione peroxidase, and superoxide dismutase. Real-time quantitative RT-PCR and WB were used to detect the effects of ZYAND on the levels of prolyl hydroxylase domain 3 (PHD3), hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) in the brain tissues of mice. The effect of ZYAND on the NF-κB signaling pathway was detected using a luciferase reporter gene. A human umbilical cord vascular endothelial cell angiogenesis experiment was performed to determine whether ZYAND promotes angiogenesis. The Morris water maze test and other behavioral experiments verified that ZYAND improved the neurobehavior of mice after ICH. ZYAND activated the PHD3/HIF-1α signaling pathway, inhibiting the oxidative damage caused by ICH. In angiogenesis experiments, it was found that ZYAND promoted VEGF-induced angiogenesis by upregulating the expression of HIF-1α, and NF-κB signaling regulated the expression of HIF-1α by inhibiting PHD3. ZYAND exerts a reparative effect on brain tissue damaged after ICH through the NF-κB/ PHD3/HIF-1α/VEGF signaling axis.
Collapse
Affiliation(s)
- L Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, China.,Scientific Laboratorial Centre Guangxi University of Chinese Medicine, China.,Both authors contributed equally to this work and should be considered as equal first coauthors
| | - Y Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, China.,Both authors contributed equally to this work and should be considered as equal first coauthors
| | - L Jiang
- Graduate College of Guangxi University of Traditional Chinese Medicine, China
| | - N Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, China
| | - P Liu
- Department of Cardiovascular Disease, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - H Hong
- Graduate College of Guangxi University of Traditional Chinese Medicine, China
| | - S Yang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, China
| | - W Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, China.,Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, China
| |
Collapse
|
6
|
Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A. Lipopolysaccharide Pre-conditioning Attenuates Pro-inflammatory Responses and Promotes Cytoprotective Effect in Differentiated PC12 Cell Lines via Pre-activation of Toll-Like Receptor-4 Signaling Pathway Leading to the Inhibition of Caspase-3/Nuclear Factor-κappa B Pathway. Front Cell Neurosci 2021; 14:598453. [PMID: 33551748 PMCID: PMC7862565 DOI: 10.3389/fncel.2020.598453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Lipopolysacharide (LPS) pre-conditioning (PC), has been shown to exert protective effects against cytotoxic effects. Therefore, we hypothesized, the tolerance produced by LPS PC will be resulted by the alterations and modifications in gene and protein expression. With reference to the results of MTT assays, AO/PI staining, and Annexin V-FITC analyses of LPS concentration (0.7815-50 μg/mL) and time-dependent (12-72 h) experiments, the pre-exposure to 3 μg/mL LPS for 12 h protected the differentiated PC12 cells against 0.75 mg/mL LPS apoptotic concentration. LPS-treated cells secreted more inflammatory cytokines like IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-17, IFN-γ, and TNF-α than LPS-PC cells. The production of inflammatory mediators ROS and NO was also higher in the LPS-induced cells compared to LPS-PC cells. Conversely, anti-inflammatory cytokines (like IL-10, IL-13, CNTF, and IL-1Ra) were upregulated in the LPS-PC cells but not in the LPS-induced cells. Meanwhile, the LPS initiated caspase-8 which in turn activates effector caspase 3/7. When the activities of caspases in the LPS-induced cells were inhibited using z-VADfmk and z-DEVDfmk, the expressions of c-MYC and Hsp70 were increased, but p53 was reduced. The potential molecules associated with protective and destructive effect was measured by RT2 Profiler PCR array to elucidate the signaling pathways and suggested inhibition NF-κB/caspase-3 signaling pathway regulates the cytoprotective genes and proto-oncogenes. In conclusion, this study provides a basis for future research to better understand the molecular mechanism underlying LPS pre-conditioning /TLR4 pre-activation and its functional role in offering cytoprotective response in neuronal environment.
Collapse
Affiliation(s)
- Pushpa Gandi Sangaran
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abolhassan Ahmadiani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| |
Collapse
|
7
|
Farina AR, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay AR. Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer. J Exp Clin Cancer Res 2020; 39:110. [PMID: 32536347 PMCID: PMC7294618 DOI: 10.1186/s13046-020-01616-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
8
|
Hsp90 Co-chaperone p23 contributes to dopaminergic mitochondrial stress via stabilization of PHD2: Implications for Parkinson's disease. Neurotoxicology 2018; 65:166-173. [PMID: 29471019 DOI: 10.1016/j.neuro.2018.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
The heat shock factor 90 (hsp90) complex has long been associated with neuropathological phenotypes linked to Parkinson's disease (PD) and its inhibition is neuroprotective in disease models. Hsp90 is conventionally believed to act by suppressing induction of hsp70. Here, we report a novel hsp70-independent mechanism by which Hsp90 may also contribute to PD-associated neuropathology. We previously reported that inhibition of the enzyme prolyl hydroxylase domain 2 (PHD2) in conjunction with increases in hypoxia-inducible factor 1 alpha (HIF1α) results in protection of vulnerable dopaminergic substantia nigra pars compacta (DAergic SNpc) neurons in in vitro and in vivo models of PD. We discovered an increased interaction between PHD2 and the p23:Hsp90 chaperone complex in response to mitochondrial stress elicited by the mitochondrial neurotoxin 1-methyl-4-phenylpyridine (MPP+) within cultured DAergic cells. Genetic p23 knockdown was found to result in decreases in steady-state PHD2 protein and activity and reduced susceptibility to MPP+ neurotoxicity. Administration of the p23 inhibitor gedunin was also neuroprotective in these cells as well as in human induced pluripotent stem cell (iPSC)-derived neurons. Our data suggests that mitochondrial stress-mediated elevations in PHD2 interaction with the p23-hsp90 complex have detrimental effects on the survival of DAergic neurons, while p23 inhibition is neuroprotective. We propose that neurotoxic effects are tied to enhanced PHD2 stabilization by the hsp90-p23 chaperone complex that is abrogated by p23 inhibition. This demonstrates a novel connection between two independent pathways previously linked to PD, hsp90 and PHD2-HIF1α, which could have important implications for here-to-fore unexplored mechanisms underlying PD neuropathology.
