1
|
Benichou G, Lancia HH. Intercellular transfer of MHC molecules in T cell alloimmunity and allotransplantation. Biomed J 2024; 47:100749. [PMID: 38797478 DOI: 10.1016/j.bj.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
After transplantation of allogeneic tissues and organs, recognition by recipient T cells of donor MHC molecules initiates the pro-inflammatory adaptive immune response leading to allograft rejection. T cell allorecognition has long been known to be mediated via two distinct pathways: the direct pathway in which T cells recognize intact allogeneic MHC molecules displayed on donor cells and the indirect pathway whereby T cells recognize donor MHC peptides processed and presented by recipient antigen-presenting cells (APCs). It is believed that direct allorecognition is the driving force behind early acute allograft rejection while indirect allorecognition is involved in chronic allograft rejection, a progressive condition characterized by graft vasculopathy and tissue fibrosis. Recently, we and others have reported that after transplantation of allogeneic skin and organs, donor MHC molecules are transferred from donor cells to the host's APCs via trogocytosis or extracellular vesicles. Recipient APCs having captured donor MHC molecules can either present them to T cells in their intact form on their surface (semi-direct pathway) or the form of peptides bound to self-MHC molecules (indirect pathway). The present article provides an overview of recent studies evaluating the role of intercellular exchange of MHC molecules in T cell alloimmunity and its contribution to allograft rejection and tolerance.
Collapse
Affiliation(s)
- Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA.
| | - Hyshem H Lancia
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA
| |
Collapse
|
2
|
Saldan A, Mengoli C, Sgarabotto D, Fedrigo M, Angelini A, Feltrin G, Gambino A, Gerosa G, Barzon L, Abate D. Human cytomegalovirus and Epstein-Barr virus infections occurring early after transplantation are risk factors for antibody-mediated rejection in heart transplant recipients. Front Immunol 2023; 14:1171197. [PMID: 37256129 PMCID: PMC10225529 DOI: 10.3389/fimmu.2023.1171197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Background Antibody-mediated rejection (AMR) is a serious complication affecting the survival of patients receiving transplantation. Human cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are common viral infections that occur after transplantation, frequently emerging as viral reactivation in donor grafts or transplant recipients. The present study aimed to investigate the association between CMV and EBV infections and early-onset AMR. Materials and methods This study was conducted at the Heart Transplantation Center of Padova General Hospital and included a cohort of 47 heart transplant recipients (HTxs), including 24 HTxs diagnosed with AMR and 23 control HTxs with no episodes of AMR. Only early cases of CMV and/or EBV infections (1-90 days after transplantation) were considered. Fisher's exact test and logistic regression analysis were used to statistically analyze the correlation and association between AMR and CMV or EBV infection. Results We observed a positive statistical association between CMV and EBV infections (two-sided Fisher's exact test, p = 0.0136) and between EBV infection and AMR (two-sided Fisher's exact test, p = 0.0034). Logistic regression analysis revealed a direct statistical association between CMV and EBV infections and AMR risk (p = 0.037 and 0.006 and odds ratio = 1.72 and 2.19, respectively). AMR occurrence was associated with increased viral loads of both CMV and EBV early after transplantation. Discussion These findings suggest the role of CMV and EBV infections as relevant risk factors for AMR in HTxs for the first time.
Collapse
Affiliation(s)
- Alda Saldan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Carlo Mengoli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Dino Sgarabotto
- Transplant Infectious Disease Unit, Padova General Hospital, Padova, Italy
| | - Marny Fedrigo
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Annalisa Angelini
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | - Antonio Gambino
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Gino Gerosa
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Davide Abate
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Carnel N, Lancia HH, Guinier C, Benichou G. Pathways of Antigen Recognition by T Cells in Allograft Rejection. Transplantation 2023; 107:827-837. [PMID: 36398330 PMCID: PMC10600686 DOI: 10.1097/tp.0000000000004420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adaptive immune response leading to the rejection of allogeneic transplants is initiated and orchestrated by recipient T cells recognizing donor antigens. T-cell allorecognition is mediated via 3 distinct mechanisms: the direct pathway in which T cells recognize allogeneic major histocompatibility complex (MHC) molecules on donor cells, the indirect pathway through which T cells interact with donor peptides bound with self-MHC molecules on recipient antigen-presenting cells, and the recently described semidirect pathway whereby T cells recognize donor MHC proteins on recipient antigen-presenting cells. In this article, we present a description of each of these allorecognition pathways and discuss their role in acute and chronic rejection of allogeneic transplants.
Collapse
Affiliation(s)
- Natacha Carnel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hyshem H. Lancia
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Claire Guinier
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gilles Benichou
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Sung SY, Lin YW, Wu CC, Lin CY, Hsu PS, Periasamy S, Nagarajan B, Hsieh DJ, Tsai YT, Tsai CS, Lin FY. Supercritical carbon dioxide-decellularized arteries exhibit physiologic-like vessel regeneration following xenotransplantation in rats. Biomater Sci 2023; 11:2566-2580. [PMID: 36789647 DOI: 10.1039/d2bm01233b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Currently, many techniques are used for decellularization of grafts, including physical, enzymatic, and chemical treatments. Indeed, decellularized xenogenic grafts provide superior outcomes than alternative synthetic conduits. However, vascular grafts produced by these methods are not perfect; their defects include defective vessel wall structures, detergent residues, and the development of aneurysms after grafting. Therefore, it is essential to develop a more appropriate process to produce decellularized vascular grafts. Supercritical carbon dioxide (ScCO2) has been used in decellularization technologies in recent years. It is beneficial for the long-term preservation of tissues and regeneration of new vessels. We have previously reported that ScCO2-produced acellular porcine corneas show excellent biocompatibility following lamellar corneal transplantation in rabbits. In this study, we wanted to use this method to fabricate vascular grafts (ScCO2-decellularized rabbit femoral artery (DFA)) and analyze their efficacy, parameters regarding rejection by the recipient's (ACI/NKyo rats) immune system and biocompatibility, structural regeneration, and functionality in vivo. The results indicated that the ScCO2-DFA showed higher biocompatibility, enhanced chemotactic migration of endothelial progenitor cells, lower risk of vasculopathy, lower inflammatory and splenic immune responses, and better physiological-like tension responses after xenotransplantation (XTP) in ACI/NKyo rats compared with the results obtained after XTP using detergent decellularized vascular grafts (SDS-DFA). In conclusion, ScCO2 is an excellent decellularization technique in the fabrication of biocompatible vascular grafts and has tremendous application in vascular regenerative medicine.
