1
|
Malik MNH, Tahir MN, Alsahli TG, Tusher MMH, Alzarea SI, Alsuwayt B, Jahan S, Gomaa HAM, Shaker ME, Ali M, Anjum I, Khan MT, Roman M, Shabbir R. Geraniol Suppresses Oxidative Stress, Inflammation, and Interstitial Collagenase to Protect against Inflammatory Arthritis. ACS OMEGA 2023; 8:37128-37139. [PMID: 37841186 PMCID: PMC10568708 DOI: 10.1021/acsomega.3c04684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Geraniol (GER) is a plant-derived acyclic isoprenoid monoterpene that has displayed anti-inflammatory effects in numerous in vivo and in vitro models. This study was therefore designed to evaluate the antiarthritic potential of GER in complete Freund's adjuvant (CFA)-induced inflammatory arthritis (IA) model in rats. IA was induced by intraplantar injection of CFA (0.1 mL), and a week after CFA administration, rats were treated with various doses of methotrexate (MTX; 1 mg/kg) or GER (25, 50, and 100 mg/kg). Treatments were given on every alternate day, and animals were sacrificed on the 35th day. Paw volume, histopathological, hematological, radiographic, and qPCR analyses were performed to analyze the severity of the disease. GER significantly reduced paw edema after 35 days of treatment, and these results were comparable to the MTX-treated group. GER-treated animals displayed a perfect joint structure with minimal inflammation and no signs of cartilage or bone damage. Moreover, GER restored red blood cell and hemoglobin levels, normalized erythrocyte sedimentation rate, platelet, and c-reactive protein values, and also attenuated the levels of rheumatoid factor. RT-qPCR analysis demonstrated that GER decreased mRNA expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta. GER also down-regulated the transcript levels of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1, prostaglandin D2 synthase, and interstitial collagenase (MMP-1). Molecular docking of GER with COX-2, TNF-α, and MMP-1 also revealed that the antiarthritic effects of GER could be due to its direct interactions with these mediators. Based on our findings, it is conceivable that the antiarthritic effects of GER could be attributed to downregulation of pro-inflammatory mediators and protease like MMP-1.
Collapse
Affiliation(s)
- Muhammad Nasir Hayat Malik
- Faculty
of Pharmacy, Capital University of Science
and Technology (CUST), Islamabad 44000, Pakistan
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | | | - Tariq G. Alsahli
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Md. Mahedi Hassan Tusher
- Department
of Pharmacology, Faculty of Basic Sciences, Bangladesh University of Health Sciences, Dhaka 1216, Bangladesh
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Bader Alsuwayt
- Department
of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Shah Jahan
- Department
of Immunology, University of Health Sciences, Lahore 54000, Pakistan
| | - Hesham A. M. Gomaa
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mohamed E. Shaker
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Muhammad Ali
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Irfan Anjum
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
- Shifa
College of Pharmaceutical Sciences,Shifa
Tameer-e-Millat University, Islamabad 44000, Pakistan
| | - Muhammad Tariq Khan
- Faculty
of Pharmacy, Capital University of Science
and Technology (CUST), Islamabad 44000, Pakistan
| | - Muhammad Roman
- Department
of Microbiology, University of Health Sciences, Lahore 54000, Pakistan
| | - Ramla Shabbir
- Faculty
of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| |
Collapse
|
2
|
Luo P, Wang P, Xu J, Hou W, Xu P, Xu K, Liu L. Immunomodulatory role of T helper cells in rheumatoid arthritis : a comprehensive research review. Bone Joint Res 2022; 11:426-438. [PMID: 35775145 PMCID: PMC9350707 DOI: 10.1302/2046-3758.117.bjr-2021-0594.r1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps. Cite this article: Bone Joint Res 2022;11(7):426–438.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peixu Wang
- Department of Orthopedics, China-Japan Friendship Hospital, China-Japan Friendship Institute of Clinical Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, China
| | - Jiawen Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Weikun Hou
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Toussirot E, Bonnefoy F, Vauchy C, Perruche S, Saas P. Mini-Review: The Administration of Apoptotic Cells for Treating Rheumatoid Arthritis: Current Knowledge and Clinical Perspectives. Front Immunol 2021; 12:630170. [PMID: 33717160 PMCID: PMC7950318 DOI: 10.3389/fimmu.2021.630170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated disease managed by conventional synthetic drugs, such as methotrexate (MTX), and targeted drugs including biological agents. Cell-based therapeutic approaches are currently developed in RA, mainly mesenchymal stroma cell-based approaches. Early-stage apoptotic cells possess direct and indirect anti-inflammatory properties. During the elimination of dying cells (a process called efferocytosis), specific mechanisms operate to control immune responses. There are compelling evidences in experimental models of arthritis indicating that apoptotic cell administration may benefit joint inflammation, and may even have therapeutic effects on arthritis. Additionally, it has been demonstrated that apoptotic cells could be administered with standard treatments of RA, such as MTX or TNF inhibitors (TNFi), given even a synergistic response with TNFi. Interestingly, apoptotic cell infusion has been successfully experienced to prevent acute graft-vs.-host disease after hematopoietic cell transplantation in patients with hematologic malignancies, with a good safety profile. In this mini-review, the apoptotic cell-based therapy development in arthritis is discussed, as well as its transfer in the short-term to an innovative treatment for patients with RA. The use of apoptotic cell-derived factors, including secretome or phosphatidylserine-containing liposomes, in RA are also discussed.
