1
|
Lohchania B, Arjunan P, Mahalingam G, Dandapani A, Taneja P, Marepally S. Lipid Nanoparticle-Mediated Liver-Specific Gene Therapy for Hemophilia B. Pharmaceutics 2024; 16:1427. [PMID: 39598550 PMCID: PMC11597186 DOI: 10.3390/pharmaceutics16111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Hemophilia B is a hereditary bleeding disorder due to the production of liver malfunctional factor IX (FIX). Gene therapy with viral vectors offers a cure. However, applications are limited due to pre-existing antibodies, eligibility for children under 12 years of age, hepatotoxicity, and excessive costs. Lipid nanoparticles are a potential alternative owing to their biocompatibility, scalability, and non-immunogenicity. However, their therapeutic applications are still elusive due to the poor transfection efficiencies in delivering plasmid DNA into primary cells and target organs in vivo. To develop efficient liver-targeted lipid nanoparticles, we explored galactosylated lipids to target asialoglycoprotein receptors (ASGPRs) abundantly expressed on hepatocytes. Methods: We developed 12 novel liposomal formulations varying the galactose lipid Gal-LNC 5, cationic lipid MeOH16, DOPE, and cholesterol. We evaluated their physicochemical properties, toxicity profiles, and transfection efficiencies in hepatic cell lines. Among the formulations, Gal-LNC 5 could efficiently transfect the reporter plasmid eGFP in hepatic cell lines and specifically distribute into the liver in vivo. Toward developing functional factor IX, we cloned Padua mutant FIX-L in a CpG-free backbone to enhance the expression and duration. Results: We demonstrated superior expression of FIX with our galactosylated lipid nanoparticle system. Conclusions: The current research presents a specialized lipid nanoparticle system viz. Gal-LNC which is a specialized lipid nanoparticle system for liver-targeted gene therapy in hemophilia B patients that has potential for clinical use. The Gal-LNC successfully delivers a CpG-free Padua FIX gene to liver cells, producing therapeutically relevant levels of FIX protein. Among its benefits are the ideal qualities of stability, targeting the liver specifically, and maximizing efficiency of transfection. Optimization of liver-targeting lipid nanoparticle systems and function FIX plasmids will pave the way for novel lipid nanoparticle-based gene therapy products for hemophilia B and other monogenic liver disorders.
Collapse
Affiliation(s)
- Brijesh Lohchania
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India;
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore 632002, Tamil Nadu, India
| | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore 632002, Tamil Nadu, India
| | - Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore 632002, Tamil Nadu, India
| | - Abinaya Dandapani
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore 632002, Tamil Nadu, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India;
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a Unit of inStem, Bengaluru), Christian Medical College Campus, Vellore 632002, Tamil Nadu, India
| |
Collapse
|
2
|
Han JP, Lee Y, Lee JH, Chung HY, Lee GS, Nam YR, Choi M, Moon KS, Lee H, Lee H, Yeom SC. In vivo genome editing using 244- cis LNPs and low-dose AAV achieves therapeutic threshold in hemophilia A mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102050. [PMID: 37916225 PMCID: PMC10616378 DOI: 10.1016/j.omtn.2023.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Gene therapy and rebalancing therapy have emerged as promising approaches for treating hemophilia A, but there are limitations, such as temporary efficacy due to individual differences. Genome editing for hemophilia has shown long-term therapeutic potential in preclinical trials. However, a cautious approach is necessary because genome editing is irreversible. Therefore, we attempted to induce low-level human factor 8 (hF8) gene knockin (KI) using 244-cis lipid nanoparticles and low-dose adeno-associated virus to minimize side effects and achieve a therapeutic threshold in hemophilia A mice. We selected the serpin family C member 1, SerpinC1, locus as a target to enable a combined rebalancing strategy with hF8 KI to augment efficacy. This strategy improved blood coagulation activity and reduced hemophilic complications without adverse effects. Furthermore, hemophilic mice with genome editing exhibit enhanced survival for 40 weeks. Here, we demonstrate an effective, safe, and sustainable treatment for hemophilia A. This study provides valuable information to establish safe and long-term genome-editing-mediated treatment strategies for treating hemophilia and other protein-deficient genetic diseases.
Collapse
Affiliation(s)
- Jeong Pil Han
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Yeji Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seodaemun-gu, Seoul 03760, Korea
| | - Jeong Hyeon Lee
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Hye Yoon Chung
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Geon Seong Lee
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Yu Ri Nam
- Deartment of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Myeongjin Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Yuseong-gu, Daejeon 34114, Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Yuseong-gu, Daejeon 34114, Korea
| | - Haeshin Lee
- Deartment of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seodaemun-gu, Seoul 03760, Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Gwanank-gu, Seoul 08826, Korea
| |
Collapse
|
3
|
Di Minno G, Spadarella G, Maldonato NM, De Lucia N, Castaman G, De Cristofaro R, Santoro C, Peyvandi F, Borrelli A, Lupi A, Follino M, Guerrino G, Morisco F, Di Minno M. Awareness of individual goals, preferences, and priorities of persons with severe congenital haemophilia A for a tailored shared decision-making approach to liver-directed gene therapy. A practical guideline. Blood Rev 2023; 62:101118. [PMID: 37544828 DOI: 10.1016/j.blre.2023.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
In clinical medicine, shared decision making (SDM) is a well-recognized strategy to enhance engagement of both patients and clinicians in medical decisions. The success of liver-directed gene therapy (GT) to transform severe congenital haemophilia A (HA) from an incurable to a curable disease has launched a shift beyond current standards of treatment. However, GT acceptance remains low in the community of HA persons. We argue for both persons with haemophilia (PWH) and specialists in HA care including clinicians, as needing SDM-oriented educational programs devoted to GT. Here, we provide an ad hoc outline to implement education to SDM and tailor clinician information on GT to individual PWHs. Based on routine key components of SDM: patient priorities; recommendations based on individual risk reduction; adverse effects; drug-drug interactions; alternatives to GT; and ongoing re-assessment of the objectives as risk factors (and individual priorities) change, this approach is finalized to exploit efficacious communication.
Collapse
Affiliation(s)
| | - Gaia Spadarella
- Dipartimento di Scienze Mediche Traslazionali, Naples, Italy.
| | - Nelson Mauro Maldonato
- Dipartimento di Neuroscienze e di Scienze Riproduttive e Odontostomatologiche, "Federico II" University, Naples, Italy
| | - Natascia De Lucia
- Dipartimento di Neuroscienze e di Scienze Riproduttive e Odontostomatologiche, "Federico II" University, Naples, Italy.
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Careggi University Hospital, Florence, Italy.
| | - Raimondo De Cristofaro
- Section of Haemorrhagic and Thrombotic Diseases, Department of Medicine and Translational Surgery, Sacred Heart University, Rome, Italy..
| | - Cristina Santoro
- Ematologia, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy.
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, 20122 Milan, Italy; Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy.
| | - Anna Borrelli
- Direzione Sanitaria, AOU "Federico II" Napoli, Italy
| | - Angelo Lupi
- Federazione delle Associazioni Emofilici (FedEmo), Milan, Italy.
| | | | | | | | - Matteo Di Minno
- Dipartimento di Medicina Clinica e Chirurgia, Naples, Italy.
| |
Collapse
|
4
|
Gong J, Yang R, Zhou M, Chang LJ. Improved intravenous lentiviral gene therapy based on endothelial-specific promoter-driven factor VIII expression for hemophilia A. Mol Med 2023; 29:74. [PMID: 37308845 DOI: 10.1186/s10020-023-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Hemophilia A (HA) is an X-linked monogenic disorder caused by deficiency of the factor VIII (FVIII) gene in the intrinsic coagulation cascade. The current protein replacement therapy (PRT) of HA has many limitations including short term effectiveness, high cost, and life-time treatment requirement. Gene therapy has become a promising treatment for HA. Orthotopic functional FVIII biosynthesis is critical to its coagulation activities. METHODS To investigate targeted FVIII expression, we developed a series of advanced lentiviral vectors (LVs) carrying either a universal promoter (EF1α) or a variety of tissue-specific promoters, including endothelial-specific (VEC), endothelial and epithelial-specific (KDR), and megakaryocyte-specific (Gp and ITGA) promoters. RESULTS To examine tissue specificity, the expression of a B-domain deleted human F8 (F8BDD) gene was tested in human endothelial and megakaryocytic cell lines. Functional assays demonstrated FVIII activities of LV-VEC-F8BDD and LV-ITGA-F8BDD in the therapeutic range in transduced endothelial and megakaryocytic cells, respectively. In F8 knockout mice (F8 KO mice, F8null mice), intravenous (iv) injection of LVs illustrated different degrees of phenotypic correction as well as anti-FVIII immune response for the different vectors. The iv delivery of LV-VEC-F8BDD and LV-Gp-F8BDD achieved 80% and 15% therapeutic FVIII activities over 180 days, respectively. Different from the other LV constructs, the LV-VEC-F8BDD displayed a low FVIII inhibitory response in the treated F8null mice. CONCLUSIONS The LV-VEC-F8BDD exhibited high LV packaging and delivery efficiencies, with endothelial specificity and low immunogenicity in the F8null mice, thus has a great potential for clinical applications.