Collapse
Affiliation(s)
- Shih-Ying Sung
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chin-Chen Wu
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Shun Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Virginia, USA
| | - Dar-Jen Hsieh
- R&D Center, ACRO Biomedical Co. Ltd, Kaoshiung, Taiwan
| | - Yi-Ting Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| | - Chien-Sung Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
| | - Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan. .,Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Internal Medicine, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Far-Infrared Therapy Decreases Orthotopic Allograft Transplantation Vasculopathy. Biomedicines 2022; 10:biomedicines10051089. [PMID: 35625826 PMCID: PMC9139124 DOI: 10.3390/biomedicines10051089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Orthotopic allograft transplantation (OAT) is a major strategy for solid heart and kidney failure. However, the recipient’s immunity-induced chronic rejection induces OAT vasculopathy that results in donor organ failure. With the exception of immunosuppressive agents, there are currently no specific means to inhibit the occurrence of OAT vasculopathy. On the other hand, far-infrared (FIR) therapy uses low-power electromagnetic waves given by FIR, with a wavelength of 3–25 μm, to improve human physiological functions. Previous studies have shown that FIR therapy can effectively inhibit inflammation. It has also been widely used in adjuvant therapy for various clinical diseases, especially cardiovascular diseases, in recent years. Thus, we used this study to explore the feasibility of FIR in preventing OAT vasculopathy. In this study, the model of transplantation of an aorta graft from PVG/Seac rat to ACI/NKyo rat, and in vitro model of human endothelial progenitor cells (EPCs) was used. In this report, we presented that FIR therapy decreased the serious of vasculopathy in OAT-recipient ACI/NKyo rats via inhibiting proliferation of smooth muscle cells, accumulation of collagen, and infiltration of fibroblast in the vessel wall; humoral and cell-mediated immune responses were decreased in the spleen. The production of inflammatory proteins/cytokines also decreased in the plasma. Additionally, FIR therapy presented higher mobilization and circulating EPC levels associated with vessel repair in OAT-recipient ACI/NKyo rats. In vitro studies demonstrated that the underlying mechanisms of FIR therapy inhibiting OAT vasculopathy may be associated with the inhibition of the Smad2-Slug axis endothelial mesenchymal transition (EndoMT). Thus, FIR therapy may be the strategy to prevent chronic rejection-induced vasculopathy.
Collapse
|
6
|
Transferring Plasmon Effect on a Biological System: Expression of Biological Polymers in Chronic Rejection and Inflammatory Rat Model. Polymers (Basel) 2021; 13:polym13111827. [PMID: 34072966 PMCID: PMC8199201 DOI: 10.3390/polym13111827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023] Open
Abstract
The plasmon-activated water (PAW) that reduces hydrogen bonds is made of deionized reverse osmosis water (ROW). However, compared with ROW, PAW has a significantly higher diffusion coefficient and electron transfer rate constant in electrochemical reactions. PAW has a boiling point of 97 °C and specific heat of0.94; the energy of PAW is also 1121 J/mol higher than ordinary water. The greater the force of hydrogen bonds between H2O, the larger the volume of the H2O cluster, and the easier it is to lose the original characteristics. The hydrogen bonding force of PAW is weak, so the volume of its cluster is small, and it exists in a state very close to a single H2O. PAW has a high permeability and diffusion rate, which can improve the needs of biological applications and meet the dependence of biological organisms on H2O when performing physiological functions. PAW can successfully remove free radicals, and efficiently reduce lipopolysaccharide (LPS)-induced monocytes to release nitric oxide. PAW can induce expression of the antioxidant gene Nrf2 in human gingival fibroblasts, lower amyloid burden in mice with Alzheimer’s disease, and decrease metastasis in mice grafted with Lewis lung carcinoma cells. Because the transferring plasmon effect may improve the abnormality of physiological activity in a biological system, we aimed to evaluate the influence of PAW on orthotopic allograft transplantation (OAT)-induced vasculopathy in this study. Here, we demonstrated that daily intake of PAW lowered the progression of vasculopathy in OAT-recipient ACI/NKyo rats by inhibiting collagen accumulation, proliferation of smooth muscle cells and fibroblasts, and T lymphocyte infiltration in the vessel wall. The results showed reduced T and B lymphocytes, plasma cells, and macrophage activation in the spleen of the OAT-recipient ACI/NKyo rats that were administered PAW. In contrast to the control group, the OAT-recipient ACI/NKyo rats that were administered PAW exhibited higher mobilization and levels of circulating endothelial progenitor cells associated with vessel repair. We use the transferring plasmon effect to adjust and maintain the biochemical properties of water, and to meet the biochemical demand of organisms. Therefore, this study highlights the therapeutic roles of PAW and provides more biomedical applicability for the transferring plasmon effect.
Collapse
|
7
|
Ahmadi ZH, Shafaghi S, Mandegar MH, Salehi M, Sharif Kashani B, Naghashzadeh F, Jahangirifard A, Bakhshandeh A, Afshar A, Kazempour M, Sheikhan F. The Cost of Heart Transplant in Iran: A Multicenter Analysis. Int J Organ Transplant Med 2021; 12:23-29. [PMID: 35509719 PMCID: PMC9013497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Heart transplantation is an established treatment for end-stage heart failure patients, but its cost-effectiveness is under question. OBJECTIVE This study aimed to assess the cost of heart transplantation in Iran as a developing country in Asia to contribute to future planning in the region. METHODS This study was conducted in two phases. First, in a retrospective multicenter study, hospital data of heart transplant and hospitalization of three active heart transplant centers in Tehran, Iran, were reviewed from April 2013 to May 2015. Then pre-transplantation, transplantation, and one-year posttransplant costs were calculated according to the ABC (activity-based costing) method in 2016. RESULTS Data were obtained for 120 patients, among which 95 (79.17%) were males with a mean (SD) age of 35.31±13.41 years. Mean (SD) hospital and ICU length of stay were 17.85±14.91 and 9.74±8.94 days, respectively. A significant correlation existed between the mean of hospital and ICU length of stay (P<0.001, r: 0.754). The mean heart transplant and hospitalization cost was 3445.47±1243.29 USD from 2013 to 2015. Using the activity-based costing method, the cost of pre-transplantation, transplantation, and one-year -post-transplantation were extracted 6.5%, 73.5%, and 20%, respectively, with a total cost of 26232 USD. CONCLUSION Compared to other countries, the cost of heart transplantation in Iran is very low. Numerous reasons lead to this difference. Firstly, a heart transplantation surgery is performed in university-based hospitals and is supported by the government. On the other hand, a significant difference exists between personnel costs in Iran compared to other countries.