Collapse
|
9
|
Neonatal mouse hippocampus: phlebotomy-induced anemia diminishes and treatment with erythropoietin partially rescues mammalian target of rapamycin signaling. Pediatr Res 2017; 82:501-508. [PMID: 28399115 PMCID: PMC5570638 DOI: 10.1038/pr.2017.88] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/17/2017] [Indexed: 02/07/2023]
Abstract
BackgroundPhlebotomy-induced anemia (PIA) is common in premature infants and affects neurodevelopment. PIA alters hippocampal metabolism in neonatal mice through tissue hypoxia and iron deficiency. The mammalian target of rapamycin (mTOR) pathway senses the status of critical metabolites (e.g., oxygen, iron), thereby regulating hippocampal growth and function. We determined the effect of PIA and recombinant human erythropoietin (rHuEpo) treatment on mTOR signaling and expression of genes related to mTOR pathway functions.MethodsMice receiving an iron-supplemented diet were phlebotomized from postnatal day (P)3 to a target hematocrit of <25% by P7. Half were maintained at <25% until P14; half received rHuEpo from P7 to increase the hematocrit to 25-28%. Hippocampal phosphorylated to total protein ratios of four key mTOR pathway proteins were measured by western blotting at P14 and compared with non-phlebotomized, non-anemic control mice. mRNA levels of genes regulated by mTOR were measured by quantitative PCR.ResultsPIA suppressed phosphorylation of all mTOR proteins. rHuEpo restored AMP-activated protein kinase (AMPK) and AKT status, and partially rescued the mTOR output protein S6K. PIA and rHuEpo treatment also altered the expression of genes regulated by S6K.ConclusionPIA compromises and rHuEpo treatment partially rescues a pathway regulating neuronal DNA transcription, protein translation, and structural complexity.
Collapse
|
10
|
Ahmed S, Ayscough A, Barker GR, Canning HE, Davenport R, Downham R, Harrison D, Jenkins K, Kinsella N, Livermore DG, Wright S, Ivetac AD, Skene R, Wilkens SJ, Webster NA, Hendrick AG. 1,2,4-Triazolo-[1,5-a]pyridine HIF Prolylhydroxylase Domain-1 (PHD-1) Inhibitors With a Novel Monodentate Binding Interaction. J Med Chem 2017; 60:5663-5672. [DOI: 10.1021/acs.jmedchem.7b00352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Anthony D. Ivetac
- Department
of Computational Sciences and Crystallography, Takeda California Inc., 10410 Science Center Dr., San Diego, California 92121, United States
| | - Robert Skene
- Department
of Computational Sciences and Crystallography, Takeda California Inc., 10410 Science Center Dr., San Diego, California 92121, United States
| | - Steven J. Wilkens
- Department
of Computational Sciences and Crystallography, Takeda California Inc., 10410 Science Center Dr., San Diego, California 92121, United States
| | | | | |
Collapse
|
11
|
Aghazadeh-Attari J, Sufian N, Fink-Gremmels J, Malekinejad H. Allopurinol attenuated the chemically-induced hypoxia (hypoxia-reoxygenation) injuries via down-regulation of the transcription factor HIF-1α in neuroblastoma cells. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.01.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
12
|
Guo C, Hao LJ, Yang ZH, Chai R, Zhang S, Gu Y, Gao HL, Zhong ML, Wang T, Li JY, Wang ZY. Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp Neurol 2016; 280:13-23. [PMID: 26996132 DOI: 10.1016/j.expneurol.2016.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
Accumulating evidence suggests that an abnormal accumulation of iron in the substantia nigra (SN) is one of the defining characteristics of Parkinson's disease (PD). Accordingly, the potential neuroprotection of Fe chelators is widely acknowledged for the treatment of PD. Although desferrioxamine (DFO), an iron chelator widely used in clinical settings, has been reported to improve motor deficits and dopaminergic neuronal survival in animal models of PD, DFO has poor penetration to cross the blood-brain barrier and elicits side effects. We evaluated whether an intranasal administration of DFO improves the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of dopaminergic neurons in the nigrostriatal axis and investigated the molecular mechanisms of intranasal DFO treatment in preventing MPTP-induced neurodegeneration. Treatment with DFO efficiently alleviated behavioral deficits, increased the survival of tyrosine hydroxylase (TH)-positive neurons, and decreased the action of astrocytes in the SN and striatum in an MPTP-induced PD mouse model. Interestingly, we found that DFO up-regulated the expression of HIF-1α protein, TH, vascular endothelial growth factor (VEGF), and growth associated protein 43 (GAP43) and down-regulated the expression of α-synuclein, divalent metal transporter with iron-responsive element (DMT1+IRE), and transferrin receptor (TFR). This was accompanied by a decrease in iron-positive cells in the SN and striatum of the DFO-treated group. We further revealed that DFO treatment significantly inhibited the MPTP-induced phosphorylation of the c-Jun N-terminal kinase (JNK) and differentially enhanced the phosphorylation of extracellular regulated protein kinases (ERK) and mitogen-activated protein kinase (MAPK)/P38 kinase. Additionally, the effects of DFO on increasing the Bcl-2/Bax ratio were further validated in vitro and in vivo. In SH-SY5Y cells, the DFO-mediated up-regulation of HIF-1α occurred via the activation of the ERK and P38MAPK signaling pathway. Collectively, the present data suggest that intranasal DFO treatment is effective in reversing MPTP-induced brain abnormalities and that HIF-1-pathway activation is a potential therapy target for the attenuation of neurodegeneration.