Collapse
Affiliation(s)
- Jie Gong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Zhou
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Shenzhen Geno-Immune Medical Institute, 6 Yuexing 2nd Rd., 2nd Floor, Nanshan Dist., Shenzhen, 518057, Guangdong Province, China.
| |
Collapse
|
5
|
Gogia P, Tarantino M, Schramm W, Aledort L. New directions to develop therapies for people with hemophilia. Expert Rev Hematol 2023:1-17. [PMID: 36891589 DOI: 10.1080/17474086.2023.2184341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
INTRODUCTION The past few decades have seen a tremendous advancement in the management of hemophilia. Whether it is improved methods to attenuate critical viruses, recombinant bioengineering with decreased immunogenicity, extended half-life replacement therapies to mitigate the burden of repeated infusion treatments, novel nonreplacement products to avoid the drawback of inhibitor development with its attractive subcutaneous administration and then the introduction of gene therapy, the management has trodden a long way. AREAS COVERED This expert review describes the progress in the treatment of hemophilia over the years. We discuss, in detail, the past and current therapies, their benefits, drawbacks, along with relevant studies leading to approval, efficacy and safety profile, ongoing trials, and future prospects. EXPERT OPINION The technological advances in the treatment of hemophilia with convenient modes of administration and innovative modalities offer a chance for a normal existence of the patients living with this disease. However, it is imperative for clinicians to be aware of the potential adverse effects and the need for further studies to establish causality or chance association of these events with novel agents. Thus, it is crucial for clinicians to engage patients and their families in informed decision-making and tailor individual concerns and necessities.
Collapse
Affiliation(s)
- Pooja Gogia
- Division of Hematology/Oncology, Maimonides Medical Center, Brooklyn, NY, USA
| | - Michael Tarantino
- University of Illinois College of Medicine, and the Bleeding and Clotting Disorders Institute, Peoria, IL, USA
| | - Wolfgang Schramm
- Ludwig-Maximilians University (LMU) Rudolf Marx Stiftung Munich, München, Germany
| | - Louis Aledort
- Division of Hematology/Oncology, Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Shoti J, Qing K, Srivastava A. Development of an AAV DNA-based synthetic vector for the potential gene therapy of hemophilia in children. Front Microbiol 2022; 13:1033615. [PMID: 36274690 PMCID: PMC9583144 DOI: 10.3389/fmicb.2022.1033615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Recombinant AAV serotype vectors and their variants have been or are currently being used for gene therapy for hemophilia in several phase I/II/III clinical trials in humans. However, none of these trials have included children with hemophilia since the traditional liver-directed AAV gene therapy will not work in these patients because of the following reasons: (i) Up until age 10–12, the liver is still growing and dividing, and with every cell division, the AAV vector genomes will be diluted out due to their episomal nature; and (ii) Repeated gene delivery will be needed, but repeat dosing, even with an ideal AAV vector is not an option because of pre-existing antibodies to AAV vectors following the first administration. Here we describe the development of an optimized human Factor IX (hF.IX) gene expression cassette under the control of a human liver-specific transthyretin promoter covalently flanked by AAV inverted terminal repeats (ITRs) with no open ends (optNE-TTR-hF.IX), which mediated ~sixfold higher hF.IX levels than that from a linear TTR-hF.IX DNA construct in human hepatoma cells up to four-weeks post-transfection. In future studies, encapsidation of the optNE-TTR-hF.IX DNA in liver-targeted synthetic liposomes, may provide a viable approach for the potential gene therapy for hemophilia in children.
Collapse
Affiliation(s)
- Jakob Shoti
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Keyun Qing
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, United States
- *Correspondence: Arun Srivastava,
| |
Collapse
|
7
|
Abstract
One approach to improve the utility of adeno-associated virus (AAV)-based gene therapy is to engineer the AAV capsid to 1) overcome poor transport through tissue barriers and 2) redirect the broadly tropic AAV to disease-relevant cell types. Peptide- or protein-domain insertions into AAV surface loops can achieve both engineering goals by introducing a new interaction surface on the AAV capsid. However, we understand little about the impact of insertions on capsid structure and the extent to which engineered inserts depend on a specific capsid context to function. Here, we examine insert-capsid interactions for the engineered variant AAV9-PHP.B. The 7-amino-acid peptide insert in AAV9-PHP.B facilitates transport across the murine blood-brain barrier via binding to the receptor Ly6a. When transferred to AAV1, the engineered peptide does not bind Ly6a. Comparative structural analysis of AAV1-PHP.B and AAV9-PHP.B revealed that the inserted 7-amino-acid loop is highly flexible and has remarkably little impact on the surrounding capsid conformation. Our work demonstrates that Ly6a binding requires interactions with both the PHP.B peptide and specific residues from the AAV9 HVR VIII region. An AAV1-based vector that incorporates a larger region of AAV9-PHP.B-including the 7-amino-acid loop and adjacent HVR VIII amino acids-can bind to Ly6a and localize to brain tissue. However, unlike AAV9-PHP.B, this AAV1-based vector does not penetrate the blood-brain barrier. Here we discuss the implications for AAV capsid engineering and the transfer of engineered activities between serotypes. Importance Targeting AAV vectors to specific cellular receptors is a promising strategy for enhancing expression in target cells or tissues while reducing off-target transgene expression. The AAV9-PHP.B/Ly6a interaction provides a model system with a robust biological readout that can be interrogated to better understand the biology of AAV vectors' interactions with target receptors. In this work, we analyzed the sequence and structural features required to successfully transfer the Ly6a receptor-binding epitope from AAV9-PHP.B to another capsid of clinical interest: AAV1. We found that AAV1- and AAV9-based vectors targeted to the same receptor exhibited different brain-transduction profiles. Our work suggests that, in addition to attachment-receptor binding, the capsid context in which this binding occurs is important for a vector's performance.