Collapse
Affiliation(s)
- Z. H. Ahmadi
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sh. Shafaghi
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. H. Mandegar
- Department of Cardiac Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - M. Salehi
- Department of Cardiovascular Surgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - B. Sharif Kashani
- Tobacco Prevention and Control Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F. Naghashzadeh
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A. Jahangirifard
- Tracheal Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A. Bakhshandeh
- Department of Cardiovascular Surgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Afshar
- Lung Transplantation Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. Kazempour
- Mycobacteriology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F. Sheikhan
- Research Center of Chronic Respiratory Diseases, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Dipeptidyl Peptidase-4 Inhibitor Decreases Allograft Vasculopathy Via Regulating the Functions of Endothelial Progenitor Cells in Normoglycemic Rats. Cardiovasc Drugs Ther 2020; 35:1111-1127. [PMID: 32623597 DOI: 10.1007/s10557-020-07013-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Chronic rejection induces the occurrence of orthotopic allograft transplantation (OAT) vasculopathy, which results in failure of the donor organ. Numerous studies have demonstrated that in addition to regulating blood sugar homeostasis, dipeptidyl peptidase-4 (DPP-4) inhibitors can also provide efficacious therapeutic and protective effects against cardiovascular diseases. However, their effects on OAT-induced vasculopathy remain unknown. Thus, the aim of this study was to investigate the direct effects of sitagliptin on OAT vasculopathy in vivo and in vitro. METHODS The PVG/Seac rat thoracic aorta graft to ACI/NKyo rat abdominal aorta model was used to explore the effects of sitagliptin on vasculopathy. Human endothelial progenitor cells (EPCs) were used to investigate the possible underlying mechanisms. RESULTS We demonstrated that sitagliptin decreases vasculopathy in OAT ACI/NKyo rats. Treatment with sitagliptin decreased BNP and HMGB1 levels, increased GLP-1 activity and stromal cell-derived factor 1α (SDF-1α) expression, elevated the number of circulating EPCs, and improved the differentiation possibility of mononuclear cells to EPCs ex vivo. However, in vitro studies showed that recombinant B-type natriuretic peptide (BNP) and high mobility group box 1 (HMGB1) impaired EPC function, whereas these phenomena were reversed by glucagon-like peptide 1 (GLP-1) receptor agonist treatment. CONCLUSIONS We suggest that the mechanisms underlying sitagliptin-mediated inhibition of OAT vasculopathy probably occur through a direct increase in GLP-1 activity. In addition to the GLP-1-dependent pathway, sitagliptin may regulate SDF-1α levels and EPC function to reduce OAT-induced vascular injury. This study may provide new prevention and treatment strategies for DPP-4 inhibitors in chronic rejection-induced vasculopathy.
Collapse
|
9
|
Fukunaga N, Kawajiri H, Badiwala MV, Butany J, Li RK, Billia F, Rao V. Protective role of Nrf2 against ischemia reperfusion injury and cardiac allograft vasculopathy. Am J Transplant 2020; 20:1262-1271. [PMID: 31769924 DOI: 10.1111/ajt.15724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) and cardiac allograft vasculopathy (CAV) remain unsolved complications post-heart transplant (Tx). The antioxidant transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) has been suggested to inhibit reactive oxygen species-mediated NF-κB activation. We hypothesized that Nrf2 inhibits NF-κB activation post-Tx and suppresses IRI and the subsequent development of CAV. IRI and CAV were investigated in murine heterotopic Tx models, respectively. Nrf2 wild-type (WT) and KO mice were used as donors. Sulforaphane was used as an Nrf2 agonist. In saline-treated animals following 24 hours of reperfusion in isogenic grafts, Nrf2-KO showed significantly less SOD1/2 activity compared with WT. Nrf2-KO displayed significantly high total and phosphorylated p65 expressions and percentage of cells with nuclear p65. mRNA levels of NF-κB-mediated proinflammatory genes were also high. Graft dysfunction, apoptosis, and caspase-3 activity were significantly higher in Nrf2-KO. In the allograft studies, graft beating score was significantly weaker in Nrf2-KO compared with WT. Nrf2-KO also demonstrated significantly more coronary luminal narrowing. In WT animals, sulforaphane successfully augmented all the protective effects of Nrf2 with increase of SOD2 activity. Nrf2 inhibits NF-κB activation and protects against IRI via its antioxidant properties and suppresses the subsequent development of CAV.
Collapse
Affiliation(s)
- Naoto Fukunaga
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hiroyuki Kawajiri
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mitesh V Badiwala
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jagdish Butany
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Filio Billia
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Dandel M, Hetzer R. Impact of rejection-related immune responses on the initiation and progression of cardiac allograft vasculopathy. Am Heart J 2020; 222:46-63. [PMID: 32018202 DOI: 10.1016/j.ahj.2019.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
|
11
|
Kitai T, Okamoto T, Miyakoshi C, Niikawa H, Alvarez PA, Krittanawong C, Xanthopoulos A, McCurry KR. Impact of combined heart and lung transplantation on bronchiolitis obliterans syndrome, cardiac allograft vasculopathy, and long-term survival. J Heart Lung Transplant 2019; 38:1170-1177. [DOI: 10.1016/j.healun.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/04/2019] [Accepted: 06/16/2019] [Indexed: 01/06/2023] Open
|
12
|
Sharma M, Liu W, Perincheri S, Gunasekaran M, Mohanakumar T. Exosomes expressing the self-antigens myosin and vimentin play an important role in syngeneic cardiac transplant rejection induced by antibodies to cardiac myosin. Am J Transplant 2018; 18:1626-1635. [PMID: 29316217 PMCID: PMC6035065 DOI: 10.1111/ajt.14650] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 01/25/2023]
Abstract
Long-term success of heart transplantation is hindered by humoral and cell-mediated immune responses. We studied preexisting antibodies to cardiac self-antigens, myosin and vimentin, and exosomes induced by antibodies to self-antigens in eliciting immune responses to cardiac grafts. After syngeneic heterotopic murine heart transplantation, rabbit anti-myosin or normal rabbit immunoglobulin was administered at day 0 or 7. Sera were collected after heartbeat cessation, cellular infiltration was analyzed, and exosomes were isolated from sera. Histopathologic examination of the controls' transplanted hearts demonstrated normal architecture, and their sera demonstrated neither antibodies to self-antigens nor exosomes expressing self-antigens. Administration of antibodies to cardiac myosin immediately posttransplantation (day 0) but not on day 7 triggered graft failure on day 7, and histopathologic examination revealed marked cellular infiltration with neutrophils and lymphocytes. Histopathologic examination of rejected hearts also demonstrated myocyte damage as sera had increased antibodies to myosin and vimentin and development of exosomes expressing self-antigens. Administration of exosomes isolated from failed grafts containing self-antigens induced graft dysfunction; exosomes isolated from stable mice did not induce graft failure. Antibodies to self-antigens can induce exosomes containing self-antigens, initiating an immune response and causing graft failure after cardiac transplantation.