Collapse
Affiliation(s)
- Eric Toussirot
- INSERM CIC-1431, Centre d'Investigation Clinique Biothérapie, Pôle Recherche, CHU de Besançon, Besançon, France.,Fédération Hospitalo-Universitaire INCREASE, CHU de Besançon, Besançon, France.,Rhumatologie, Pôle PACTE (Pathologies Aiguës Chroniques Transplantation Éducation), CHU de Besançon, Besançon, France.,Département Universitaire de Thérapeutique, Université de Bourgogne Franche-Comté, Besançon, France.,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Francis Bonnefoy
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France.,MED'INN'Pharma, Besançon, France
| | - Charline Vauchy
- INSERM CIC-1431, Centre d'Investigation Clinique Biothérapie, Pôle Recherche, CHU de Besançon, Besançon, France.,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Sylvain Perruche
- Fédération Hospitalo-Universitaire INCREASE, CHU de Besançon, Besançon, France.,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France.,MED'INN'Pharma, Besançon, France
| | - Philippe Saas
- INSERM CIC-1431, Centre d'Investigation Clinique Biothérapie, Pôle Recherche, CHU de Besançon, Besançon, France.,Fédération Hospitalo-Universitaire INCREASE, CHU de Besançon, Besançon, France.,Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| |
Collapse
|
4
|
Inhibition of Rheumatoid Arthritis Using Bark, Leaf, and Male Flower Extracts of Eucommia ulmoides. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3260278. [PMID: 32855647 PMCID: PMC7443016 DOI: 10.1155/2020/3260278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/21/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022]
Abstract
Eucommia ulmoides Oliv., a native Chinese plant species, has been used as a traditional Chinese medicine formulation to treat rheumatoid arthritis (RA), strengthen bones and muscles, and lower blood pressure. Various parts of this plant such as the bark, leaves, and flowers have been found to have anti-inflammatory properties. E. ulmoides has potential applications as a therapeutic agent against bone disorders, which were investigated in this study. In vitro, RA joint fibroblast-like synoviocytes (RA-FLS) were treated with different concentrations (0, 25, 50, 100, 200, 400, 800, and 1000 μg/mL) of E. ulmoides bark, leaf, and male flower alcoholic extracts (EB, EL, and EF, respectively) to determine their potential cytotoxicity. Tumor necrosis factor- (TNF-) α and nitric oxide (NO) levels in RA-FLS were quantified using enzyme-linked immunosorbent assay (ELISA). Furthermore, collagen-induced arthritis (CIA) rats were treated with EB, EL, EF, Tripterygium wilfordii polyglycoside (TG) or the normal control (Nor), and then ankle joint pathology, bone morphology, and serum and spleen inflammatory cytokine levels were evaluated. The results showed that, in RA-FLS, EB, EL, and EF were not cytotoxic; EB and EF reduced TNF-α supernatant levels; and EB, EL, and EF reduced NO levels. The results of in vivo experiments showed that EB, EL, and EF alleviated ankle swelling and joint inflammation, while all extracts diminished inflammatory cell infiltration, pannus and bone destruction, and bone erosion. All tested extracts inhibited interleukin- (IL-) 6, IL-17, and TNF-α mRNA in the spleen of CIA rats, while EB most effectively reduced osteoclasts and inhibited bone erosion. EF showed the most obvious inhibition of inflammatory factors and pannus. Thus, EB, EL, and EF may alleviate bone destruction by inhibiting inflammation.