Collapse
|
8
|
Odiba AS, Okoro NO, Durojaye OA, Wu Y. Gene therapy in PIDs, hemoglobin, ocular, neurodegenerative, and hemophilia B disorders. Open Life Sci 2021; 16:431-441. [PMID: 33987480 PMCID: PMC8093481 DOI: 10.1515/biol-2021-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/30/2022] Open
Abstract
A new approach is adopted to treat primary immunodeficiency disorders, such as the severe combined immunodeficiency (SCID; e.g., adenosine deaminase SCID [ADA-SCID] and IL-2 receptor X-linked severe combined immunodeficiency [SCID-X1]). The success, along with the feasibility of gene therapy, is undeniable when considering the benefits recorded for patients with different classes of diseases or disorders needing treatment, including SCID-X1 and ADA-SCID, within the last two decades. β-Thalassemia and sickle cell anemia are two prominent monogenic blood hemoglobin disorders for which a solution has been sought using gene therapy. For instance, transduced autologous CD34+ HSCs via a self-inactivating (SIN)-Lentivirus (LV) coding for a functional copy of the β-globin gene has become a feasible procedure. adeno-associated virus (AAV) vectors have found application in ocular gene transfer in retinal disease gene therapy (e.g., Leber's congenital amaurosis type 2), where no prior treatment existed. In neurodegenerative disorders, successes are now reported for cases involving metachromatic leukodystrophy causing severe cognitive and motor damage. Gene therapy for hemophilia also remains a viable option because of the amount of cell types that are capable of synthesizing biologically active FVIII and FIX following gene transfer using AAV vectors in vivo to correct hemophilia B (FIX deficiency), and it is considered an ideal target, as proven in preclinical studies. Recently, the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 gene-editing tool has taken a center stage in gene therapy research and is reported to be efficient and highly precise. The application of gene therapy to these areas has pushed forward the therapeutic clinical application.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- Molecular Biology Laboratory, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,Department of Biochemistry, College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, Nigeria.,Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | - Nkwachukwu Oziamara Okoro
- Molecular Biology Laboratory, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,Department of Pharmaceutical and Medicinal Chemistry, College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Pharmaceutical and medicinal Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Olanrewaju Ayodeji Durojaye
- Department of Biochemistry and Molecular Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanjun Wu
- Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.,Institute for Laboratory Animal, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
9
|
Biswas M, Palaschak B, Kumar SRP, Rana J, Markusic DM. B Cell Depletion Eliminates FVIII Memory B Cells and Enhances AAV8-coF8 Immune Tolerance Induction When Combined With Rapamycin. Front Immunol 2020; 11:1293. [PMID: 32670285 PMCID: PMC7327091 DOI: 10.3389/fimmu.2020.01293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/21/2020] [Indexed: 01/19/2023] Open
Abstract
Hemophilia A is an inherited coagulation disorder resulting in the loss of functional clotting factor VIII (FVIII). Presently, the most effective treatment is prophylactic protein replacement therapy. However, this requires frequent life-long intravenous infusions of plasma derived or recombinant clotting factors and is not a cure. A major complication is the development of inhibitory antibodies that nullify the replacement factor. Immune tolerance induction (ITI) therapy to reverse inhibitors can last from months to years, requires daily or every other day infusions of supraphysiological levels of FVIII and is effective in only up to 70% of hemophilia A patients. Preclinical and recent clinical studies have shown that gene replacement therapy with AAV vectors can effectively cure hemophilia A patients. However, it is unclear how hemophilia patients with high risk inhibitor F8 mutations or with established inhibitors will respond to gene therapy, as these patients have been excluded from ongoing clinical trials. AAV8-coF8 gene transfer in naïve BALB/c-F8e16−/Y mice (BALB/c-HA) results in anti-FVIII IgG1 inhibitors following gene transfer, which can be prevented by transient immune modulation with anti-mCD20 (18B12) and oral rapamycin. We investigated if we could improve ITI in inhibitor positive mice by combining anti-mCD20 and rapamycin with AAV8-coF8 gene therapy. Our hypothesis was that continuous expression of FVIII protein from gene transfer compared to transient FVIII from weekly protein therapy, would enhance regulatory T cell induction and promote deletion of FVIII reactive B cells, following reconstitution. Mice that received anti-CD20 had a sharp decline in inhibitors, which corresponded to FVIII memory B (Bmem) cell deletion. Importantly, only mice receiving both anti-mCD20 and rapamycin failed to increase inhibitors following rechallenge with intravenous FVIII protein therapy. Our data show that B and T cell immune modulation complements AAV8-coF8 gene therapy in naïve and inhibitor positive hemophilia A mice and suggest that such protocols should be considered for AAV gene therapy in high risk or inhibitor positive hemophilia patients.
Collapse
Affiliation(s)
- Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Sandeep R P Kumar
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jyoti Rana
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David M Markusic
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Valentino LA, Khair K. Prophylaxis for hemophilia A without inhibitors: treatment options and considerations. Expert Rev Hematol 2020; 13:731-743. [PMID: 32573295 DOI: 10.1080/17474086.2020.1775576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Hemophilia A is a bleeding disorder traditionally managed with standard half-life (SHL) factor (F) VIII concentrates. Extended half-life (EHL) FVIII products and emicizumab-kywh, a nonfactor therapy, are newer treatment options. Additional nonfactor agents and gene therapy are expected to reach the market in the near future. AREAS COVERED A PubMed (MEDLINE) search from 1962 to April 2020 related to hemophilia A, its management, and the products currently available for prophylaxis was performed to comprehensively review these topics and analyze the benefits and drawbacks of each therapeutic. EXPERT OPINION Prophylaxis with SHL FVIII concentrates remains the standard of care for patients with severe hemophilia A and may also be considered for selected individuals with moderate disease. Several years of real-world experience with EHL FVIII, emicizumab-kywh, and other agents in development will be necessary to determine their ultimate roles in the prevention of bleeding and its complications. Gene therapy may not provide a permanent cure for hemophilia A.
Collapse
Affiliation(s)
- Leonard A Valentino
- Rush University , Chicago, IL, USA.,National Hemophilia Foundation , New York, NY, USA
| | - Kate Khair
- Centre for Outcomes Research and Experience in Children's Health, Illness, and Disability, Great Ormond Street Hospital for Children, NHS Trust , London, UK
| |
Collapse
|
11
|
Samelson-Jones BJ, Arruda VR. Translational Potential of Immune Tolerance Induction by AAV Liver-Directed Factor VIII Gene Therapy for Hemophilia A. Front Immunol 2020; 11:618. [PMID: 32425925 PMCID: PMC7212376 DOI: 10.3389/fimmu.2020.00618] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Hemophilia A (HA) is an X-linked bleeding disorder due to deficiencies in coagulation factor VIII (FVIII). The major complication of current protein-based therapies is the development of neutralizing anti-FVIII antibodies, termed inhibitors, that block the hemostatic effect of therapeutic FVIII. Inhibitors develop in about 20-30% of people with severe HA, but the risk is dependent on the interaction between environmental and genetic factors, including the underlying F8 gene mutation. Recently, multiple clinical trials evaluating adeno-associated viral (AAV) vector liver-directed gene therapy for HA have reported promising results of therapeutically relevant to curative FVIII levels. The inclusion criteria for most trials prevented enrollment of subjects with a history of inhibitors. However, preclinical data from small and large animal models of HA with inhibitors suggests that liver-directed gene therapy can in fact eradicate pre-existing anti-FVIII antibodies, induce immune tolerance, and provide long-term therapeutic FVIII expression to prevent bleeding. Herein, we review the accumulating evidence that continuous uninterrupted expression of FVIII and other transgenes after liver-directed AAV gene therapy can bias the immune system toward immune tolerance induction, discuss the current understanding of the immunological mechanisms of this process, and outline questions that will need to be addressed to translate this strategy to clinical trials.
Collapse
Affiliation(s)
- Benjamin J. Samelson-Jones
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, United States
| | - Valder R. Arruda
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
12
|
Guo XL, Chung TH, Qin Y, Zheng J, Zheng H, Sheng L, Wynn T, Chang LJ. Hemophilia Gene Therapy: New Development from Bench to Bed Side. Curr Gene Ther 2019; 19:264-273. [PMID: 31549954 DOI: 10.2174/1566523219666190924121836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/30/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
Novel gene therapy strategies have changed the prognosis of many inherited diseases in recent years. New development in genetic tools and study models has brought us closer to a complete cure for hemophilia. This review will address the latest gene therapy research in hemophilia A and B including gene therapy tools, genetic strategies and animal models. It also summarizes the results of recent clinical trials. Potential solutions are discussed regarding the current barriers in gene therapy for hemophilia.
Collapse
Affiliation(s)
- Xiao-Lu Guo
- Geno-immune Medical Institute, Shenzhen, China
| | | | - Yue Qin
- School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Jie Zheng
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huyong Zheng
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Liyuan Sheng
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
| | - Tung Wynn
- Department of Pediatrics and Division of Hematology/Oncology, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
13
|
Brendel C, Rio P, Verhoeyen E. Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochem Pharmacol 2019; 174:113711. [PMID: 31726047 DOI: 10.1016/j.bcp.2019.113711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
Over the last decade, incrementally improved xenograft mouse models, which support the engraftment and development of a human hemato-lymphoid system, have been developed and represent an important fundamental and preclinical research tool. Immunodeficient mice can be transplanted with human hematopoietic stem cells (HSCs) and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. The most significant contributions made by these humanized mice are the identification of normal and leukemic hematopoietic stem cells, the characterization of the human hematopoietic hierarchy, screening of anti-cancer therapies and their use as preclinical models for gene therapy applications. This review article focuses on several gene therapy applications that have benefited from evaluation in humanized mice such as chimeric antigen receptor (CAR) T cell therapies for cancer, anti-viral therapies and gene therapies for multiple monogenetic diseases. Humanized mouse models have been and still are of great value for the gene therapy field since they provide a more reliable understanding of sometimes complicated therapeutic approaches such as recently developed therapeutic gene editing strategies, which seek to correct a gene at its endogenous genomic locus. Additionally, humanized mouse models, which are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior toclinical trials, help to expedite the critical translation from basic findings to clinical applications. In this review, innovative gene therapies and preclinical studies to evaluate T- and B-cell and HSC-based therapies in humanized mice are discussed and illustrated by multiple examples.