Collapse
Affiliation(s)
- Monal Sharma
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center Phoenix, Arizona, USA
| | - Wei Liu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center Phoenix, Arizona, USA
| | | | - Muthukumar Gunasekaran
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center Phoenix, Arizona, USA
| | - T. Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center Phoenix, Arizona, USA
| |
Collapse
|
13
|
Lv Q, Li C, Mo Y, He L. The role of HMGB1 in heart transplantation. Immunol Lett 2018; 194:1-3. [DOI: 10.1016/j.imlet.2017.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 01/15/2023]
|
14
|
Abstract
PURPOSE OF REVIEW Hyperlipidemia is a comorbidity affecting a significant number of transplant patients despite treatment with cholesterol lowering drugs. Recently, it has been shown that hyperlipidemia can significantly alter T-cell responses to cardiac allografts in mice, and graft rejection is accelerated in dyslipidemic mice. Here, we review recent advances in our understanding of hyperlipidemia in graft rejection. RECENT FINDINGS Hyperlipidemic mice have significant increases in serum levels of proinflammatory cytokines, and neutralization of interleukin 17 (IL-17) slows graft rejection, suggesting that IL-17 production by Th17 cells was necessary but not sufficient for rejection. Hyperlipidemia also causes an increase in alloreactive T-cell responses prior to antigen exposure. Analysis of peripheral tolerance mechanisms indicated that this was at least in part due to alterations in FoxP3 T cells that led to reduced Treg function and the expansion of FoxP3 CD4 T cells expressing low levels of CD25. Functionally, alterations in Treg function prevented the ability to induce operational tolerance to fully allogeneic heart transplants through costimulatory-molecule blockade, a strategy that requires Tregs. SUMMARY These findings highlight the importance of considering the contribution of inflammatory comorbidities to cardiac allograft rejection, and point to the potential importance of managing hyperlipidemia in the transplant population.
Collapse
|
15
|
Statin therapy in cardiac allograft vasculopathy progression in heart transplant patients: Does potency matter? Transplant Rev (Orlando) 2016; 30:178-86. [DOI: 10.1016/j.trre.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/16/2016] [Indexed: 11/18/2022]
|
16
|
Abstract
The prevalence of heart failure continues to rise due to the aging population and longer survival of people with conditions that lead to heart failure, eg, hypertension, diabetes, and coronary artery disease. Although medical therapy has had an important impact on survival of patients and improving quality of life, heart transplantation remains the definitive therapy for patients that eventually deteriorate. Since the first successful heart transplantation in 1967, significant improvements have been made regarding donor and recipient selection, surgical techniques, and postoperative care. However, the number of potential organ donors has not changed and the growing number of patients in need for transplantation has resulted an increase in waiting list time, and the need for mechanical support. To overcome this issue, the United Network for Organ Sharing implemented an allocation system to prioritize the sickest patients on the list to receive organs. Despite the careful selection of patients, pretransplant immunological screening, and multidrug immunosuppressive regimens, acute and chronic rejections occur and potentially limit graft and patient survival. Treatment for rejection largely depends on the type of rejection, the presence of hemodynamic compromise, and time after transplantation. The limiting factor for long-term graft survival is allograft vasculopathy, an immune-mediated process causing diffuse narrowing of the coronary arteries. Percutaneous coronary intervention and coronary artery bypass surgery are often not an option for this vasculopathy due to the lack of focal lesions, and retransplantation is the only option in appropriate patients.
Collapse
|
17
|
|
18
|
Abstract
AbstractObjective:To present the clinical outcomes obtained by the first facial transplant teams worldwide, reviewing current practice and addressing controversies.Methods:A bibliographic search of Medline and Embase databases was performed, and a comparative analysis of all articles published from 1980 to the present was conducted. Two independent investigators screened the manuscripts in accordance with pre-defined criteria.Results:A total of 12 partial and 5 full facial transplants were recorded in the literature. Procedures included partial and near-total facial myocutaneous flaps, and complex osteomyocutaneous grafts. Fifteen patients had fully vascularised grafts, and two patients died of transplant-related and infectious complications.Conclusion:Facial transplantation can restore quality of life and enable the social re-integration of recipients. Results published by the first facial transplant teams are promising. However, long-term reports of aesthetic and functional outcomes are needed to more precisely define outcomes. In addition, significant technical, medical and ethical issues remain to be solved.
Collapse
|
19
|
Cardiac allograft vasculopathy: a donor or recipient induced pathology? J Cardiovasc Transl Res 2015; 8:106-16. [PMID: 25652948 PMCID: PMC4382530 DOI: 10.1007/s12265-015-9612-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/14/2015] [Indexed: 01/16/2023]
Abstract
Cardiac allograft vasculopathy (CAV) is one of the main causes of late-stage heart failure after heart transplantation. CAV is characterized by concentric luminal narrowing of the coronary arteries, but the exact pathogenesis of CAV is still not unraveled. Many researchers show evidence of an allogeneic immune response of the recipient, whereas others show contrasting results in which donor-derived cells induce an immune response against the graft. In addition, fibrosis of the neo-intima can be induced by recipient-derived circulating cells or donor-derived cells. In this review, both donor and recipient sides of the story are described to obtain better insight in the pathogenesis of CAV. Dual outcomes were found regarding the contribution of donor and recipient cells in the initiation of the immune response and the development of fibrosis during CAV. Future research could focus more on the potential synergistic interaction of donor and recipient cells leading to CAV.