Collapse
Affiliation(s)
- Chuang Guo
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Li-Juan Hao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhao-Hui Yang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Rui Chai
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Shuai Zhang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yu Gu
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Hui-Ling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Man-Li Zhong
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Tao Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Zhan-You Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
13
|
Li S, Lu J, Li J, Chen X, Yao X, Xi L. HydPred: a novel method for the identification of protein hydroxylation sites that reveals new insights into human inherited disease. MOLECULAR BIOSYSTEMS 2016; 12:490-8. [DOI: 10.1039/c5mb00681c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HydPred was presented as the most reliable tool up to now for the identification of protein hydroxylation sites with a user-friendly web server at http://lishuyan.lzu.edu.cn/hydpred/.
Collapse
Affiliation(s)
- Shuyan Li
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Jun Lu
- School of Basic Medical Sciences
- Lanzhou University
- China
| | - Jiazhong Li
- School of Pharmacy
- Lanzhou University
- Lanzhou
- China
| | - Ximing Chen
- Key Laboratory of Desert and Desertification
- Cold and Arid Regions Environmental and Engineering Research Institute
- Chinese Academy of Sciences
- China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- China
| | - Lili Xi
- Department of Pharmacy
- First Hospital of Lanzhou University
- Lanzhou
- China
| |
Collapse
|
14
|
Weinreb O, Amit T, Bar-Am O, Youdim MBH. Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer's disease. Br J Pharmacol 2015; 173:2080-94. [PMID: 26332830 DOI: 10.1111/bph.13318] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/20/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Alzheimer's disease (AD) is accepted nowadays as a complex neurodegenerative disorder with multifaceted cerebral pathologies, including extracellular deposition of amyloid β peptide-containing plaques, intracellular neurofibrillary tangles, progressive loss of cholinergic neurons, metal dyshomeostasis, mitochondrial dysfunction, neuroinflammation, glutamate excitoxicity, oxidative stress and increased MAO enzyme activity. This may explain why it is currently widely accepted that a more effective therapy for AD would result from the use of multifunctional drugs, which may affect more than one brain target involved in the disease pathology. The current review will discuss the potential benefits of novel multimodal neuroprotective, brain permeable drugs, recently developed by Youdim and collaborators, as a valuable therapeutic approach for AD treatment. The pharmacological and neuroprotective properties of these multitarget-directed ligands, which target MAO enzymes, the cholinergic system, iron accumulation and amyloid β peptide generation/aggregation are described, with a special emphasis on their potential therapeutic value for ageing and AD-associated cognitive functions. This review is conceived as a tribute to the broad neuropharmacology work of Professor Moussa Youdim, Professor Emeritus in the Faculty of Medicine and Director of Eve Topf Center of Excellence in Technion-Israel Institute of Technology, and Chief Scientific Officer of ABITAL Pharma Pipeline Ltd., at the occasion of his 75th birthday. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| | - Orit Bar-Am
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| | - Moussa B H Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| |
Collapse
|
15
|
Esfahani M, Karimi F, Afshar S, Niknazar S, Sohrabi S, Najafi R. Prolyl hydroxylase inhibitors act as agents to enhance the efficiency of cell therapy. Expert Opin Biol Ther 2015; 15:1739-55. [PMID: 26325448 DOI: 10.1517/14712598.2015.1084281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION In stem cell-based therapy as a subtype of regenerative medicine, stem cells can be used to replace or repair injured tissue and cells in order to treat disease. Stem cells have the ability to integrate into injured areas and produce new cells via processes of proliferation and differentiation. Several studies have demonstrated that hypoxia increases self-renewal, proliferation and post-homing differentiation of stem cells through the regulation of hypoxia-inducible factor-1 (HIF-1)-mediated gene expression. Thus, pharmacological interventions including prolyl hydroxylase (PHD) inhibitors are considered as promising solutions for stem cell-based therapy. PHD inhibitors stabilize the HIF-1 and activate its pathway through preventing proteasomal degradation of HIF-1. AREAS COVERED This review focuses on the role of hypoxia, HIF-1 and especially PHD inhibitors on cell therapy. PHD structure and function are discussed as well as their inhibitors. In addition, we have investigated several preclinical studies in which PHD inhibitors improved the efficiency of cell-based therapies. EXPERT OPINION The data reviewed here suggest that PHD inhibitors are effective operators in improving stem cell therapy. However, because of some limitations, these compounds should be properly examined before clinical application.