Collapse
Affiliation(s)
- Christian Brendel
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Paula Rio
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France; Université Côte d'Azur, INSERM, C3M, 06204 Nice, France.
| |
Collapse
|
14
|
Timmins LM, Patel RS, Teryek MS, Parekkadan B. Real-time transfer of lentiviral particles by producer cells using an engineered coculture system. Cytotechnology 2019; 71:1019-1031. [PMID: 31515650 PMCID: PMC6787137 DOI: 10.1007/s10616-019-00343-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/06/2019] [Indexed: 11/25/2022] Open
Abstract
Lentiviruses are quite effective gene delivery systems for stable production of genetically engineered human cells. However, prior to using lentivirus to deliver genetic materials to cells of interest, the normal course of production of these lentiviruses involves a lengthy collection, purification, preservation, and quantification process. In this report, we demonstrate the ability for producer HEK293T cells to simultaneously produce lentiviral particles and transduce (i.e., infect) target cells through a membrane-based coculture system in a continuous, real-time mode which negates the need for a separate viral collection and quantification process. The coculture system was evaluated for major design features such as variations in HEK293T seeding density, target cell type densities, as well as membrane porosities to identify key relationships between lentiviral particle production rate and infection kinetics for adherent and suspension cell types. As a proof-of-concept for the creation of an engineered cell immunotherapy, we describe the ability to engineer human T cells isolated from PBMCs under the control of this coculture system in under 6 days with a GFP construct. These studies suggest the capability to combine and more closely automate the transfection/transduction process in order to facilitate well-timed and cost-effective transduction of target cell types. These experiments provide novel insight into the forthcoming transition into improved manufacturing systems for viral production and subsequent cell engineering.
Collapse
Affiliation(s)
- Lauren M Timmins
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08902, USA
| | - Riya S Patel
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08902, USA
| | - Matthew S Teryek
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08902, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08902, USA.
| |
Collapse
|
15
|
Arjmand B, Larijani B, Sheikh Hosseini M, Payab M, Gilany K, Goodarzi P, Parhizkar Roudsari P, Amanollahi Baharvand M, Hoseini Mohammadi NS. The Horizon of Gene Therapy in Modern Medicine: Advances and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1247:33-64. [PMID: 31845133 DOI: 10.1007/5584_2019_463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gene therapy as a novel study in molecular medicine will have a significant impact on human health in the near future. In recent years, the scope of gene therapy has been developed and is now beginning to revolutionize therapeutic approaches. Accordingly, many types of diseases are now being studied and treated in clinical trials through various gene delivery vectors. The emergence of recombinant DNA technology which provides the possibility of fetal genetic screening and genetic counseling is a good case in point. Therefore, gene therapy advances are being applied to correct inherited genetic disorders such as hemophilia, cystic fibrosis, and familial hypercholesterolemia as well as acquired diseases like cancer, AIDS, Alzheimer's disease, Parkinson's disease, and infectious diseases like HIV. As a result, gene therapy approaches have the ability to help the vast majority of newborns with different diseases. Since these ongoing treatments and clinical trials are being developed, many more barriers and challenges have been created. In order to continue this positive growth, these challenges need to be recognized and addressed. Accordingly, safety, efficiency and also risks and benefits of gene therapy trials for each disease should be considered. As a result, sustained manufacturing of the therapeutic gene product without any harmful side effects is the least requirement for gene therapy. Herein, different aspects of gene therapy, an overview of the progress, and also the prospects for the future have been discussed for the successful practice of gene therapy.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Motahareh Sheikh Hosseini
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Amanollahi Baharvand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Sadat Hoseini Mohammadi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Palaschak B, Herzog RW, Markusic DM. AAV-Mediated Gene Delivery to the Liver: Overview of Current Technologies and Methods. Methods Mol Biol 2019; 1950:333-360. [PMID: 30783984 DOI: 10.1007/978-1-4939-9139-6_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) vectors to treat liver-specific genetic diseases are the focus of several ongoing clinical trials. The ability to give a peripheral injection of virus that will successfully target the liver is one of many attractive features of this technology. Although initial studies of AAV liver gene transfer revealed some limitations, extensive animal modeling and further clinical development have helped solve some of these issues, resulting in several successful clinical trials that have reached curative levels of clotting factor expression in hemophilia. Looking beyond gene replacement, recent technologies offer the possibility for AAV liver gene transfer to directly repair deficient genes and potentially treat autoimmune disease.
Collapse
Affiliation(s)
- Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL, USA.,Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - David M Markusic
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
17
|
Protein-Engineered Coagulation Factors for Hemophilia Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:184-201. [PMID: 30705923 PMCID: PMC6349562 DOI: 10.1016/j.omtm.2018.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hemophilia A (HA) and hemophilia B (HB) are X-linked bleeding disorders due to inheritable deficiencies in either coagulation factor VIII (FVIII) or factor IX (FIX), respectively. Recently, gene therapy clinical trials with adeno-associated virus (AAV) vectors and protein-engineered transgenes, B-domain deleted (BDD) FVIII and FIX-Padua, have reported near-phenotypic cures in subjects with HA and HB, respectively. Here, we review the biology and the clinical development of FVIII-BDD and FIX-Padua as transgenes. We also examine alternative bioengineering strategies for FVIII and FIX, as well as the immunological challenges of these approaches. Other engineered proteins and their potential use in gene therapy for hemophilia with inhibitors are also discussed. Continued advancement of gene therapy for HA and HB using protein-engineered transgenes has the potential to alleviate the substantial medical and psychosocial burdens of the disease.
Collapse
|
18
|
Khandagale A, Kittner JM, Mann A, Ascher S, Kollar B, Reinhardt C. Coagulation factor 9-deficient mice are protected against dextran sulfate sodium-induced colitis. Biol Open 2018; 7:bio.034140. [PMID: 29945876 PMCID: PMC6078354 DOI: 10.1242/bio.034140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients with inflammatory bowel disease (IBD) are susceptible to thromboembolism. Interestingly, IBD occurs less frequently in patients with inherited bleeding disorders. Therefore, we analyzed whether F9-deficiency is protective against the onset of acute colitis in a genetic hemophilia B mouse model. In the 3.5% dextran sulfate sodium (DSS)-induced colitis model, F9-deficient mice were protected from body-weight loss and had a reduced disease activity score. We detected decreased colonic myeloperoxidase activity and decreased CXCL1 levels in DSS-treated F9-deficient mice compared with wild-type (WT) littermate controls, indicating decreased neutrophil infiltration. Remarkably, we identified expression of coagulation factor IX (FIX) protein in small intestinal epithelial cells (MODE-K). In epithelial cell cultures, cellular FIX protein expression was increased following stimulation with the bacterial Toll-like receptor agonists lipopolysaccharide, macrophage-activating lipopeptide-2 and Pam3CSK4. Thus, we revealed a protective role of F9-deficiency in DSS-induced colitis and identified the intestinal epithelium as a site of ectopic FIX. This article has an associated First Person interview with the first author of the paper. Summary: Since IBD incidence is less frequent in patients with inherited bleeding disorders, we explored and demonstrated that F9-deficiency is protective against DSS-induced acute colitis in a hemophilia B mouse model.
Collapse
Affiliation(s)
- Avinash Khandagale
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.,Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jens M Kittner
- I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Amrit Mann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stefanie Ascher
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Bettina Kollar
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany .,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
| |
Collapse
|
19
|
Arruda VR, Doshi BS, Samelson-Jones BJ. Emerging therapies for hemophilia: controversies and unanswered questions. F1000Res 2018; 7. [PMID: 29770199 PMCID: PMC5931262 DOI: 10.12688/f1000research.12491.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Several new therapies for hemophilia have emerged in recent years. These strategies range from extended half-life factor replacement products and non-factor options with improved pharmacokinetic profiles to gene therapy aiming for phenotypic cure. While these products have the potential to change hemophilia care dramatically, several challenges and questions remain regarding broader applicability, long-term safety, and which option to pursue for each patient. Here, we review these emerging therapies with a focus on controversies and unanswered questions in each category.