Collapse
|
20
|
Kant CD, Akiyama Y, Tanaka K, Shea S, Yamada Y, Connolly SE, Marino J, Tocco G, Benichou G. Both rejection and tolerance of allografts can occur in the absence of secondary lymphoid tissues. THE JOURNAL OF IMMUNOLOGY 2014; 194:1364-71. [PMID: 25535285 DOI: 10.4049/jimmunol.1401157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we showed that aly/aly mice, which are devoid of lymph nodes and Peyer's patches, acutely rejected fully allogeneic skin and heart grafts. They mounted potent inflammatory direct alloresponses but failed to develop indirect alloreactivity after transplantation. Remarkably, skin allografts also were rejected acutely by splenectomized aly/aly (aly/aly-spl(-)) mice devoid of all secondary lymphoid organs. In these recipients, the rejection was mediated by alloreactive CD8(+) T cells presumably primed in the bone marrow. In contrast, cardiac transplants were not rejected by aly/aly-spl(-) mice. Actually, aly/aly-spl(-) mice that spontaneously accepted a heart allotransplant and displayed donor-specific tolerance also accepted skin grafts from the same, but not a third-party, donor via a mechanism involving CD4(+) regulatory T cells producing IL-10 cytokine. Therefore, direct priming of alloreactive T cells, as well as rejection and regulatory tolerance of allogeneic transplants, can occur in recipient mice lacking secondary lymphoid organs.
Collapse
Affiliation(s)
- Cavit D Kant
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Yoshinobu Akiyama
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Katsunori Tanaka
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Susan Shea
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Yohei Yamada
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Sarah E Connolly
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Jose Marino
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Georges Tocco
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Gilles Benichou
- Transplantation Research Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
21
|
Hirohashi T, Chase CM, DellaPelle P, Sebastian D, Farkesh E, Colvin RB, Russell PS, Alessandrini A, Madsen JC. Depletion of T regulatory cells promotes natural killer cell-mediated cardiac allograft vasculopathy. Transplantation 2014; 98:828-34. [PMID: 25321164 PMCID: PMC4203423 DOI: 10.1097/tp.0000000000000329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND A role for natural killer (NK) cells in cardiac allograft vasculopathy (CAV) was suggested by our earlier observation that CAV arises even in the absence of detectable antidonor T-cell or B-cell reactivity in parental to F1 mouse heart grafts. However, prevention of CAV in this setting required the depletion of both NK and CD4 T cells. METHODS To clarify the interrelationship between NK and CD4 cells, we analyzed early events and selective depletion of T regulatory cells (Tregs). Hearts from C57BL/6 (B6) donors were transplanted heterotopically into BALB/c x C57BL/6 (CB6F1) recipients and NK cells, CD4 T cells, and Tregs were depleted with anti-NK1.1 (PK136), anti-CD4 (GK1.5), or anti-CD25 (PC61), respectively. RESULTS In contrast to prior studies in which the prevention of CAV at 8 weeks required the codepletion of NK and CD4 T cells, NK cells depletion alone eliminated CAV at 3 weeks. Furthermore, depletion of CD25 cells accelerated the onset and maturation of CAV at both 2 and 3 weeks (P<0.02 and P<0.001, respectively). However, anti-NK1.1 treatment prevented lesions in CD25-depleted recipients. Finally, CD4 T cell depletion alone did not prevent or accelerate development of CAV but inhibited the effect of CD25 T cell depletion. CONCLUSION These data suggest that NK cells can play an important role in the early pathogenesis of CAV but that their ability to mediate early CAV can be modulated by Tregs.
Collapse
Affiliation(s)
- Tsutomu Hirohashi
- Transplantation Center and Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Catharine M. Chase
- Transplantation Center and Department of Surgery, Massachusetts General Hospital, Boston, MA
| | | | - Divya Sebastian
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Evan Farkesh
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Robert B. Colvin
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Paul S. Russell
- Transplantation Center and Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Alessandro Alessandrini
- Transplantation Center and Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Joren C. Madsen
- Transplantation Center and Department of Surgery, Massachusetts General Hospital, Boston, MA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
22
|
Zou H, Yang Y, Gao M, Zhang B, Ming B, Sun Y, Chen H, Tang X, Chen Z, Xiong P, Xu Y, Fang M, Tan Z, Gong F, Zheng F. HMGB1 is involved in chronic rejection of cardiac allograft via promoting inflammatory-like mDCs. Am J Transplant 2014; 14:1765-77. [PMID: 24984831 DOI: 10.1111/ajt.12781] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/25/2023]
Abstract
Chronic rejection that leads to diffuse narrowing and occlusion of graft vessels is the most important cause of morbidity and mortality following cardiac transplantation. The role and underlying mechanism of high-mobility group box 1 (HMGB1), as an established inflammatory mediator in acute rejection, remains poorly understood in chronic rejection. Here, we assessed the effects and mechanisms of HMGB1 on the chronic rejection using single MHC Class II-mismatched mouse cardiac transplantation model. It was found that HMGB1 was increased accompanying with the development of chronic rejection, while blockade of HMGB1 with specific neutralizing mAb substantially ameliorated chronic rejection-mediated vasculopathy and fibrosis of allograft, as well as markedly decreased T cell infiltration and production of IL-17A and interferon-gamma in allograft and recipient's spleen. Further, anti-HMGB1 antibody treatment significantly declined the number and frequency of mature dendritic cells (DCs) in allograft and recipient's spleen, especially CD11b(+) Ly6C(high) matured DCs that share the phenotypes with inflammatory-DCs. These findings indicate that HMGB1 contributes to chronic rejection, and HMGB1 blockade may be a novel mean to disrupt the proinflammatory loop after heart transplantation.