Collapse
|
5
|
Fromm S, Cunningham CC, Dunne MR, Veale DJ, Fearon U, Wade SM. Enhanced angiogenic function in response to fibroblasts from psoriatic arthritis synovium compared to rheumatoid arthritis. Arthritis Res Ther 2019; 21:297. [PMID: 31864394 PMCID: PMC6925847 DOI: 10.1186/s13075-019-2088-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction Angiogenesis is an early event in the pathogenesis of both psoriatic arthritis (PsA) and rheumatoid arthritis (RA); however, there are striking differences in blood vessel morphology and activation between the two arthropathies. The aim of this study was to assess if the PsA and RA joint microenvironments differentially regulate endothelial cell function. Methods PsA and RA primary synovial fibroblasts (SFC) were isolated from synovial biopsies, grown to confluence, and supernatants harvested and termed ‘conditioned media’ (CM). Human umbilical vein endothelial cells (HUVEC) were cultured with PsA SFC or RA SFC-CM (20%). HUVEC tube formation, migration, and PBMC adhesion were assessed by matrigel tube formation, wound repair, and PBMC adhesion assays. HUVEC cell surface expression of ICAM, VCAM, and E-Selectin was assessed by flow cytometry. Transcriptome analysis of genes promoting angiogenesis was performed by real-time PCR. Finally, a MSD multiplex angiogenic assay was performed on PsA SFC and RA SFC supernatants. Results Macroscopic synovitis and vascularity were similar in PsA and RA patients; however, significant differences in vascular morphological pattern were recorded with tortuous, elongated vessels observed in PsA compared to straight regular branching vessels observed in RA. Transcriptome analysis showed strong upregulation of the pro-angiogenic signature in HUVEC primed with PsA SFC-CM compared to RA SFC-CM and basal control. In parallel, paired PsA SFC-CM significantly induced HUVEC tube formation compared to that of RA SFC-CM. Furthermore, PsA SFC-CM induced HUVEC migration was paralleled by a significant induction in VEGFA, PFKFB3, ICAM-1, and MMP3 mRNA expression. A significant increase in PBMC adhesion and cell surface expression of VCAM-1, ICAM-1, and E-Selectin expression was also demonstrated in PsA SFC-CM-primed HUVEC compared to RA SFC-CM. Finally, VEGF, TSLP, Flt-1, and Tie-2 expression was elevated in PsA SFC-CM compared to RA SFC-CM, with no significant difference in other pro-angiogenic mediators including MIP-3, bFGF, PIGF, and MCP-1. Conclusion PsA SFC and RA SFC secreted factors differentially regulate endothelial cell function, with soluble mediators in the PsA joint microenvironment inducing a more pro-angiogenic phenotype compared to the RA.
Collapse
Affiliation(s)
- S Fromm
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - C C Cunningham
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - M R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - D J Veale
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, University College Dublin, Dublin, Ireland
| | - U Fearon
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - S M Wade
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Electroacupuncture on ST36 and GB39 Acupoints Inhibits Synovial Angiogenesis via Downregulating HIF-1 α/VEGF Expression in a Rat Model of Adjuvant Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5741931. [PMID: 31316573 PMCID: PMC6601504 DOI: 10.1155/2019/5741931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/25/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022]
Abstract
Introduction. The hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) play a key role in synovial angiogenesis in rheumatoid arthritis (RA). Therefore, this study aimed to test the hypothesis that electroacupuncture (EA) may inhibit RA synovial angiogenesis via HIF-1α/VEGF expression. Methods. Sprague-Dawley rats were randomly distributed to 4 groups: control, adjuvant arthritis (AA), AA+electroacupuncture (AA+EA), and AA+sham EA groups. AA model was induced by injection of Freund's complete adjuvant in bilateral hind footpad. 3 days after injection, EA was delivered to the acupoints Zusanli (ST 36) and Xuanzhong (GB 39) once every two days for a total of 8 times in the AA+EA group, while sham EA treatment was applied in the AA+sham EA group. The arthritis score, paw volume, and H&E staining for each animal were measured. CD34 expression in synovial tissue of ankle joint was observed by immunohistochemistry. HIF-1α and VEGF mRNA and protein levels in synovial tissue were determined by real-time quantitative PCR and Western blot, respectively. Results. Compared with rats in AA group, EA stimulation significantly decreased arthritis scores, paw volume, and pathological damage of synovial tissues. Moreover, EA markedly suppressed the synovial angiogenesis of AA rats, as evidenced by reduced CD34 positive expression. Furthermore, EA significantly reduced HIF-1α and VEGF mRNA and protein levels in synovial of AA rats. Finally, the CD34 expression in synovial tissue was positively correlated with HIF-1α and VEGF protein levels. Conclusion. EA on ST36 and GB39 acupoints can effectively inhibit synovial angiogenesis in the AA rat model via downregulating HIF-1α/VEGF expression.