Collapse
Affiliation(s)
- Valder R Arruda
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, USA
| | - Bhavya S Doshi
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin J Samelson-Jones
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Pipe SW. Gene therapy for hemophilia. Pediatr Blood Cancer 2018; 65. [PMID: 29077262 DOI: 10.1002/pbc.26865] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Individuals with the inherited bleeding disorder hemophilia have achieved tremendous advances in clinical outcomes through widespread implementation of prophylactic replacement with safe and efficacious factor VIII and IX. However, despite this therapeutic approach, bleeds still occur, some with serious consequence, joint disease has not been eradicated, and patients have not yet been liberated from the need for regular intravenous infusions. The shift from protein replacement to gene replacement is offering great hope to achieve durable levels of plasma factor activity levels high enough to remove the risk for recurrent joint bleeding. For the first time, clinical trial results are showing promise for "curative" correction of the bleeding phenotype.
Collapse
Affiliation(s)
- Steven W Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
21
|
Lin XY, Wang J, Xiao X, Xu YW, Yan QJ, Jiang WY. Establishing a comprehensive genetic diagnosis strategy for hemophilia B and its application in Chinese population. Int J Lab Hematol 2017; 40:215-228. [PMID: 29274203 DOI: 10.1111/ijlh.12771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION To reduce the incidence of hemophilia B (HB) which with no complete cure currently, prenatal diagnosis and preimplantation genetic diagnosis (PGD) are effective and feasible means. However, previous studies about genetic diagnosis in HB mostly just focused on the detection of patients and carriers. Here, we established a comprehensive genetic diagnosis strategy for HB and worked it out in Chinese population. The strategy includes the detection of patients and carriers, prenatal diagnosis, and PGD. METHODS Seven unrelated HB families from Chinese population involved in this study. Firstly, probands and available members were carried out coagulation laboratory assays, and the clinical information has been recorded. Secondly, we used DNA direct sequencing to screen the whole FIX gene of them. The pathogenicity of novel mutations was verified according to 2015 ACMG-AM guidelines. For prenatal diagnosis, a mix of DNA direct sequencing and STR linkage analysis was employed. To explore a better PGD protocol, Karyomapping was first applied in PGD of HB, comparing with conventional PCR-based methods. RESULTS Six different pathogenic mutations including 1 novel duplication (c.660_661dup ATCA) were identified. The results of prenatal diagnosis were consistent with birth outcomes. In the PGD case, 4 of 11 embryos were confirmed to be normal and one of them was transferred and led to a healthy birth. CONCLUSIONS The established genetic diagnosis strategy for HB in our study was comprehensive and well applied in clinic practice. Besides, we recommended that DNA direct sequencing combined with Karyomapping was a better PGD protocol.
Collapse
Affiliation(s)
- X Y Lin
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - J Wang
- Reproductive center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - X Xiao
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Y W Xu
- Reproductive center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Q J Yan
- Guangzhou Kingmed Diagnostics Technology Co., LTD, Guangzhou, China
| | - W Y Jiang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Dorsey A, Pilli VS, Fried H, Majumder R. Protein S: a Multifunctional Anticoagulant. BIOMEDICAL RESEARCH AND CLINICAL PRACTICE 2017; 2:10.15761/BRCP.1000151. [PMID: 30148214 PMCID: PMC6103620 DOI: 10.15761/brcp.1000151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- A'drianne Dorsey
- Department of Biochemistry and Molecular Biology, LSU Health Science Center, New Orleans, LA-70112
| | - Vijaya Satish Pilli
- Department of Biochemistry and Molecular Biology, LSU Health Science Center, New Orleans, LA-70112
| | - Howard Fried
- Department of Biochemistry and Molecular Biology, LSU Health Science Center, New Orleans, LA-70112
| | - Rinku Majumder
- Department of Biochemistry and Molecular Biology, LSU Health Science Center, New Orleans, LA-70112
| |
Collapse
|
23
|
Salamin O, Kuuranne T, Saugy M, Leuenberger N. Loop-mediated isothermal amplification (LAMP) as an alternative to PCR: A rapid on-site detection of gene doping. Drug Test Anal 2017; 9:1731-1737. [PMID: 29045058 DOI: 10.1002/dta.2324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/21/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Innovation in medical research has been diverted at multiple occasions to enhance human performance. The predicted great progress in gene therapy has raised some concerns regarding its misuse in the world of sports (gene doping) for several years now. Even though there is no evidence that gene doping has ever been used in sports, the continuous improvement of gene therapy techniques increases the likelihood of abuse. Therefore, since 2004, efforts have been invested by the anti-doping community and WADA for the development of detection methods. Several nested PCR and qPCR-based strategies exploiting the absence of introns in the transgenic DNA have been proposed for the long-term detection of transgene in blood. Despite their great sensitivity, those protocols are hampered by limitations of the techniques that can be cumbersome and costly. The purpose of this perspective is to describe a new approach based on loop-mediated isothermal amplification (LAMP) for the detection of gene doping. This protocol enables a rapid and simple method to amplify nucleic acids with a high sensitivity and specificity and with a simple visual detection of the results. LAMP is already being used in clinical application for the detection of viruses or mutations. Therefore, this technique has the potential to be further developed for the detection of foreign genetic material in elite athletes. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olivier Salamin
- Center of Research and Expertise in anti-Doping sciences - REDs, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Ch. des Croisettes 22, 1066 Epalinges, Switzerland
| | - Martial Saugy
- Center of Research and Expertise in anti-Doping sciences - REDs, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Ch. des Croisettes 22, 1066 Epalinges, Switzerland
| |
Collapse
|
24
|
Novel approaches to hemophilia therapy: successes and challenges. Blood 2017; 130:2251-2256. [PMID: 29018078 DOI: 10.1182/blood-2017-08-742312] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022] Open
Abstract
New therapies for hemophilia A and hemophilia B will likely continue to change clinical practice. Ranging from extended half-life to nonfactor products and gene therapy, these innovative approaches have the potential to enhance the standard of care by decreasing infusion frequency to increase compliance, promoting prophylaxis, offering alternatives to inhibitor patients, and easing route of administration. Each category has intrinsic challenges that may limit the broader application of these promising therapies. To date, none specifically address the challenge of dispersing treatment to the developing world.
Collapse
|
25
|
Herzog RW, Cooper M, Perrin GQ, Biswas M, Martino AT, Morel L, Terhorst C, Hoffman BE. Regulatory T cells and TLR9 activation shape antibody formation to a secreted transgene product in AAV muscle gene transfer. Cell Immunol 2017; 342:103682. [PMID: 28888664 DOI: 10.1016/j.cellimm.2017.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022]
Abstract
Adeno-associated viral (AAV) gene delivery to skeletal muscle is being explored for systemic delivery of therapeutic proteins. To better understand the signals that govern antibody formation against secreted transgene products in this approach, we administered an intramuscular dose of AAV1 vector expressing human coagulation factor IX (hFIX), which does not cause antibody formation against hFIX in C57BL/6 mice. Interestingly, co-administration of a TLR9 agonist (CpG-deoxyoligonucleotide, ODN) but not of lipopolysaccharide, caused a transient anti-hFIX response. ODN activated monocyte-derived dendritic cells and enhanced T follicular helper cell responses. While depletion of regulatory T cells (Tregs) also caused an antibody response, TLR9 activation combined with Treg depletion instead resulted in prolonged CD8+ T cell infiltration of transduced muscle. Thus, Tregs modulate the response to the TLR9 agonist. Further, Treg re-population eventually resolved humoral and cellular immune responses. Therefore, specific modes of TLR9 activation and Tregs orchestrate antibody formation in muscle gene transfer.