Collapse
Affiliation(s)
- Maryam Esfahani
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Fatemeh Karimi
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Saeid Afshar
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Somayeh Niknazar
- b 2 Shahid Beheshti University of Medical Science, Hearing Disorders Research Center , Tehran, the Islamic Republic of Iran
| | - Sareh Sohrabi
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| | - Rezvan Najafi
- a 1 Research center for molecular medicine, Hamadan University of Medical Sciences , Hamadan, the Islamic Republic of Iran
| |
Collapse
|
16
|
Khan M, Maryam A, Qazi JI, Ma T. Targeting Apoptosis and Multiple Signaling Pathways with Icariside II in Cancer Cells. Int J Biol Sci 2015. [PMID: 26221076 PMCID: PMC4515820 DOI: 10.7150/ijbs.11595] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of deaths worldwide. Despite concerted efforts to improve the current therapies, the prognosis of cancer remains dismal. Highly selective or specific blocking of only one of the signaling pathways has been associated with limited or sporadic responses. Using targeted agents to inhibit multiple signaling pathways has emerged as a new paradigm for anticancer treatment. Icariside II, a flavonol glycoside, is one of the major components of Traditional Chinese Medicine Herba epimedii and possesses multiple biological and pharmacological properties including anti-inflammatory, anti-osteoporosis, anti-oxidant, anti-aging, and anticancer activities. Recently, the anticancer activity of Icariside II has been extensively investigated. Here, in this review, our aim is to give our perspective on the current status of Icariside II, and discuss its natural sources, anticancer activity, molecular targets and the mechanisms of action with specific emphasis on apoptosis pathways which may help the further design and conduct of preclinical and clinical trials. Icariside II has been found to induce apoptosis in various human cancer cell lines of different origin by targeting multiple signaling pathways including STAT3, PI3K/AKT, MAPK/ERK, COX-2/PGE2 and β-Catenin which are frequently deregulated in cancers, suggesting that this collective activity rather than just a single effect may play an important role in developing Icariside II into a potential lead compound for anticancer therapy. This review suggests that Icariside II provides a novel opportunity for treatment of cancers, but additional investigations and clinical trials are still required to fully understand the mechanism of therapeutic effects to further validate it in anti-tumor therapy.
Collapse
Affiliation(s)
- Muhammad Khan
- 1. College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Amara Maryam
- 1. College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Javed Iqbal Qazi
- 2. Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Tonghui Ma
- 1. College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
17
|
Arduini A, Escobar J, Vento M, Escrig R, Quintás G, Sastre J, Saugstad OD, Solberg R. Metabolic adaptation and neuroprotection differ in the retina and choroid in a piglet model of acute postnatal hypoxia. Pediatr Res 2014; 76:127-34. [PMID: 24819373 DOI: 10.1038/pr.2014.70] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 02/12/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Hypoxic-ischemic insults to the neonatal brain may cause neurodevelopmental disorders. Vulnerability of different areas of the neural tissue to hypoxic-ischemic stress might be explained by either heterogeneous sensitivity to oxygen or neuroprotective capability. Our understanding of regional heterogeneity is still incomplete in terms of metabolic reconfiguration and/or activation of neuroprotective mechanisms. METHODS We studied, by western blotting, reverse-transcriptase PCR, and tandem mass spectrometry, the response of retina and choroid at protein, gene, and metabolic levels during hypoxia in a piglet model of acute postnatal hypoxia. RESULTS We evidenced a metabolic shift towards glycolysis in choroid after hypoxia while retina experienced a dramatic energy stress with decreased mitochondrial metabolites. Hypoxia-inducible transcription factor-1α (HIF-1α) was not stabilized in retina during hypoxia, supported by a deficient signaling from v-akt murine thymoma viral oncogene (AKT) and ERK1/2, and unchanged glutathione redox status. In retina, but not in choroid, phosphorylation of p65 (NF-κB) and increased transcription of target genes may have a major role during hypoxic stress. CONCLUSION We showed that the retina engages a distinct pattern of signaling and transcriptional events than observed in the choroid. Retina and choroid may reflect regional sensitivity to hypoxia. While prolonged and intense hypoxia may jeopardize retinal cell survival, choroid sets up a different pattern of response, which promotes adaptation to these adverse conditions.
Collapse
Affiliation(s)
- Alessandro Arduini
- 1] Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain [2] Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Javier Escobar
- Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain
| | - Maximo Vento
- 1] Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain [2] Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Raquel Escrig
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Guillermo Quintás
- Leitat Technological Center, Bio In Vitro Division, Barcelona, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Ola Didrik Saugstad
- Department of Pediatric Research, Institute for Surgical Research, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Institute for Surgical Research, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
18
|
Xi G, Strahle J, Hua Y, Keep RF. Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol 2014; 115:45-63. [PMID: 24139872 PMCID: PMC3961535 DOI: 10.1016/j.pneurobio.2013.09.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is a common and often fatal stroke subtype for which specific therapies and treatments remain elusive. To address this, many recent experimental and translational studies of ICH have been conducted, and these have led to several ongoing clinical trials. This review focuses on the progress of translational studies of ICH including those of the underlying causes and natural history of ICH, animal models of the condition, and effects of ICH on the immune and cardiac systems, among others. Current and potential clinical trials also are discussed for both ICH alone and with intraventricular extension.
Collapse
Affiliation(s)
- Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States.
| | - Jennifer Strahle
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Dwyer DS, Weeks K, Aamodt EJ. Drug discovery based on genetic and metabolic findings in schizophrenia. Expert Rev Clin Pharmacol 2014; 1:773-89. [PMID: 24410607 DOI: 10.1586/17512433.1.6.773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent progress in the genetics of schizophrenia provides the rationale for re-evaluating causative factors and therapeutic strategies for this disease. Here, we review the major candidate susceptibility genes and relate the aberrant function of these genes to defective regulation of energy metabolism in the schizophrenic brain. Disturbances in energy metabolism potentially lead to neurodevelopmental deficits, impaired function of the mature nervous system and failure to maintain neurites/dendrites and synaptic connections. Current antipsychotic drugs do not specifically address these underlying deficits; therefore, a new generation of more effective medications is urgently needed. Novel targets for future drug discovery are identified in this review. The coordinated application of structure-based drug design, systems biology and research on model organisms may greatly facilitate the search for next-generation antipsychotic drugs.