Collapse
|
7
|
Hu Z. Therapeutic Antibody-Like Immunoconjugates against Tissue Factor with the Potential to Treat Angiogenesis-Dependent as Well as Macrophage-Associated Human Diseases. Antibodies (Basel) 2018; 7:8. [PMID: 31105982 PMCID: PMC6519474 DOI: 10.3390/antib7010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that tissue factor (TF) is selectively expressed in pathological angiogenesis-dependent as well as macrophage-associated human diseases. Pathological angiogenesis, the formation of neovasculature, is involved in many clinically significant human diseases, notably cancer, age-related macular degeneration (AMD), endometriosis and rheumatoid arthritis (RA). Macrophage is involved in the progression of a variety of human diseases, such as atherosclerosis and viral infections (human immunodeficiency virus, HIV and Ebola). It is well documented that TF is selectively expressed on angiogenic vascular endothelial cells (VECs) in these pathological angiogenesis-dependent human diseases and on disease-associated macrophages. Under physiology condition, TF is not expressed by quiescent VECs and monocytes but is solely restricted on some cells (such as pericytes) that are located outside of blood circulation and the inner layer of blood vessel walls. Here, we summarize TF expression on angiogenic VECs, macrophages and other diseased cell types in these human diseases. In cancer, for example, the cancer cells also overexpress TF in solid cancers and leukemia. Moreover, our group recently reported that TF is also expressed by cancer-initiating stem cells (CSCs) and can serve as a novel oncotarget for eradication of CSCs without drug resistance. Furthermore, we review and discuss two generations of TF-targeting therapeutic antibody-like immunoconjugates (ICON and L-ICON1) and antibody-drug conjugates that are currently being tested in preclinical and clinical studies for the treatment of some of these human diseases. If efficacy and safety are proven in current and future clinical trials, TF-targeting immunoconjugates may provide novel therapeutic approaches with potential to broadly impact the treatment regimen of these significant angiogenesis-dependent, as well as macrophage-associated, human diseases.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Wang B, Zhao P, Zhou Y, Meng L, Zhu W, Jiang C, Wang L, Cai Y, Lu S, Hou W. Increased expression of Th17 cytokines and interleukin-22 correlates with disease activity in pristane-induced arthritis in rats. PLoS One 2017; 12:e0188199. [PMID: 29182672 PMCID: PMC5705111 DOI: 10.1371/journal.pone.0188199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to identify the key changed subtype of T helper cells (Th cells) and their cytokines in pristane-induced arthritis (PIA) in rats. The severity of arthritis was evaluated by body weight, clinical score, the perimeter of ankle and mid-paw and histological assessment of ankle joints. Cytokines of Th1, Th2 and Th17 were determined in the spleen and inguinal lymph nodes at 28 days after pristane injection by real-time qPCR. The mRNA levels of IL-22 receptors, IL-22R1 and IL-22BP, in the spleen were quantified by real-time qPCR. Additionally, IL-22 expression in synovial membrane was detected by Western blotting, and serum IL-22 concentration was determined by ELISA. Correlation between IL-22 concentration and clinical score was analyzed. By screening the cytokines of Th1, Th2 and Th17 expression profile, we found that the mRNA levels of Th17 cytokines were significantly increased in PIA rats. Particularly, a significant increase in the protein expression of IL-22 was determined in synovial membrane and serum from PIA rats, and correlated with clinical score. We conclude that IL-22 expression level was increased and correlated with disease severity, which indicated that IL-22 may play an important role in development of PIA, and was helpful to explorer the pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
- Bo Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an, Shaanxi, China
| | - Panpan Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Dermatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Linyu Wang
- Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an, Shaanxi, China
| | - Yongsong Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Osteonecrosis and Joint Reconstruction Ward, Joint Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Weikun Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Osteonecrosis and Joint Reconstruction Ward, Joint Surgery, Xi’an Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Zhang Y, Gan C, Zhang J, Chen D. LPS‑induced downregulation of microRNA‑204/211 upregulates and stabilizes Angiopoietin‑1 mRNA in EA.hy926 endothelial cells. Mol Med Rep 2017; 16:6081-6087. [PMID: 28901393 PMCID: PMC5865812 DOI: 10.3892/mmr.2017.7400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
Angiopoietin-1 (ANG-1), a ligand of the endothelial cell-specific TIE2 surface receptor, acts in a complementary and coordinated manner with vascular endothelial growth factor during the process of angiogenesis. ANG-1 can be used as a clinically informative biomarker of disease severity and outcome in severe sepsis. The epithelium-specific Ets transcription factor 1 can activate ANG-1 transcription in the setting of inflammation; however, relatively little is known about the regulation of ANG-1 by microRNAs (miRs). It was observed that lipopolysaccharide (LPS) significantly increased ANG-1 mRNA and protein expression in EA.hy926 cells. ANG-1 was identified as a potential target gene of miR-204 and miR-211. Overexpression of miR-204/211 partially reversed the LPS-induced ANG-1 expression in EA.hy926 cells. Furthermore, overexpression of miR-204/211 significantly reduced the activity of a luciferase reporter gene containing the wild-type ANG-1 3′-untranslated region (UTR), but did not influence the activity of a luciferase reporter gene containing the ANG-1 3′-UTR with a mutated miR-204/211 binding site, confirming that miR-204/211 can bind to the ANG-1 3′-UTR and post-transcriptionally regulate ANG-1. Additionally, LPS enhanced the stability of ANG-1 mRNA by reducing the abundance of miR-204/211. Overexpression of miR-204/211 reduced the migration of EA.hy926 cells in vitro. The present study demonstrated that ANG-1 is a novel direct target gene of miR-204 and miR-211; in addition, LPS was able to inhibit this effect by reducing the expression of miR-204 and miR-211.