Collapse
Affiliation(s)
- H Zou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pober JS, Jane-wit D, Qin L, Tellides G. Interacting mechanisms in the pathogenesis of cardiac allograft vasculopathy. Arterioscler Thromb Vasc Biol 2014; 34:1609-14. [PMID: 24903097 DOI: 10.1161/atvbaha.114.302818] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac allograft vasculopathy is the major cause of late graft loss in heart transplant recipients. Histological studies of characteristic end-stage lesions reveal arterial changes consisting of a diffuse, confluent, and concentric intimal expansion containing graft-derived cells expressing smooth muscle markers, extracellular matrix, penetrating microvessels, and a host mononuclear cell infiltrate concentrated subjacent to an intact graft-derived luminal endothelial cell lining with little evidence of acute injury. This intimal expansion combined with inadequate compensatory outward remodeling produces severe generalized stenosis extending throughout the epicardial and intramyocardial arterial tree that causes ischemic graft failure. Cardiac allograft vasculopathy lesions affect ≥50% of transplant recipients and are both progressive and refractory to treatment, resulting in ≈5% graft loss per year through the first 10 years after transplant. Lesions typically stop at the suture line, implicating alloimmunity as the primary driver, but pathogenesis may be multifactorial. Here, we will discuss 6 potential contributors to lesion formation (1) conventional risk factors of atherosclerosis; (2) pre- or peritransplant injuries; (3) infection; (4) innate immunity; (5) T-cell-mediated immunity; and (6) B-cell-mediated immunity through production of donor-specific antibody. Finally, we will consider how these various mechanisms may interact with each other.
Collapse
Affiliation(s)
- Jordan S Pober
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT.
| | - Dan Jane-wit
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT
| | - Lingfeng Qin
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT
| | - George Tellides
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
24
|
Shi X, Zhang M, Liu F, Wang Z, Zhang L, Cheng H, Zhang S, Fei T, Guo M, Bian J, Wang Q, Ding G. Tim-1-Fc suppresses chronic cardiac allograft rejection and vasculopathy by reducing IL-17 production. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:509-520. [PMID: 24551271 PMCID: PMC3925895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
Previously, we demonstrated that Tim-1-Fc prevents acute cardiac graft rejection by inhibiting Th1 response. In the present report, we tackled the impact of Tim-1-Fc on Th17 cells in a model of cardiac chronic rejection. Administration of Tim-1-Fc did not result in a detectable impact on innate immunity and regulatory T cells, while it provided protection for Bm12-derive cardiac grafts against chronic rejection in B6 recipients, as manifested by the reduction of inflammatory infiltration along with less severity of vasculopathy. Studies in T-bet(-/-) recipients by implanting Bm12-derived cardiac grafts further revealed that Tim-1-Fc significantly protected cardiac grafts from chronic rejection along with attenuated production of IL-17 producing T cells. Depletion of CD4 and CD8 T cells or blockade of IL-17 in T-bet(-/-) recipients demonstrated that Tim-1-Fc selectively suppresses Th17 differentiation along with attenuated IL-17 secretion. Together, our data suggest that Tim-1-Fc protects cardiac grafts from chronic rejection by suppressing CD4 Th17 development and functionality. Therefore, Tim-1-Fc might be a potential immunosuppressive agent in the setting of cardiac transplantation.
Collapse
Affiliation(s)
- Xiaoming Shi
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Mingjian Zhang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical UniversityShanghai, China
| | - Fang Liu
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Zhengxing Wang
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Luding Zhang
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Haifei Cheng
- Department of Pharmacology, 411 Naval Medical HospitalShanghai, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Teng Fei
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Meng Guo
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Jun Bian
- Department of Pharmacology, 411 Naval Medical HospitalShanghai, China
| | - Quanxing Wang
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical UniversityShanghai, China
| | - Guoshan Ding
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical UniversityShanghai, China
| |
Collapse
|
25
|
Raissadati A, Jokinen JJ, Syrjälä SO, Keränen MAI, Krebs R, Tuuminen R, Arnaudova R, Rouvinen E, Anisimov A, Soronen J, Pajusola K, Alitalo K, Nykänen AI, Lemström K. Ex vivo intracoronary gene transfer of adeno-associated virus 2 leads to superior transduction over serotypes 8 and 9 in rat heart transplants. Transpl Int 2013; 26:1126-37. [PMID: 24102821 DOI: 10.1111/tri.12182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/02/2012] [Accepted: 08/19/2013] [Indexed: 11/30/2022]
Abstract
Heart transplant gene therapy requires vectors with long-lasting gene expression, high cardiotropism, and minimal pathological effects. Here, we examined transduction properties of ex vivo intracoronary delivery of adeno-associated virus (AAV) serotype 2, 8, and 9 in rat syngenic and allogenic heart transplants. Adult Dark Agouti (DA) rat hearts were intracoronarily perfused ex vivo with AAV2, AAV8, or AAV9 encoding firefly luciferase and transplanted heterotopically into the abdomen of syngenic DA or allogenic Wistar-Furth (WF) recipients. Serial in vivo bioluminescent imaging of syngraft and allograft recipients was performed for 6 months and 4 weeks, respectively. Grafts were removed for PCR-, RT-PCR, and luminometer analysis. In vivo bioluminescent imaging of recipients showed that AAV9 induced a prominent and stable luciferase activity in the abdomen, when compared with AAV2 and AAV8. However, ex vivo analyses revealed that intracoronary perfusion with AAV2 resulted in the highest heart transplant transduction levels in syngrafts and allografts. Ex vivo intracoronary delivery of AAV2 resulted in efficient transgene expression in heart transplants, whereas intracoronary AAV9 escapes into adjacent tissues. In terms of cardiac transduction, these results suggest AAV2 as a potential vector for gene therapy in preclinical heart transplants studies, and highlight the importance of delivery route in gene transfer studies.
Collapse
Affiliation(s)
- Alireza Raissadati
- Transplantation Laboratory, Haartman Institute, University of Helsinki and Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Costello JP, Mohanakumar T, Nath DS. Mechanisms of chronic cardiac allograft rejection. Tex Heart Inst J 2013; 40:395-399. [PMID: 24082367 PMCID: PMC3783121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chronic rejection in the form of cardiac allograft vasculopathy is one of the major factors that affects long-term graft and patient survival after heart transplantation. Whereas multiple factors contribute to the development of cardiac allograft vasculopathy, immunologic mechanisms play the predominant role in the chronic rejection process, because both alloimmune and autoimmune responses are causal factors. In addition, many nonimmune donor and recipient factors also affect the development of cardiac allograft vasculopathy, including hyperlipidemia, cytomegalovirus infection, baseline coronary artery disease, and the mechanism of brain death in the donor. Modern immunosuppression maintenance therapies have the potential to limit the development of cardiac allograft vasculopathy in the long term. Further research initiatives are needed to identify patient-specific immunosuppressive drug regimens and to elucidate factors that contribute to the chronic rejection of cardiac transplant allografts.