Collapse
Affiliation(s)
- Donard S Dwyer
- Professor and Director of Basic Research, Departments of Psychiatry and Pharmacology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | | | |
Collapse
|
20
|
Weinreb O, Mandel S, Youdim MBH, Amit T. Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radic Biol Med 2013; 62:52-64. [PMID: 23376471 DOI: 10.1016/j.freeradbiomed.2013.01.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Brain iron accumulation has been implicated in a host of chronic neurological diseases, including Parkinson's disease (PD). The elevated iron levels observed in the substantia nigra of PD subjects have been suggested to incite the generation of reactive oxygen species and intracellular α-synuclein aggregation, terminating in the oxidative neuronal destruction of this brain area. Thus, elucidation of the molecular mechanisms involved in iron dysregulation and oxidative stress-induced neurodegeneration is a crucial step in deciphering PD pathology and in developing novel iron-complexing compounds aimed at restoring brain iron homeostasis and attenuating neurodegeneration. This review discusses the involvement of dysregulation of brain iron homeostasis in PD pathology, with an emphasis on the potential effectiveness of naturally occurring compounds and novel iron-chelating/antioxidant therapeutic hybrid molecules, exerting a spectrum of neuroprotective interrelated activities: antioxidant/monoamine oxidase inhibition, activation of the hypoxia-inducible factor (HIF)-1 signaling pathway, induction of HIF-1 target iron-regulatory and antioxidative genes, and inhibition of α-synuclein accumulation and aggregation.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Silvia Mandel
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Moussa B H Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
21
|
Fretham SJB, Carlson ES, Georgieff MK. Neuronal-specific iron deficiency dysregulates mammalian target of rapamycin signaling during hippocampal development in nonanemic genetic mouse models. J Nutr 2013; 143:260-6. [PMID: 23303869 PMCID: PMC3713018 DOI: 10.3945/jn.112.168617] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Iron deficiency (ID) is the most common nutrient deficiency worldwide, disproportionally affecting infants, children, and women of childbearing age. Although ID commonly occurs with anemia (IDA), nonanemic ID is 3 times more common than IDA in toddlers and also occurs in infants following gestational complications. Both conditions negatively affect motor, socio-emotional, and cognitive behaviors, suggesting that iron, apart from anemia, has a critical role in neurodevelopment. Here, the specific role of iron in regulation of mammalian target of rapamycin (mTOR) signaling (a kinase pathway that integrates metabolic supply and demand to regulate cell growth and morphology) was examined using 2 hippocampal, pyramidal cell-specific, nonanemic, genetic mouse models of ID: a CAMKIIα cre-loxP permanent knockout of divalent metal transporter-1 (DMT-1 CKO) and a CAMKIIα-tTA-driven reversible, overexpression of nonfunctional, dominant negative transferrin receptor-1 (DN TfR-1). In both models, mTOR activity, assessed by phosphorylation levels of key proteins, was upregulated during development by ID [S6K(Thr389) phosphorylation increased 87 and 57% in the DMT-1 CKO and DN TfR-1 models, respectively; P < 0.05]. This effect was shown to be iron-dependent, because iron repletion at postnatal d 21 normalized mTOR activity in the reversible DN TfR-1 model (62% reduction compared with unrepleted mice; P < 0.05). In the permanent DMT-1 CKO model, suppression of ID-induced mTOR hyperactivity by rapamycin administered during the sensitive period for iron improved Morris water maze performance despite ongoing ID (DMT-1 wild-type and DMT-1 CKO mice reached criterion in 3 d compared with 4 d necessary for vehicle-treated DMT-1 CKO mice; P < 0.05). Together, these findings implicate mTOR dysregulation as a cellular mechanism underlying the acute and persistent neurodevelopmental deficits that accompany early-life ID.
Collapse
Affiliation(s)
- Stephanie J. B. Fretham
- Department of Pediatrics,Center for Neurobehavioral Development,Graduate Program in Neuroscience
| | - Erik S. Carlson
- Department of Pediatrics,Center for Neurobehavioral Development,Graduate Program in Neuroscience,Medical Scientist Training Program, and
| | - Michael K. Georgieff
- Department of Pediatrics,Center for Neurobehavioral Development,Graduate Program in Neuroscience,Developmental Biology Center, University of Minnesota School of Medicine, Minneapolis, MN,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Hümmler N, Schneider C, Giessl A, Bauer R, Walkinshaw G, Gassmann M, Rascher W, Trollmann R. Acute hypoxia modifies regulation of neuroglobin in the neonatal mouse brain. Exp Neurol 2012; 236:112-21. [DOI: 10.1016/j.expneurol.2012.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 03/26/2012] [Accepted: 04/11/2012] [Indexed: 01/08/2023]
|
23
|
Tsui L, Fong TH, Wang IJ. YC-1 targeting of hypoxia-inducible factor-1α reduces RGC-5 cell viability and inhibits cell proliferation. Mol Vis 2012; 18:1594-603. [PMID: 22736948 PMCID: PMC3380911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/12/2012] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The survival of retinal ganglion cells (RGCs) is a hallmark of many optic neurodegenerative diseases such as glaucoma. YC-1, a potential anticancer drug, is known to be able to decrease the stability and protein expression of hypoxia-inducible factor (HIF)-1α that is triggered by hypoxia and related to RGC survival. We hypothesized that YC-1 may alter RGC cell viability through the down-regulation of HIF-1α. METHODS Cell viability of the RGC-5 cell line was measured with a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Flow cytometry, a LIVE/DEAD viability assay, and high-content screening (HCS) with MKI67 (K(i)-67) monoclonal antibodies were used to detect cell death and cellular proliferation. RESULTS We found that cells treated with 20 µM YC-1 for 24 h decreased the HIF-1α level in an RGC-5 cell line using immunoblotting and reduced the live cell number in an MTT assay. Results of flow cytometry and HCS demonstrated that reducing the cell proliferation of RGC-5 cells, not cell death, led to the decreased level in the MTT assay. CONCLUSIONS Our findings demonstrate that YC-1-induced down-regulation of HIF-1α might reduce RGC cell proliferation and viability under normoxia, which implies a role of YC-1 in the neuroprotective effect for further clinical applications.