Collapse
Affiliation(s)
- Roland W Herzog
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States.
| | - Mario Cooper
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - George Q Perrin
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - Moanaro Biswas
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - Ashley T Martino
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Investigation, University of Florida, Gainesville, FL, United States
| | - Cox Terhorst
- Division of Immunology, BIDMC, Harvard Medical School, Boston, MA, United States
| | - Brad E Hoffman
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
26
|
Tran R, Myers DR, Denning G, Shields JE, Lytle AM, Alrowais H, Qiu Y, Sakurai Y, Li WC, Brand O, Le Doux JM, Spencer HT, Doering CB, Lam WA. Microfluidic Transduction Harnesses Mass Transport Principles to Enhance Gene Transfer Efficiency. Mol Ther 2017; 25:2372-2382. [PMID: 28780274 PMCID: PMC5628863 DOI: 10.1016/j.ymthe.2017.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 12/24/2022] Open
Abstract
Ex vivo gene therapy using lentiviral vectors (LVs) is a proven approach to treat and potentially cure many hematologic disorders and malignancies but remains stymied by cumbersome, cost-prohibitive, and scale-limited production processes that cannot meet the demands of current clinical protocols for widespread clinical utilization. However, limitations in LV manufacture coupled with inefficient transduction protocols requiring significant excess amounts of vector currently limit widespread implementation. Herein, we describe a microfluidic, mass transport-based approach that overcomes the diffusion limitations of current transduction platforms to enhance LV gene transfer kinetics and efficiency. This novel ex vivo LV transduction platform is flexible in design, easy to use, scalable, and compatible with standard cell transduction reagents and LV preparations. Using hematopoietic cell lines, primary human T cells, primary hematopoietic stem and progenitor cells (HSPCs) of both murine (Sca-1+) and human (CD34+) origin, microfluidic transduction using clinically processed LVs occurs up to 5-fold faster and requires as little as one-twentieth of LV. As an in vivo validation of the microfluidic-based transduction technology, HSPC gene therapy was performed in hemophilia A mice using limiting amounts of LV. Compared to the standard static well-based transduction protocols, only animals transplanted with microfluidic-transduced cells displayed clotting levels restored to normal.
Collapse
Affiliation(s)
- Reginald Tran
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - David R Myers
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | - Jordan E Shields
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison M Lytle
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Hommood Alrowais
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yongzhi Qiu
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Yumiko Sakurai
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - William C Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Oliver Brand
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joseph M Le Doux
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - H Trent Spencer
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Christopher B Doering
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA.
| | - Wilbur A Lam
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
27
|
Palaschak B, Marsic D, Herzog RW, Zolotukhin S, Markusic DM. An Immune-Competent Murine Model to Study Elimination of AAV-Transduced Hepatocytes by Capsid-Specific CD8 + T Cells. Mol Ther Methods Clin Dev 2017; 5:142-152. [PMID: 28480313 PMCID: PMC5415329 DOI: 10.1016/j.omtm.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/13/2017] [Indexed: 01/13/2023]
Abstract
Multiple independent adeno-associated virus (AAV) gene therapy clinical trials for hemophilia B, utilizing different AAV serotypes, have reported a vector dose-dependent loss of circulating factor IX (FIX) protein associated with capsid-specific CD8+ T cell (Cap-CD8) elimination of transduced hepatocytes. Hemophilia B patients who develop transient transaminitis and loss of FIX protein may be stabilized with the immune-suppressive (IS) drug prednisolone, but do not all recover lost FIX expression, whereas some patients fail to respond to IS. We developed the first animal model demonstrating Cap-CD8 infiltration and elimination of AAV-transduced hepatocytes of immune-deficient mice. Here, we extend this model to an immune-competent host where Cap-CD8 transfer to AAV2-F9-treated mice significantly reduced circulating and hepatocyte FIX expression. Further, we studied two high-expressing liver tropic AAV2 variants, AAV2-LiA and AAV2-LiC, obtained from a rationally designed capsid library. Unlike AAV2, Cap-CD8 did not initially reduce circulating FIX levels for either variant. However, FIX levels were significantly reduced in AAV2-LiC-F9-treated, but not AAV2-LiA-F9-treated, mice at the study endpoint. Going forward, the immune-competent model may provide an opportunity to induce immunological memory directed against a surrogate AAV capsid antigen and study recall responses following AAV gene transfer.
Collapse
Affiliation(s)
- Brett Palaschak
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Damien Marsic
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Roland W. Herzog
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - David M. Markusic
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
28
|
Abstract
After two decades of research, in vivo gene transfer with adeno-associated viral (AAV) vectors has now resulted in successful treatments and even cures for several human diseases. However, the potential for immune responses against the therapeutic gene products remains one of the concerns as this approach is broadened to more patients, diverse diseases, and target organs. Immune responses following gene transfer of coagulation factor IX (FIX) for the treatment of the bleeding disorder hemophilia B has been extensively investigated in multiple animal models. Findings from these studies have not only influenced clinical trial design but have broader implications for other diseases. The impact of vector design and dose, as well as target organ/route of administration on humoral and cellular immune responses are reviewed. Furthermore, the potential for tolerance induction by hepatic gene transfer or combination with immune modulation is discussed.
Collapse
Affiliation(s)
- Roland W Herzog
- Dept. Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
29
|
Nienhuis AW, Nathwani AC, Davidoff AM. Gene Therapy for Hemophilia. Mol Ther 2017; 25:1163-1167. [PMID: 28411016 PMCID: PMC5417837 DOI: 10.1016/j.ymthe.2017.03.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022] Open
Abstract
The X-linked bleeding disorder hemophilia causes frequent and exaggerated bleeding that can be life-threatening if untreated. Conventional therapy requires frequent intravenous infusions of the missing coagulation protein (factor VIII [FVIII] for hemophilia A and factor IX [FIX] for hemophilia B). However, a lasting cure through gene therapy has long been sought. After a series of successes in small and large animal models, this goal has finally been achieved in humans by in vivo gene transfer to the liver using adeno-associated viral (AAV) vectors. In fact, multiple recent clinical trials have shown therapeutic, and in some cases curative, expression. At the same time, cellular immune responses against the virus have emerged as an obstacle in humans, potentially resulting in loss of expression. Transient immune suppression protocols have been developed to blunt these responses. Here, we provide an overview of the clinical development of AAV gene transfer for hemophilia, as well as an outlook on future directions.
Collapse
Affiliation(s)
- Arthur W Nienhuis
- Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Amit C Nathwani
- Department of Haematology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6BT, UK
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
30
|
Wang X, Herzog RW, Byrne BJ, Kumar SRP, Zhou Q, Buchholz CJ, Biswas M. Immune Modulatory Cell Therapy for Hemophilia B Based on CD20-Targeted Lentiviral Gene Transfer to Primary B Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:76-82. [PMID: 28480307 PMCID: PMC5415320 DOI: 10.1016/j.omtm.2017.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/22/2017] [Indexed: 01/06/2023]
Abstract
Gene-modified B cells expressing immunoglobulin G (IgG) fusion proteins have been shown to induce tolerance in several autoimmune and other disease models. However, lack of a vector suitable for gene transfer to human B cells has been an obstacle for translation of this approach. To overcome this hurdle, we developed an IgG-human factor IX (hFIX) lentiviral fusion construct that was targeted to specifically transduce cells expressing human CD20 (hCD20). Receptor-specific retargeting by mutating envelope glycoproteins of measles virus (MV)-lentiviral vector (LV) and addition of a single-chain variable fragment specific for hCD20 resulted in gene delivery into primary human and transgenic hCD20 mouse B cells with high specificity. Notably, this protocol neither required nor induced activation of the B cells, as confirmed by minimal activation of inflammatory cytokines. Using this strategy, we were able to demonstrate induction of humoral tolerance, resulting in suppression of antibody formation against hFIX in a mouse model of hemophilia B (HB). In conclusion, transduction of receptor-specific retargeted LV into resting B cells is a promising method to develop B cell therapies for antigen-specific tolerance induction in human disease.
Collapse
Affiliation(s)
- Xiaomei Wang
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Roland W Herzog
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Barry J Byrne
- Powell Gene Therapy Center, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Sandeep R P Kumar
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Qi Zhou
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Moanaro Biswas
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
31
|
Wang Q, Dong B, Pokiniewski KA, Firrman J, Wu Z, Chin MPS, Chen X, Liu L, Xu R, Diao Y, Xiao W. Syngeneic AAV Pseudo-particles Potentiate Gene Transduction of AAV Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:149-158. [PMID: 28345000 PMCID: PMC5363323 DOI: 10.1016/j.omtm.2016.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022]
Abstract
Adeno-associated virus (AAV) vectors have emerged as a safe and efficient gene therapy platform. One complication is that a significant amount of empty particles have always been generated as impurities during AAV vector production. However, the effects of such particles on AAV vector performance remain unclear. Here we systemically evaluated the biological properties of three types of “empty” AAV particles: syngeneic pseudo-vectors with partial AAV genomes derived from DNA of the corresponding full particles, allogeneic pseudo-vectors with partial genomes different from the corresponding full particles, and null pseudo-vectors with no DNA inside the capsids. The syngeneic particles in excess increased the corresponding full AAV vector transgene expression both in vivo and in vitro. However, such effects were not observed with null or allogeneic particles. The observed differences among these pseudo-AAV particles may be ascribed to the syngeneic pseudo-vector DNA facilitating the complementary DNA synthesis of the corresponding full AAV particles. Our study suggests that the DNA content in the pseudo-vectors plays a key role in dictating their effects on AAV transduction. The effects of residual “empty” particles should be adequately assessed when comparing AAV vector performance. The syngeneic AAV pseudo-vectors may be used to enhance the efficacy of gene therapy.