Collapse
Affiliation(s)
- Yijun Zhang
- Sun Yat‑sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Caixia Gan
- Sun Yat‑sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Jiangbo Zhang
- Sun Yat‑sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Dong Chen
- Sun Yat‑sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
10
|
Elshabrawy HA, Essani AE, Szekanecz Z, Fox DA, Shahrara S. TLRs, future potential therapeutic targets for RA. Autoimmun Rev 2016; 16:103-113. [PMID: 27988432 DOI: 10.1016/j.autrev.2016.12.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/27/2023]
Abstract
Toll like receptors (TLR)s have a central role in regulating innate immunity and in the last decade studies have begun to reveal their significance in potentiating autoimmune diseases such as rheumatoid arthritis (RA). Earlier investigations have highlighted the importance of TLR2 and TLR4 function in RA pathogenesis. In this review, we discuss the newer data that indicate roles for TLR5 and TLR7 in RA and its preclinical models. We evaluate the pathogenicity of TLRs in RA myeloid cells, synovial tissue fibroblasts, T cells, osteoclast progenitor cells and endothelial cells. These observations establish that ligation of TLRs can transform RA myeloid cells into M1 macrophages and that the inflammatory factors secreted from M1 and RA synovial tissue fibroblasts participate in TH-17 cell development. From the investigations conducted in RA preclinical models, we conclude that TLR-mediated inflammation can result in osteoclastic bone erosion by interconnecting the myeloid and TH-17 cell response to joint vascularization. In light of emerging unique aspects of TLR function, we summarize the novel approaches that are being tested to impair TLR activation in RA patients.
Collapse
Affiliation(s)
- Hatem A Elshabrawy
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA
| | - Abdul E Essani
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA
| | - Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Faculty of Medicine, Nagyerdei Str 98, Debrecen H-4004, Hungary
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiva Shahrara
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA.
| |
Collapse
|
11
|
The Role of CC-Chemokines in the Regulation of Angiogenesis. Int J Mol Sci 2016; 17:ijms17111856. [PMID: 27834814 PMCID: PMC5133856 DOI: 10.3390/ijms17111856] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is critical for survival and in the regenerative response to tissue injury or ischemia. However, in diseases such as cancer and atherosclerosis, inflammation can cause unregulated angiogenesis leading to excessive neovascularization, which exacerbates disease. Current anti-angiogenic therapies cause complete inhibition of both inflammatory and ischemia driven angiogenesis causing a range of side effects in patients. Specific inhibition of inflammation-driven angiogenesis would therefore be immensely valuable. Increasing evidence suggests that the CC-chemokine class promotes inflammation-driven angiogenesis, whilst there is little evidence for a role in ischemia-mediated angiogenesis. The differential regulation of angiogenesis by CC-chemokines suggests it may provide an alternate strategy to treat angiogenesis associated pathological diseases. The focus of this review is to highlight the significant role of the CC-chemokine class in inflammation, versus ischemia driven angiogenesis, and to discuss the related pathologies including atherosclerosis, cancer, and rheumatoid arthritis. We examine the pros and cons of anti-angiogenic therapies currently in clinical trials. We also reveal novel therapeutic strategies that cause broad-spectrum inhibition of the CC-chemokine class that may have future potential for the specific inhibition of inflammatory angiogenesis.
Collapse
|
12
|
Farrugia M, Baron B. The role of TNF-α in rheumatoid arthritis: a focus on regulatory T cells. J Clin Transl Res 2016; 2:84-90. [PMID: 30873466 PMCID: PMC6410649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 11/07/2022] Open
Abstract
The autoimmune disorder rheumatoid arthritis (RA) causes chronic inflammation and destruction of joints. T cells are a predominant component of the synovial environment in RA, however the functional role of these cells is not yet fully understood. This is in part due to the fact that the balance and importance of the relation of Tregs with T-effector cells in RA is still under investigation. The current treatment regimen for this debilitating disease focuses on controlling symptoms and preventing further joint damage through the use of therapies which affect different areas of the immune system at the synovium. One of the main therapies involves Tumor Necrosis Factor alpha (TNF-α) inhibitors. In the RA immune-environment, TNF-α has been shown to have an influential and extensive but as yet poorly understood effect on Treg function in vivo, and undoubtably an important role in the treatment of RA. Interestingly, the high levels of TNF-α found in RA patients appear to interfere with the mechanisms controlling the suppressive function of Tregs. Relevance for patients: This review focuses on the conflicting literature available regarding the role played by Tregs in RA and the impact of TNF-α and anti-TNF-α therapies on Tregs in this scenario. Individuals suffering from RA can benefit from better insight of the treatment mechanisms of the immunologic processes which occur throughout this disease, as current treatments for RA focus on several different areas of the immune system at the synovial compartment.
Collapse
Affiliation(s)
- Mark Farrugia
- Center for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | |
Collapse
|
13
|
Tas SW, Maracle CX, Balogh E, Szekanecz Z. Targeting of proangiogenic signalling pathways in chronic inflammation. Nat Rev Rheumatol 2015; 12:111-22. [PMID: 26633288 DOI: 10.1038/nrrheum.2015.164] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiogenesis is de novo capillary outgrowth from pre-existing blood vessels. This process not only is crucial for normal development, but also has an important role in supplying oxygen and nutrients to inflamed tissues, as well as in facilitating the migration of inflammatory cells to the synovium in rheumatoid arthritis, spondyloarthritis and other systemic autoimmune diseases. Neovascularization is dependent on the balance of proangiogenic and antiangiogenic mediators, including growth factors, cytokines, chemokines, cell adhesion molecules and matrix metalloproteinases. This Review describes the various intracellular signalling pathways that govern these angiogenic processes and discusses potential approaches to interfere with pathological angiogenesis, and thereby ameliorate inflammatory disease, by targeting these pathways.