Collapse
Affiliation(s)
- Leo Tsui
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsorng-Harn Fong
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
Weinreb O, Amit T, Mandel S, Youdim MB. Novel Therapeutic Approach for Neurodegenerative Pathologies: Multitarget Iron-Chelating Drugs Regulating Hypoxia-Inducible Factor 1 Signal Transduction Pathway. NEURODEGENER DIS 2012; 10:112-5. [DOI: 10.1159/000332597] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/30/2011] [Indexed: 01/20/2023] Open
|
25
|
Sagai M, Bocci V. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress? Med Gas Res 2011; 1:29. [PMID: 22185664 PMCID: PMC3298518 DOI: 10.1186/2045-9912-1-29] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/20/2011] [Indexed: 01/06/2023] Open
Abstract
The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not.Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB), resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2). Nrf2 then induces the transcription of antioxidant response elements (ARE). Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr), catalase (CAT), heme-oxygenase-1 (HO-1), NADPH-quinone-oxidoreductase (NQO-1), phase II enzymes of drug metabolism and heat shock proteins (HSP). Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT) and activated protein-1 (AP-1).Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a), which is also induced via moderate oxidative stress. Recently these concepts have become widely accepted. The versatility of ozone in treating vascular and degenerative diseases as well as skin lesions, hernial disc and primary root carious lesions in children is emphasized. Further researches able to elucidate whether the mechanisms of action of ozone therapy involve nuclear transcription factors, such as Nrf2, NFAT, AP-1, and HIF-1α are warranted.
Collapse
Affiliation(s)
- Masaru Sagai
- Department of Physiology, Viale A, Moro 2, 53100, University of Siena, Italy.
| | | |
Collapse
|
26
|
Abstract
Iron deficiency (ID) is the most common nutrient deficiency, affecting 2 billion people and 30% of pregnant women and their offspring. Early life ID affects at least 3 major neurobehavioral domains, including speed of processing, affect, and learning and memory, the latter being particularly prominent. The learning and memory deficits occur while the infants are iron deficient and persist despite iron repletion. The neural mechanisms underlying the short- and long-term deficits are being elucidated. Early ID alters the transcriptome, metabolome, structure, intracellular signaling pathways, and electrophysiology of the developing hippocampus, the brain region responsible for recognition learning and memory. Until recently, it was unclear whether these effects are directly due to a lack of iron interacting with important transcriptional, translational, or post-translational processes or to indirect effects such as hypoxia due to anemia or stress. Nonanemic genetic mouse models generated by conditionally altering expression of iron transport proteins specifically in hippocampal neurons in late gestation have led to a greater understanding of iron's role in learning and memory. The learning deficits in adulthood likely result from interactions between direct and indirect effects that contribute to abnormal hippocampal structure and plasticity.
Collapse
Affiliation(s)
- Stephanie J. B. Fretham
- Department of Pediatrics Neonatology Division, University of Minnesota, Minneapolis, MN 55455,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455,Center for Neurodevelopment, University of Minnesota, Minneapolis, MN 55455
| | - Erik S. Carlson
- Department of Pediatrics Neonatology Division, University of Minnesota, Minneapolis, MN 55455,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455,Center for Neurodevelopment, University of Minnesota, Minneapolis, MN 55455,Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455
| | - Michael K. Georgieff
- Department of Pediatrics Neonatology Division, University of Minnesota, Minneapolis, MN 55455,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455,Center for Neurodevelopment, University of Minnesota, Minneapolis, MN 55455,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Weinreb O, Mandel S, Bar-Am O, Amit T. Iron-chelating backbone coupled with monoamine oxidase inhibitory moiety as novel pluripotential therapeutic agents for Alzheimer's disease: a tribute to Moussa Youdim. J Neural Transm (Vienna) 2011; 118:479-92. [PMID: 21360301 DOI: 10.1007/s00702-011-0597-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/27/2011] [Indexed: 12/13/2022]
Abstract
It is for these authors a great privilege to dedicate this review article to Moussa Youdim, who is one of the most imperative pharmacologists and pioneer investigators in the search and development of novel therapeutics for neurodegenerative diseases. 40 years ago, Moussa Youdim has started studying brain iron, catecholamine receptor and monoamine oxidase (MAO)-A and -B functions. Although Moussa Youdim succeeded in exploring the novel anti-Parkinsonian, selective MAO-B inhibitor drug, rasagiline (Azilect, Teva Pharmaceutical Co.), he did not stop searching for superior therapeutic approaches for neurodegenerative disorders. To date, Moussa Youdim and his research group are designing and synthesizing pluripotential drug candidates possessing diverse pharmacological properties that can act on multiple targets and pathological features ascribed to Parkinson's disease, Alzheimer's disease (AD) and amyotrophic lateral sclerosis. One such example is the multimodal non-toxic, brain-permeable iron-chelating compound, M30 (5-[N-methyl-N-propargylaminomethyl]-8-hydroxyquinoline), which amalgamates the propargyl moiety of rasagiline with the backbone of the potent iron chelator, VK28. This review discusses the multiple effects of several leading compounds of this series, concerning their neuroprotective/neurorestorative molecular mechanisms in vivo and in vitro, with a special focus on the pathological features ascribed to AD, including antioxidant and iron chelating activities, regulation of amyloid precursor protein and amyloid β peptide expression processing, activation of pro-survival signaling pathways and regulation of cell cycle and neurite outgrowth.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, P.O.B. 9697, 31096, Haifa, Israel.