Collapse
Affiliation(s)
- Qizhao Wang
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China; Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA 19122, USA
| | - Biao Dong
- Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA 19122, USA
| | - Katie A Pokiniewski
- Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19122, USA
| | - Jenni Firrman
- Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19122, USA; United States Department of Agriculture, ARS, ERRC, Wyndmoor, PA 19038, USA
| | - Zhongren Wu
- Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA 19122, USA
| | - Mario P S Chin
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University, Philadelphia, PA 19122, USA
| | - LinShu Liu
- United States Department of Agriculture, ARS, ERRC, Wyndmoor, PA 19038, USA
| | - Ruian Xu
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Yong Diao
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Weidong Xiao
- School of Biomedical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China; Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA 19122, USA; Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19122, USA; Cardiovascular Research Center, Temple University, Philadelphia, PA 19122, USA; United States Department of Agriculture, ARS, ERRC, Wyndmoor, PA 19038, USA
| |
Collapse
|
32
|
Balestra D, Scalet D, Pagani F, Rogalska ME, Mari R, Bernardi F, Pinotti M. An Exon-Specific U1snRNA Induces a Robust Factor IX Activity in Mice Expressing Multiple Human FIX Splicing Mutants. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e370. [PMID: 27701399 PMCID: PMC5095682 DOI: 10.1038/mtna.2016.77] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/21/2016] [Indexed: 12/30/2022]
Abstract
In cellular models we have demonstrated that a unique U1snRNA targeting an intronic region downstream of a defective exon (Exon-specific U1snRNA, ExSpeU1) can rescue multiple exon-skipping mutations, a relevant cause of genetic disease. Here, we explored in mice the ExSpeU1 U1fix9 toward two model Hemophilia B-causing mutations at the 5′ (c.519A > G) or 3′ (c.392-8T > G) splice sites of F9 exon 5. Hydrodynamic injection of wt-BALB/C mice with plasmids expressing the wt and mutant (hFIX-2G5′ss and hFIX-8G3′ss) splicing-competent human factor IX (hFIX) cassettes resulted in the expression of hFIX transcripts lacking exon 5 in liver, and in low plasma levels of inactive hFIX. Coinjection of U1fix9, but not of U1wt, restored exon inclusion of variants and in the intrinsically weak FIXwt context. This resulted in appreciable circulating hFIX levels (mean ± SD; hFIX-2G5′ss, 1.0 ± 0.5 µg/ml; hFIX-8G3′ss, 1.2 ± 0.3 µg/ml; and hFIXwt, 1.9 ± 0.6 µg/ml), leading to a striking shortening (from ~100 seconds of untreated mice to ~80 seconds) of FIX-dependent coagulation times, indicating a hFIX with normal specific activity. This is the first proof-of-concept in vivo that a unique ExSpeU1 can efficiently rescue gene expression impaired by distinct exon-skipping variants, which extends the applicability of ExSpeU1s to panels of mutations and thus cohort of patients.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Daniela Scalet
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Franco Pagani
- Internation Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Rosella Mari
- Haemostasis & Thrombosis Center, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,LTTA Center, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,LTTA Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Zolotukhin I, Markusic DM, Palaschak B, Hoffman BE, Srikanthan MA, Herzog RW. Potential for cellular stress response to hepatic factor VIII expression from AAV vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16063. [PMID: 27738644 PMCID: PMC5040172 DOI: 10.1038/mtm.2016.63] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/08/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
Hemophilia A and B are coagulation disorders resulting from the loss of functional coagulation factor VIII (FVIII) or factor IX proteins, respectively. Gene therapy for hemophilia with adeno-associated virus vectors has shown efficacy in hemophilia B patients. Although hemophilia A patients are more prevalent, the development of therapeutic adeno-associated virus vectors has been impeded by the size of the F8 cDNA and impaired secretion of FVIII protein. Further, it has been reported that over-expression of the FVIII protein induces endoplasmic reticulum stress and activates the unfolded protein response pathway both in vitro and in hepatocytes in vivo, presumably due to retention of misfolded FVIII protein within the endoplasmic reticulum. Engineering of the F8 transgene, including removal of the B domain (BDD-FVIII) and codon optimization, now allows for the generation of adeno-associated virus vectors capable of expressing therapeutic levels of FVIII. Here we sought to determine if the risks of inducing the unfolded protein response in murine hepatocytes extend to adeno-associated virus gene transfer. Although our data show a mild activation of unfolded protein response markers following F8 gene delivery at a certain vector dose in C57BL/6 mice, it was not augmented upon further elevated dosing, did not induce liver pathology or apoptosis, and did not impact FVIII immunogenicity.
Collapse
Affiliation(s)
- Irene Zolotukhin
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - David M Markusic
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Brett Palaschak
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Brad E Hoffman
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Meera A Srikanthan
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| |
Collapse
|
34
|
Kumar SRP, Markusic DM, Biswas M, High KA, Herzog RW. Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev 2016; 3:16034. [PMID: 27257611 PMCID: PMC4879992 DOI: 10.1038/mtm.2016.34] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 02/06/2023]
Abstract
Therapeutic gene transfer holds the promise of providing lasting therapies and even cures for diseases that were previously untreatable or for which only temporary or suboptimal treatments were available. For some time, clinical gene therapy was characterized by some impressive but rare examples of successes and also several setbacks. However, effective and long-lasting treatments are now being reported from gene therapy trials at an increasing pace. Positive outcomes have been documented for a wide range of genetic diseases (including hematological, immunological, ocular, and neurodegenerative and metabolic disorders) and several types of cancer. Examples include restoration of vision in blind patients, eradication of blood cancers for which all other treatments had failed, correction of hemoglobinopathies and coagulation factor deficiencies, and restoration of the immune system in children born with primary immune deficiency. To date, about 2,000 clinical trials for various diseases have occurred or are in progress, and many more are in the pipeline. Multiple clinical studies reported successful treatments of pediatric patients. Design of gene therapy vectors and their clinical development are advancing rapidly. This article reviews some of the major successes in clinical gene therapy of recent years.
Collapse
Affiliation(s)
- Sandeep RP Kumar
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - David M Markusic
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Moanaro Biswas
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | | | - Roland W Herzog
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
35
|
van der Loo JCM, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet 2016; 25:R42-52. [PMID: 26519140 PMCID: PMC4802372 DOI: 10.1093/hmg/ddv451] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 12/12/2022] Open
Abstract
Promising results in several clinical studies have emphasized the potential of gene therapy to address important medical needs and initiated a surge of investments in drug development and commercialization. This enthusiasm is driven by positive data in clinical trials including gene replacement for Hemophilia B, X-linked Severe Combined Immunodeficiency, Leber's Congenital Amaurosis Type 2 and in cancer immunotherapy trials for hematological malignancies using chimeric antigen receptor T cells. These results build on the recent licensure of the European gene therapy product Glybera for the treatment of lipoprotein lipase deficiency. The progress from clinical development towards product licensure of several programs presents challenges to gene therapy product manufacturing. These include challenges in viral vector-manufacturing capacity, where an estimated 1-2 orders of magnitude increase will likely be needed to support eventual commercial supply requirements for many of the promising disease indications. In addition, the expanding potential commercial product pipeline and the continuously advancing development of recombinant viral vectors for gene therapy require that products are well characterized and consistently manufactured to rigorous tolerances of purity, potency and safety. Finally, there is an increase in regulatory scrutiny that affects manufacturers of investigational drugs for early-phase clinical trials engaged in industry partnerships. Along with the recent increase in biopharmaceutical funding in gene therapy, industry partners are requiring their academic counterparts to meet higher levels of GMP compliance at earlier stages of clinical development. This chapter provides a brief overview of current progress in the field and discusses challenges in vector manufacturing.
Collapse
Affiliation(s)
- Johannes C M van der Loo
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA and
| | | |
Collapse
|
36
|
Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid. Mol Ther 2016; 24:1042-1049. [PMID: 27019999 DOI: 10.1038/mt.2016.61] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.