Collapse
Affiliation(s)
- Sander W Tas
- Amsterdam Rheumatology &Immunology Centre, Department of Experimental Immunology, Academic Medical Centre and University of Amsterdam, EULAR &FOCIS (Federation of Clinical Immunology Societies) Centre of Excellence, Meibergdreef 9, F4-105, 1105 AZ Amsterdam, Netherlands
| | - Chrissta X Maracle
- Amsterdam Rheumatology &Immunology Centre, Department of Experimental Immunology, Academic Medical Centre and University of Amsterdam, EULAR &FOCIS (Federation of Clinical Immunology Societies) Centre of Excellence, Meibergdreef 9, F4-105, 1105 AZ Amsterdam, Netherlands
| | - Emese Balogh
- Department of Rheumatology, Institute of Medicine, University of Debrecen, Faculty of Medicine, Nagyerdei Str. 98, Debrecen 4032, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen, Faculty of Medicine, Nagyerdei Str. 98, Debrecen 4032, Hungary
| |
Collapse
|
14
|
Chen Z, Kim SJ, Essani AB, Volin MV, Vila OM, Swedler W, Arami S, Volkov S, Sardin LV, Sweiss N, Shahrara S. Characterising the expression and function of CCL28 and its corresponding receptor, CCR10, in RA pathogenesis. Ann Rheum Dis 2014; 74:1898-906. [PMID: 24833787 DOI: 10.1136/annrheumdis-2013-204530] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 04/16/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE This study was conducted to determine the expression pattern, regulation and function of CCL28 and CCR10 in rheumatoid arthritis (RA) pathogenesis. METHODS Expression of CCL28 and CCR10 was assessed in RA compared with other arthritis synovial tissues (STs) or fluids (SFs) by histology or ELISA. The factors modulating CCL28 and CCR10 expression were identified in RA myeloid and endothelial cells by ELISA, FACS and Western blotting. The mechanism by which CCL28 ligation promotes RA angiogenesis was examined in control and CCR10-knockdown endothelial cell chemotaxis and capillary formation. RESULTS CCL28 and/or CCR10 expression levels were accentuated in STs and SFs of patients with joint disease compared with normal controls and they were predominately coexpressed in RA myeloid and endothelial cells. We show that protein expression of CCL28 and CCR10 was modulated by tumour necrosis factor (TNF)-α and toll-like receptor 4 ligation in RA monocytes and endothelial cells and by interleukin (IL)-6 stimulation in RA macrophages. Neutralisation of CCL28 in RA SF or blockade of CCR10 on human endothelial progenitor cells (EPCs) significantly reduced SF-induced endothelial migration and capillary formation, demonstrating that ligation of joint CCL28 to endothelial CCR10+ cells is involved in RA angiogenesis. We discovered that angiogenesis driven by ligation of CCL28 to CCR10 is linked to the extracellular signal regulated kinase (ERK) cascade, as CCR10-knockdown cells exhibit dysfunctional CCL28-induced ERK signalling, chemotaxis and capillary formation. CONCLUSIONS The overexpression of CCL28 and CCR10 in RA ST and their contribution to EPC migration into RA joints support the CCL28/CCR10 cascade as a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Zhenlong Chen
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Seung-Jae Kim
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Abdul B Essani
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Michael V Volin
- Department of Microbiology & Immunology, Midwestern University, Chicago College of Osteopathic Medicine, Downers Grove, Illinois, USA
| | - Olga M Vila
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - William Swedler
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Shiva Arami
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Suncica Volkov
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Latriese V Sardin
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Nadera Sweiss
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Shiva Shahrara
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
15
|
Kim SJ, Chen Z, Chamberlain ND, Volin MV, Swedler W, Volkov S, Sweiss N, Shahrara S. Angiogenesis in rheumatoid arthritis is fostered directly by toll-like receptor 5 ligation and indirectly through interleukin-17 induction. ACTA ACUST UNITED AC 2013; 65:2024-36. [PMID: 23666857 DOI: 10.1002/art.37992] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/23/2013] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To examine the impact of Toll-like receptor 5 (TLR-5) on endothelial cell function in rheumatoid arthritis (RA) and vascularization in collagen-induced arthritis (CIA). METHODS Endothelial cell migration and tube formation assays were used to demonstrate the direct role of TLR-5 ligation in angiogenesis. Mice with CIA were treated with the TLR-5 agonist flagellin to document the effect of TLR-5 ligation in RA pathology. Vascularization in CIA was determined by immunohistochemical analysis and determination of cytokine levels in ankle joints. Spleen Th17 cells and joint interleukin-17 (IL-17) were quantified by fluorescence-activated cell sorting analysis and enzyme-linked immunosorbent assay. The development of Th17 cells induced by TLR-5 ligation was validated in RA peripheral blood mononuclear cells. RESULTS Ligation of TLR-5 to endogenous ligands expressed in RA synovial fluid contributed to endothelial cell infiltration and tube formation. Furthermore, treatment with flagellin after the onset of CIA exacerbated joint inflammation; in contrast, inflammation in control mice remained at a plateau phase. We showed that TLR-5-enhanced disease severity was attributable to Th17 cell differentiation and joint vascularization in CIA. Examination of the underlying mechanism using RA peripheral blood mononuclear cells documented that ligation of TLR-5 in myeloid cells and production of Th17-promoting cytokines were necessary for Th17 cell polarization. Additionally, we demonstrated that blockade of the IL-17 cascade markedly reduced endothelial cell migration activated by flagellin-conditioned medium, suggesting that TLR-5 ligation can mediate RA angiogenesis either directly by attracting endothelial cells or indirectly by fostering Th17 cell development. CONCLUSION Our data demonstrate a novel role for TLR-5 in RA angiogenesis; thus, TLR-5 may be a promising new target for RA treatment.