Collapse
Affiliation(s)
- John P Costello
- Division of Cardiovascular Surgery (Drs. Costello and Nath), Children's National Medical Center, Washington, DC 20010; and Departments of Surgery and Pathology & Immunology (Dr. Mohanakumar), Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
27
|
Picascia A, Grimaldi V, Zullo A, Infante T, Maiello C, Crudele V, Sessa M, Mancini FP, Napoli C. Current Concepts in Histocompatibility During Heart Transplant. EXP CLIN TRANSPLANT 2012; 10:209-18. [DOI: 10.6002/ect.2011.0185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Crudele V, Picascia A, Infante T, Grimaldi V, Maiello C, Napoli C. Repeated immune and non immune insults to the graft after heart transplantation. Immunol Lett 2011; 141:18-27. [DOI: 10.1016/j.imlet.2011.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/04/2011] [Accepted: 07/15/2011] [Indexed: 01/22/2023]
|
29
|
Long-Term Maintenance Therapy for Post–Cardiac Transplant Monoclonal Lymphoproliferative Disorder: Caveat Mammalian Target of Rapamycin. Transplant Proc 2011; 43:1893-9. [DOI: 10.1016/j.transproceed.2011.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/25/2011] [Accepted: 03/09/2011] [Indexed: 11/22/2022]
|
30
|
Huang YL, Wang YZ, Chen JB, Wang F, Kang XP, Xia JJ, Lan TS, Xie BY, Ekberg H, Wang XM, Qi ZQ. Prevention of Acute and Chronic Allograft Rejection by Combinations of Tolerogenic Dendritic Cells. Scand J Immunol 2011; 73:91-101. [DOI: 10.1111/j.1365-3083.2010.02485.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Booth AJ, Bishop DK. TGF-beta, IL-6, IL-17 and CTGF direct multiple pathologies of chronic cardiac allograft rejection. Immunotherapy 2010; 2:511-20. [PMID: 20636005 DOI: 10.2217/imt.10.33] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cardiac transplantation is an effective treatment for heart failure refractive to therapy. Although immunosuppressive therapeutics have increased first year survival rates, chronic rejection remains a significant barrier to long-term graft survival. Chronic rejection manifests as patchy interstitial fibrosis, vascular occlusion and progressive loss of graft function. Recent evidence from experimental and patient studies suggests that the development of cardiomyocyte hypertrophy is another hallmark of chronic cardiac allograft rejection. This pathologic hypertrophy is tightly linked to the immune cytokine IL-6, which promotes facets of chronic rejection in concert with TGF-beta and IL-17. These factors potentiate downstream mediators, such as CTGF, which promote the fibrosis associated with the disease. In this article, we summarize contemporary findings that have revealed several elements involved in the induction and progression of chronic rejection of cardiac allografts. Further efforts to elucidate the interplay between these factors may direct the development of targeted therapies for this disease.
Collapse
Affiliation(s)
- Adam J Booth
- Division of Pulmonary & Critical Care, Department of Internal Medicine, University of Michigan Medical Center, 6240 MSRBIII/0624, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
32
|
Keränen MA, Nykänen AI, Krebs R, Pajusola K, Tuuminen R, Alitalo K, Lemström KB. Cardiomyocyte-targeted HIF-1α gene therapy inhibits cardiomyocyte apoptosis and cardiac allograft vasculopathy in the rat. J Heart Lung Transplant 2010; 29:1058-66. [DOI: 10.1016/j.healun.2010.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 05/13/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022] Open
|
33
|
Amiodarone-induced QT prolongation in a newly transplanted heart associated with recurrent ventricular fibrillation. Cardiovasc J Afr 2010. [PMCID: PMC5600171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anti-arrhythmic drugs such as amiodarone have the potential to prolong QT intervals, which can result in torsades de point arrhythmia. It is unknown whether amiodarone, given to a recipient prior to cardiac transplantation, can cause arrhythmia in a newly transplanted donor heart. We report on a case of a 71-year-old male patient who had received intravenous and oral amiodarone prior to transplantation, which wasassociated with QT prolongation in the transplanted heart after re-exposure to the drug during subsequent episodes of ventricular fibrillation. An ICD was implanted, which has not been described that soon after cardiac transplantation. Amiodarone, given to a recipient, might cause QT prolongation in a donor heart after transplantation, possibly due to its long half-life and increased bioavailability caused by interaction with immunosuppressive drugs.
Collapse
|
34
|
Booth AJ, Csencsits-Smith K, Wood SC, Lu G, Lipson KE, Bishop DK. Connective tissue growth factor promotes fibrosis downstream of TGFbeta and IL-6 in chronic cardiac allograft rejection. Am J Transplant 2010; 10:220-30. [PMID: 19788504 PMCID: PMC2860022 DOI: 10.1111/j.1600-6143.2009.02826.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiac transplantation is an effective treatment for multiple types of heart failure refractive to therapy. Although immunosuppressive therapeutics have increased survival rates within the first year posttransplant, chronic rejection (CR) remains a significant barrier to long-term graft survival. Indicators of CR include patchy interstitial fibrosis, vascular occlusion and progressive loss of graft function. Multiple factors have been implicated in the onset and progression of CR, including TGFbeta, IL-6 and connective tissue growth factor (CTGF). While associated with CR, the role of CTGF in CR and the factors necessary for CTGF induction in vivo are not understood. To this end, we utilized forced expression and neutralizing antibody approaches. Transduction of allografts with CTGF significantly increased fibrotic tissue development, though not to levels observed with TGFbeta transduction. Further, intragraft CTGF expression was inhibited by IL-6 neutralization whereas TGFbeta expression remained unchanged, indicating that IL-6 effects may potentiate TGFbeta-mediated induction of CTGF. Finally, neutralizing CTGF significantly reduced graft fibrosis without reducing TGFbeta and IL-6 expression levels. These findings indicate that CTGF functions as a downstream mediator of fibrosis in CR, and that CTGF neutralization may ameliorate fibrosis and hypertrophy associated with CR.