| | | | | | | |
Collapse
|
28
|
Ströhle A, Döring F. Molecularization in nutritional science: a view from philosophy of science. Mol Nutr Food Res 2011; 54:1385-404. [PMID: 20568236 DOI: 10.1002/mnfr.201000078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SCOPE Over the past decade, a trend toward molecularization, which could be observed in almost all bioscientific disciplines, now appears to have also developed in nutritional science. However, molecular nutrition research gives birth to a series of questions. Therefore, we take a look at the epistemological foundation of (molecular) nutritional science. METHODS AND RESULTS We (i) analyze the scientific status of (molecular) nutritional science and its position in the canon of other scientific disciplines, (ii) focus on the cognitive aims of nutritional science in general and (iii) on the chances and limits of molecular nutrition research in particular. By taking up the thoughts of an earlier work, we are analyzing (molecular) nutritional science from a strictly realist and emergentist-naturalist perspective. CONCLUSION Methodologically, molecular nutrition research is bound to a microreductive research approach. We emphasize, however, that it need not be a radical microreductionism whose scientific reputation is not the best. Instead we favor moderate microreductionism, which combines reduction with integration. As mechanismic explanations are one of the primary aims of factual sciences, we consider it as the task of molecular nutrition research to find profound, i.e. molecular-mechanismic, explanations for the conditions, characteristics and changes of organisms related to the organism-nutrition environment interaction.
Collapse
Affiliation(s)
- Alexander Ströhle
- Institute of Human Nutrition and Food Science, Molecular Prevention, Christian-Albrecht-University Kiel, Germany.
| | | |
Collapse
|
29
|
Weinreb O, Amit T, Mandel S, Kupershmidt L, Youdim MBH. Neuroprotective multifunctional iron chelators: from redox-sensitive process to novel therapeutic opportunities. Antioxid Redox Signal 2010; 13:919-49. [PMID: 20095867 DOI: 10.1089/ars.2009.2929] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that many cytotoxic signals occurring in the neurodegenerative brain can initiate neuronal death processes, including oxidative stress, inflammation, and accumulation of iron at the sites of the neuronal deterioration. Neuroprotection by iron chelators has been widely recognized with respect to their ability to prevent hydroxyl radical formation in the Fenton reaction by sequestering redox-active iron. An additional neuroprotective mechanism of iron chelators is associated with their ability to upregulate or stabilize the transcriptional activator, hypoxia-inducible factor-1alpha (HIF-1alpha). HIF-1alpha stability within the cells is under the control of a class of iron-dependent and oxygen-sensor enzymes, HIF prolyl-4-hydroxylases (PHDs) that target HIF-1alpha for degradation. Thus, an emerging novel target for neuroprotection is associated with the HIF system to promote stabilization of HIF-1alpha and increase transcription of HIF-1-related survival genes, which have been reported to be regulated in patient's brains afflicted with diverse neurodegenerative diseases. In accordance, a new potential therapeutic strategy for neurodegenerative diseases is explored, by which iron chelators would inhibit PHDs, target the HIF-1-signaling pathway and ultimately activate HIF-1-dependent neuroprotective genes. This review discusses two interrelated approaches concerning therapy targets in neurodegeneration, sharing in common the implementation of iron chelation activity: antioxidation and HIF-1-pathway activation.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel.
| | | | | | | | | |
Collapse
|
30
|
Correia SC, Moreira PI. Hypoxia-inducible factor 1: a new hope to counteract neurodegeneration? J Neurochem 2010; 112:1-12. [DOI: 10.1111/j.1471-4159.2009.06443.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J Neurosci 2009; 29:8828-38. [PMID: 19587290 DOI: 10.1523/jneurosci.1779-09.2009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress contributes to tissue injury in conditions ranging from cardiovascular disease to stroke, spinal cord injury, neurodegeneration, and perhaps even aging. Yet the efficacy of antioxidants in human disease has been mixed at best. We need a better understanding of the mechanisms by which established antioxidants combat oxidative stress. Iron chelators are well established inhibitors of oxidative death in both neural and non-neural tissues, but their precise mechanism of action remains elusive. The prevailing but not completely substantiated view is that iron chelators prevent oxidative injury by suppressing Fenton chemistry and the formation of highly reactive hydroxyl radicals. Here, we show that iron chelation protects, rather unexpectedly, by inhibiting the hypoxia-inducible factor prolyl 4-hydroxylase isoform 1 (PHD1), an iron and 2-oxoglutarate-dependent dioxygenase. PHD1 and its isoforms 2 and 3 are best known for stabilizing transcriptional regulators involved in hypoxic adaptation, such as HIF-1alpha and cAMP response element-binding protein (CREB). Yet we find that global hypoxia-inducible factor (HIF)-PHD inhibition protects neurons even when HIF-1alpha and CREB are directly suppressed. Moreover, two global HIF-PHD inhibitors continued to be neuroprotective even in the presence of diminished HIF-2alpha levels, which itself increases neuronal susceptibility to oxidative stress. Finally, RNA interference to PHD1 but not isoforms PHD2 or PHD3 prevents oxidative death, independent of HIF activation. Together, these studies suggest that iron chelators can prevent normoxic oxidative neuronal death through selective inhibition of PHD1 but independent of HIF-1alpha and CREB; and that HIF-2alpha, not HIF-1alpha, regulates susceptibility to normoxic oxidative neuronal death.