Collapse
|
16
|
Rogers JL, Serafin DS, Timoshchenko RG, Tarrant TK. Cellular targeting in autoimmunity. Curr Allergy Asthma Rep 2013; 12:495-510. [PMID: 23054625 DOI: 10.1007/s11882-012-0307-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many biologic agents that were first approved for the treatment of malignancies are now being actively investigated and used in a variety of autoimmune diseases such as rheumatoid arthritis (RA), antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis, systemic lupus erythematosus (SLE), and Sjogren's syndrome. The relatively recent advance of selective immune targeting has significantly changed the management of autoimmune disorders and in part can be attributed to the progress made in understanding effector cell function and their signaling pathways. In this review, we will discuss the recent FDA-approved biologic therapies that directly target immune cells as well as the most promising investigational drugs affecting immune cell function and signaling for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jennifer L Rogers
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC 27517, USA
| | | | | | | |
Collapse
|
17
|
Jung YO, Kim HA. Recent paradigm shifts in the diagnosis and treatment of rheumatoid arthritis. Korean J Intern Med 2012; 27:378-87. [PMID: 23269876 PMCID: PMC3529234 DOI: 10.3904/kjim.2012.27.4.378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive inflammatory disease with severe symptoms of pain and stiffness. Chronic persistent inflammation of RA often leads to joint destruction, deformity and limitation of function, which ultimately results in significant deterioration of quality of life (QoL). RA is characterized pathogenetically by immunologically driven, chronic synovitis, and production of autoantibodies, such as rheumatoid factor and anti-cyclic citrullinated peptide antibodies. Although the cause of RA is yet unknown, advances in the molecular biology led to in-depth understanding of its pathogenesis, and have fostered the recent development of novel treatments. The last decade has seen the dramatic change in the landscape of RA treatment with more aggressive therapy early in the disease course and with treatment guided by a structured assessment of disease activity, with the ultimate goal of reaching remission. In addition, prevention and control of joint damage and improvement in QoL are important goals. To achieve these goals, a multidisciplinary approach to reduce disease activity with disease modifying antirheumatic drugs and biological therapy is needed. We also need to find ways to identify those patients who are at risk for more rapid disease progression who would benefit from intensive therapy early in the course of disease.
Collapse
Affiliation(s)
- Young Ok Jung
- Department of Internal Medicine, Hallym University College of Medicine, Anyang, Korea
| | - Hyun Ah Kim
- Department of Internal Medicine, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
18
|
Meier FMP, Frommer KW, Peters MA, Brentano F, Lefèvre S, Schröder D, Kyburz D, Steinmeyer J, Rehart S, Gay S, Müller-Ladner U, Neumann E. Visfatin/pre-B-cell colony-enhancing factor (PBEF), a proinflammatory and cell motility-changing factor in rheumatoid arthritis. J Biol Chem 2012; 287:28378-85. [PMID: 22767598 DOI: 10.1074/jbc.m111.312884] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adipokines such as adiponectin and visfatin/pre-B-cell colony-enhancing factor (PBEF) have been recently shown to contribute to synovial inflammation in rheumatoid arthritis (RA). In this study, we evaluated the pathophysiological implication of visfatin/PBEF in the molecular patterns of RA synovial tissue, focusing on RA synovial fibroblasts (RASFs), key players in RA synovium. Expression of visfatin/PBEF in synovial fluid and tissue of RA patients was detected by immunoassays and immunohistochemistry. RASFs were stimulated with different concentrations of visfatin/PBEF over varying time intervals, and changes in gene expression were evaluated at the RNA and protein levels using Affymetrix array, real-time PCR, and immunoassays. The signaling pathways involved were identified. The influence of visfatin/PBEF on fibroblast motility and migration was analyzed. In RA synovium, visfatin/PBEF was predominantly expressed in the lining layer, lymphoid aggregates, and interstitial vessels. In RASFs, visfatin/PBEF induced high amounts of chemokines such as IL-8 and MCP-1, proinflammatory cytokines such as IL-6, and matrix metalloproteinases such as MMP-3. Phosphorylation of p38 MAPK was observed after visfatin/PBEF stimulation, and inhibition of p38 MAPK showed strong reduction of visfatin-induced effects. Directed as well as general fibroblast motility was increased by visfatin/PBEF-induced factors. The results of this study indicate that visfatin/PBEF is involved in synovial fibroblast activation by triggering fibroblast motility and promoting cytokine synthesis at central sites in RA synovium.