Collapse
|
37
|
Pang J, Wu Y, Li Z, Hu Z, Wang X, Hu X, Wang X, Liu X, Zhou M, Liu B, Wang Y, Feng M, Liang D. Targeting of the human F8 at the multicopy rDNA locus in Hemophilia A patient-derived iPSCs using TALENickases. Biochem Biophys Res Commun 2016; 472:144-9. [PMID: 26921444 DOI: 10.1016/j.bbrc.2016.02.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
Hemophilia A (HA) is a monogenic disease due to lack of the clotting factor VIII (FVIII). This deficiency may lead to spontaneous joint hemorrhages or life-threatening bleeding but there is no cure for HA until very recently. In this study, we derived induced pluripotent stem cells (iPSCs) from patients with severe HA and used transcription activator-like effector nickases (TALENickases) to target the factor VIII gene (F8) at the multicopy ribosomal DNA (rDNA) locus in HA-iPSCs, aiming to rescue the shortage of FVIII protein. The results revealed that more than one copy of the exogenous F8 could be integrated into the rDNA locus. Importantly, we detected exogenous F8 mRNA and FVIII protein in targeted HA-iPSCs. After they were differentiated into endothelial cells (ECs), the exogenous FVIII protein was still detectable. Thus, it is showed that the multicopy rDNA locus could be utilized as an effective target site in patient-derived iPSCs for gene therapy. This strategy provides a novel iPSCs-based therapeutic option for HA and other monogenic diseases.
Collapse
Affiliation(s)
- Jialun Pang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yong Wu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhuo Li
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhiqing Hu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaolin Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xuyun Hu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaoyan Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xionghao Liu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Miaojin Zhou
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bo Liu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yanchi Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Mai Feng
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
38
|
Effects of FVIII immunity on hepatocyte and hematopoietic stem cell-directed gene therapy of murine hemophilia A. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15056. [PMID: 26909355 PMCID: PMC4750467 DOI: 10.1038/mtm.2015.56] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 02/08/2023]
Abstract
Immune responses to coagulation factors VIII (FVIII) and IX (FIX) represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC) retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV)-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV) vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV.
Collapse
|
39
|
Su J, Sherman A, Doerfler PA, Byrne BJ, Herzog RW, Daniell H. Oral delivery of Acid Alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1023-32. [PMID: 26053072 PMCID: PMC4578979 DOI: 10.1111/pbi.12413] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/25/2015] [Accepted: 05/11/2015] [Indexed: 05/20/2023]
Abstract
Deficiency of acid alpha glucosidase (GAA) causes Pompe disease in which the patients systemically accumulate lysosomal glycogen in muscles and nervous systems, often resulting in infant mortality. Although enzyme replacement therapy (ERT) is effective in treating patients with Pompe disease, formation of antibodies against rhGAA complicates treatment. In this report, we investigated induction of tolerance by oral administration of GAA expressed in chloroplasts. Because full-length GAA could not be expressed, N-terminal 410-amino acids of GAA (as determined by T-cell epitope mapping) were fused with the transmucosal carrier CTB. Tobacco transplastomic lines expressing CTB-GAA were generated through site-specific integration of transgenes into the chloroplast genome. Homoplasmic lines were confirmed by Southern blot analysis. Despite low-level expression of CTB-GAA in chloroplasts, yellow or albino phenotype of transplastomic lines was observed due to binding of GAA to a chloroplast protein that has homology to mannose-6 phosphate receptor. Oral administration of the plant-made CTB-GAA fusion protein even at 330-fold lower dose (1.5 μg) significantly suppressed immunoglobulin formation against GAA in Pompe mice injected with 500 μg rhGAA per dose, with several-fold lower titre of GAA-specific IgG1 and IgG2a. Lyophilization increased CTB-GAA concentration by 30-fold (up to 190 μg per g of freeze-dried leaf material), facilitating long-term storage at room temperature and higher dosage in future investigations. This study provides the first evidence that oral delivery of plant cells is effective in reducing antibody responses in ERT for lysosomal storage disorders facilitating further advances in clinical investigations using plant cell culture system or in vitro propagation.
Collapse
Affiliation(s)
- Jin Su
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra Sherman
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Phillip A. Doerfler
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J. Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roland W. Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Farrugia A, Noone D, Schlenkrich U, Schlenkrich S, O’Mahony B, Cassar J. Issues in assessing products for the treatment of hemophilia - the intersection between efficacy, economics, and ethics. J Blood Med 2015; 6:185-95. [PMID: 26124687 PMCID: PMC4476485 DOI: 10.2147/jbm.s79091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Following the obviation of the pathogen safety threats posed by previous generations of clotting factor concentrates for the treatment of hemophilia, the principal issue facing the patient community is timely access to adequate supplies of continuously improving therapies. The application of evidence-based medicine has enhanced the basis of hemophilia therapy, while resulting in some challenges to patient care. Increasingly, the criteria used for the approval and payment of treatment products by regulatory and reimbursement agencies, respectively, are becoming inflexible and unrealistic. This is occurring particularly in the requirements for demonstrating product efficacy. Concurrently, emerging evidence of the interpatient variability in the clinical response to therapy has led to the proposed personalization of therapeutic regimens. Possible impediments to optimal care include competitive tensions among suppliers who seek to gain label claims for reimbursement purposes, which result in clinical trial designs of, arguably, unethical design, carried out in poor countries. We synthesize these converging developments to suggest some changes to the current hemophilia treatment paradigm, which should make it more patient-centric and enable speedier access to new therapies.
Collapse
Affiliation(s)
- Albert Farrugia
- School of Surgery, QEII Medical Centre, The University of Western Australia (M509), Crawley, WA, Australia
- College of Medicine, Medicine and Environment, Australian National University, Canberra, WA, Australia
| | | | | | | | | | - Josephine Cassar
- Faculty of Health, University of Canberra, Canberra, WA, Australia
| |
Collapse
|
41
|
Liras A. Biological therapies for inherited diseases: social and bioethical considerations. Hemophilia as an example. Expert Opin Biol Ther 2015; 15:713-22. [PMID: 25826280 DOI: 10.1517/14712598.2015.1029451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION In hemophilia, advanced therapies are warranted from a conceptual and methodological standpoint. Current advanced therapy strategies are centered on the use of adeno-associated viral vectors, although problems related to immunogenicity and hepatotoxicity still remain. AREAS COVERED Future clinical trials will have to scrupulously observe international bioethical standards in terms of patient selection, particularly children. Patient recruitment rates are likely to remain low due to the stringent exclusion criteria usually imposed on the trial population regarding their hepatic and immunological markers and the presence of viral coinfection; and to the existence of an optimal palliative treatment. EXPERT OPINION Accordingly, the results obtained are likely to be of low statistical significance, which could hinder their application to clinical practice. Another important issue is the degree to which society embraces these new emerging therapies. The unfamiliarity of society with these new methods, together with the many unresolved questions about them that remain, may threaten their acceptance not only by society at large but also by health-care professionals, which would limit their translational application to clinical practice.
Collapse
Affiliation(s)
- Antonio Liras
- Complutense University of Madrid, Research Institute 12 October Hospital of Madrid, Department of Physiology , Madrid , Spain +34649907879 ;
| |
Collapse
|
42
|
Optimal treatment strategies for hemophilia: achievements and limitations of current prophylactic regimens. Blood 2015; 125:2038-44. [DOI: 10.1182/blood-2015-01-528414] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Prophylactic application of clotting factor concentrates is the basis of modern treatment of severe hemophilia A. In children, the early start of prophylaxis as primary or secondary prophylaxis has become the gold standard in most countries with adequate resources. In adults, prophylaxis is reasonably continued when started as primary or secondary prophylaxis in childhood to maintain healthy joint function. Initial data support that adult patients with already existing advanced joint arthropathy benefit from tertiary prophylaxis with significantly lowered number of bleeds, almost complete absence of target joints, and less time off from work. Current prophylactic regimens, although very effective, do not completely prevent joint disease in a long-term perspective. Joint arthropathy in primary prophylaxis develops over many years, sometimes over a decade or even longer time periods. The ankle joints are the first and most severely affected joints in those patients and thus may serve in outcome assessment as an indicator of early joint arthropathy when followed by ultrasound or magnetic resonance imaging. Optimized outcome and best use of available resources is expected from individualization of therapy regimens, which comprises the individual’s bleeding pattern, condition of the musculoskeletal system, level of physical activity and the pharmacokinetic profile of the substituted coagulation factor, and most recently includes novel products with extended half-lives.
Collapse
|