Collapse
|
32
|
Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 2009; 8:398-412. [PMID: 19296922 DOI: 10.1016/s1474-4422(09)70054-7] [Citation(s) in RCA: 458] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroprotection and brain repair in patients after acute brain damage are still major unfulfilled medical needs. Pharmacological treatments are either ineffective or confounded by adverse effects. Consequently, endogenous mechanisms by which the brain protects itself against noxious stimuli and recovers from damage are being studied. Research on preconditioning, also known as induced tolerance, over the past decade has resulted in various promising strategies for the treatment of patients with acute brain injury. Several of these strategies are being tested in randomised clinical trials. Additionally, research into preconditioning has led to the idea of prophylactically inducing protection in patients such as those undergoing brain surgery and those with transient ischaemic attack or subarachnoid haemorrhage who are at high risk of brain injury in the near future. In this Review, we focus on the clinical issues relating to preconditioning and tolerance in the brain; specifically, we discuss the clinical situations that might benefit from such procedures. We also discuss whether preconditioning and tolerance occur naturally in the brain and assess the most promising candidate strategies that are being investigated.
Collapse
Affiliation(s)
- Ulrich Dirnagl
- Department of Neurology, Center for Stroke Research, Charite Universitätsmedizin Berlin, Charitéplatz, D-10098, Berlin, Germany.
| | | | | |
Collapse
|
33
|
Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke 2009; 40:2241-3. [PMID: 19372448 DOI: 10.1161/strokeaha.108.539536] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Our previous studies found that deferoxamine reduces intracerebral hemorrhage (ICH)-induced brain injury in rats. The current study examined whether deferoxamine reduces brain injury in a piglet ICH model. METHODS Pigs received an injection of autologous blood into the right frontal lobe. Deferoxamine (50 mg/kg, IM) or vehicle was administered 2 hours after ICH and then every 12 hours up to 7 days. Animals were killed 3 or 7 days later to examine iron accumulation, white matter injury, and neuronal death. RESULTS ICH resulted in development of a reddish perihematomal zone, and iron accumulation, ferritin upregulation, and neuronal death within that zone. Deferoxamine reduced the perihematomal reddish zone, white matter injury, and the number of Perls', ferritin, and Fluoro-Jade C-positive cells. CONCLUSIONS Iron accumulation occurs in the piglet brain after ICH. Deferoxamine reduces ICH-induced iron buildup and brain injury in piglets.
Collapse
|
34
|
Abstract
Ischemic preconditioning (PC) of the brain is a phenomenon by which mild ischemic insults render neurons resistant to subsequent strong insults. Key steps in ischemic PC of the brain include caspase-3 activation and poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, but upstream events have not been clearly elucidated. We have tested whether endogenous zinc is required for ischemic PC of the brain in rats. Mild, transient zinc accumulation was observed in certain neurons after ischemic PC. Moreover, intraventricular administration of CaEDTA during ischemic PC abrogated both zinc accumulation and the protective effect against subsequent full ischemia. To elucidate the mechanism of the zinc-triggered PC (Zn PC) effect, cortical cultures were exposed to sublethal levels of zinc, and 18 h later to lethal levels of zinc or NMDA. Zn PC exhibited the characteristic features of ischemic PC, including caspase-3 activation, PARP-1 cleavage, and HSP70 induction, all of which are crucial for subsequent neuroprotection against NMDA or zinc toxicity. HSP70 induction was necessary for protection, as it halted caspase-3 activation before apoptosis. Interestingly, in both Zn PC in vitro and ischemic PC in vivo, p75(NTR) was necessary for neuroprotection. These results suggest that caspase-3 activation during ischemic PC, a necessary event for subsequent neuroprotection, may result from mild zinc accumulation and the consequent p75(NTR) activation in neurons.
Collapse
|
35
|
Funakoshi Y, Suzuki T. Glycobiology in the cytosol: the bitter side of a sweet world. Biochim Biophys Acta Gen Subj 2008; 1790:81-94. [PMID: 18952151 DOI: 10.1016/j.bbagen.2008.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/03/2008] [Accepted: 09/11/2008] [Indexed: 01/11/2023]
Abstract
Progress in glycobiology has undergone explosive growth over the past decade with more of the researchers now realizing the importance of glycan chains in various inter- and intracellular processes. However, there is still an area of glycobiology awaiting exploration. This is especially the case for the field of "glycobiology in the cytosol" which remains rather poorly understood. Yet evidence is accumulating to demonstrate that the glycoconjugates and their recognition molecules (i.e. lectins) are often present in this subcellular compartment.
Collapse
Affiliation(s)
- Yoko Funakoshi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
| | | |
Collapse
|