Collapse
Affiliation(s)
- A. J. Booth
- Graduate Program in Immunology, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - K. Csencsits-Smith
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - S. C. Wood
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | - G. Lu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109
| | | | - D. K. Bishop
- Graduate Program in Immunology, University of Michigan Medical Center, Ann Arbor, MI, 48109, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109,Corresponding Author: D. Keith Bishop, Ph. D. Transplant Immunology Research, Section of General Surgery, A560 MSRB II, Box 0654, University of Michigan Medical Center, 1150 W. Medical Center Dr. Ann Arbor, MI 48109, 734-763-0326 (Phone); 734-763-6199 (Fax),
| |
Collapse
|
35
|
Molina EJ, Short S, Monteiro G, Gaughan JP, Macha M. Symptomatic gastroesophageal reflux disease after lung transplantation. Gen Thorac Cardiovasc Surg 2009; 57:647-53. [DOI: 10.1007/s11748-009-0486-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/21/2009] [Indexed: 01/04/2023]
|
36
|
Faust SM, Lu G, Marini BL, Zou W, Gordon D, Iwakura Y, Laouar Y, Bishop DK. Role of T cell TGFbeta signaling and IL-17 in allograft acceptance and fibrosis associated with chronic rejection. THE JOURNAL OF IMMUNOLOGY 2009; 183:7297-306. [PMID: 19917689 DOI: 10.4049/jimmunol.0902446] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic allograft rejection (CR) is the main barrier to long-term transplant survival. CR is a progressive disease defined by interstitial fibrosis, vascular neointimal development, and graft dysfunction. The underlying mechanisms responsible for CR remain poorly defined. TGFbeta has been implicated in promoting fibrotic diseases including CR, but is beneficial in the transplant setting due to its immunosuppressive activity. To assess the requirement for T cell TGFbeta signaling in allograft acceptance and the progression of CR, we used mice with abrogated T cell TGFbeta signaling as allograft recipients. We compared responses from recipients that were transiently depleted of CD4(+) cells (that develop CR and express intragraft TGFbeta) with responses from mice that received anti-CD40L mAb therapy (that do not develop CR and do not express intragraft TGFbeta). Allograft acceptance and suppression of graft-reactive T and B cells were independent of T cell TGFbeta signaling in mice treated with anti-CD40L mAb. In recipients transiently depleted of CD4(+) T cells, T cell TGFbeta signaling was required for the development of fibrosis associated with CR, long-term graft acceptance, and suppression of graft-reactive T and B cell responses. Furthermore, IL-17 was identified as a critical element in TGFbeta-driven allograft fibrosis. Thus, IL-17 may provide a therapeutic target for preventing graft fibrosis, a measure of CR, while sparing the immunosuppressive activity of TGFbeta.
Collapse
Affiliation(s)
- Susan M Faust
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
In situ-targeting of dendritic cells with donor-derived apoptotic cells restrains indirect allorecognition and ameliorates allograft vasculopathy. PLoS One 2009; 4:e4940. [PMID: 19333400 PMCID: PMC2660580 DOI: 10.1371/journal.pone.0004940] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/26/2009] [Indexed: 01/10/2023] Open
Abstract
Chronic allograft vasculopathy (CAV) is an atheromatous-like lesion that affects vessels of transplanted organs. It is a component of chronic rejection that conventional immuno-suppression fails to prevent, and is a major cause of graft loss. Indirect allo-recognition through T cells and allo-Abs are critical during CAV pathogenesis. We tested whether the indirect allo-response and its impact on CAV is down-regulated by in situ-delivery of donor Ags to recipient's dendritic cells (DCs) in lymphoid organs in a pro-tolerogenic fashion, through administration of donor splenocytes undergoing early apoptosis. Following systemic injection, donor apoptotic cells were internalized by splenic CD11chi CD8α+ and CD8− DCs, but not by CD11cint plasmacytoid DCs. Those DCs that phagocytosed apoptotic cells in vivo remained quiescent, resisted ex vivo-maturation, and presented allo-Ag for up to 3 days. Administration of donor apoptotic splenocytes, unlike cells alive, (i) promoted deletion, FoxP3 expression and IL-10 secretion, and decreased IFN-γ-release in indirect pathway CD4 T cells; and (ii) reduced cross-priming of anti-donor CD8 T cells in vivo. Targeting recipient's DCs with donor apoptotic cells reduced significantly CAV in a fully-mismatched aortic allograft model. The effect was donor specific, dependent on the physical characteristics of the apoptotic cells, and was associated to down-regulation of the indirect type-1 T cell allo-response and secretion of allo-Abs, when compared to recipients treated with donor cells alive or necrotic. Down-regulation of indirect allo-recognition through in situ-delivery of donor-Ag to recipient's quiescent DCs constitutes a promising strategy to prevent/ameliorate indirect allorecognition and CAV.
Collapse
|
38
|
Critical role of scavenger receptor-BI–expressing bone marrow–derived endothelial progenitor cells in the attenuation of allograft vasculopathy after human apo A-I transfer. Blood 2009; 113:755-64. [DOI: 10.1182/blood-2008-06-161794] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Allograft vasculopathy is the leading cause of death in patients with heart transplantation. Accelerated endothelial regeneration mediated by enhanced endothelial progenitor cell (EPC) incorporation may attenuate the development of allograft vasculopathy. We investigated the hypothesis that modulation of EPC biology and attenuation of allograft vasculopathy by increased high-density lipoprotein cholesterol after human apo A-I (AdA-I) transfer requires scavenger receptor (SR)–BI expression in bone marrow–derived EPCs. After AdA-I transfer, the number of circulating EPCs increased 2.0-fold (P < .001) at different time points in C57BL/6 mice transplanted with SR-BI+/+ bone marrow but remained unaltered in mice with SR-BI−/− bone marrow. The effect of high-density lipoprotein on EPC migration in vitro requires signaling via SR-BI and extracellular signal-regulated kinases and is dependent on increased nitric oxide (NO) production in EPCs. Human apo A-I transfer 2 weeks before paratopic artery transplantation reduced intimal area at day 21 3.7-fold (P < .001) in mice with SR-BI+/+ bone marrow but had no effect in mice with SR-BI−/− bone marrow. AdA-I transfer potently stimulated EPC incorporation and accelerated endothelial regeneration in chimeric SR-BI+/+ mice but not in chimeric SR-BI−/− mice. In conclusion, human apo A-I transfer accelerates endothelial regeneration mediated via SR-BI expressing bone marrow–derived EPCs, thereby preventing allograft vasculopathy.
Collapse
|
39
|
|