Collapse
Affiliation(s)
- Florian M P Meier
- Department of Internal Medicine and Rheumatology, Justus-Liebig University Giessen, and the Kerckhoff Klinik, D-61231 Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Anti-CXCL5 therapy ameliorates IL-17-induced arthritis by decreasing joint vascularization. Angiogenesis 2011; 14:443-55. [PMID: 21779896 DOI: 10.1007/s10456-011-9227-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/09/2011] [Indexed: 12/23/2022]
Abstract
IL-17-induced joint inflammation is associated with increased angiogenesis. However, the mechanism by which IL-17 mediates angiogenesis is undefined. Therefore, the pathologic role of CXCL1 and CXCL5 was investigated in arthritis mediated by local expression of IL-17, employing a neutralizing antibody to each chemokine. Next, endothelial chemotaxis was utilized to examine whether endothelial migration was differentially mediated by CXCL1 and CXCL5. Our results demonstrate that IL-17-mediated disease activity was not affected by anti-CXCL1 treatment alone. In contrast, mice receiving anti-CXCL5 demonstrated significantly reduced clinical signs of arthritis, compared to the mice treated with IgG control. Consistently, while inflammation, synovial lining thickness, bone erosion and vascularization were markedly reduced in both the anti-CXCL5 and combination anti-CXCL1 and 5 treatment groups, mice receiving anti-CXCL1 antibody had clinical scores similar to the control group. In contrast to joint FGF2 and VEGF levels, TNF-α was significantly reduced in mice receiving anti-CXCL5 or combination of anti-CXCL1 and 5 therapies compared to the control group. We found that, like IL-17, CXCL1-induced endothelial migration is mediated through activation of PI3K. In contrast, activation of NF-κB pathway was essential for endothelial chemotaxis induced by CXCL5. Although CXCL1 and CXCL5 can differentially mediate endothelial trafficking, blockade of CXCR2 can inhibit endothelial chemotaxis mediated by either of these chemokines. These results suggest that blockade of CXCL5 can modulate IL-17-induced inflammation in part by reducing joint blood vessel formation through a non-overlapping IL-17 mechanism.
Collapse
|
20
|
Raman D, Sobolik-Delmaire T, Richmond A. Chemokines in health and disease. Exp Cell Res 2011; 317:575-89. [PMID: 21223965 DOI: 10.1016/j.yexcr.2011.01.005] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 12/20/2022]
Abstract
Chemokines and their receptors play a key role in development and homeostasis as well as in the pathogenesis of tumors and autoimmune diseases. Chemokines are involved in the implantation of the early conceptus, the migration of subsets of cells during embryonic development, and the overall growth of the embryo. Chemokines also have an important role in the development and maintenance of innate and adaptive immunity. In addition, they play a significant role in wound healing and angiogenesis. When the physiological role of chemokines is subverted or chronically amplified, disease often follows. Chemokines are involved in the pathobiology of chronic inflammation, tumorigenesis and metastasis, as well as autoimmune diseases. This article reviews the role of chemokines and their receptors in normal and disease processes and the potential for using chemokine antagonists for appropriate targeted therapy.
Collapse
Affiliation(s)
- Dayanidhi Raman
- Department of Cancer Biology, Vanderbilt University, School of Medicine, USA
| | | | | |
Collapse
|
21
|
Klimiuk PA, Sierakowski S, Domyslawska I, Chwiecko J. Serum chemokines in patients with rheumatoid arthritis treated with etanercept. Rheumatol Int 2009; 31:457-61. [PMID: 20024555 DOI: 10.1007/s00296-009-1299-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/29/2009] [Indexed: 10/20/2022]
Abstract
Chemokines promote leucocyte traffic into the synovium, leading to the initiation and progression of the rheumatoid arthritis (RA). The aim of the study was to determine the effects of etanercept, a soluble tumour necrosis factor receptor (sTNFr), on the serum chemokines levels in patients with active RA. Patients were treated with 50 mg of subcutaneous injection of etanercept per week and methotrexate (10-25 mg/week). Serum levels of interleukin-8 (IL-8), RANTES (regulated upon activation, normal T cell expressed and secreted) and monocyte chemoattractant protein-1 (MCP-1) were assessed by ELISA at months 0, 3, 6, 9 and 12, prior to injection. 3-month treatment with etanercept diminished serum concentrations of IL-8, RANTES and MCP-1 (P < 0.05, P < 0.01 and P < 0.001, respectively). Subsequent etanercept administrations prolonged decrease in serum chemokines levels and in the case of IL-8 even intensified the reduction of its concentration in serum. These changes were accompanied by significant decrease of disease activity score (DAS28) (in all cases P < 0.001). Prior to the first etanercept administration, serum concentrations of studied chemokines correlated with markers of RA activity such as the erythrocyte sedimentation rate (ESR) and DAS28. Following next drug injection such associations were less or not significant. Therapy with etanercept and MTX not only caused a clinical improvement but also diminished serum chemokines levels in RA patients. Further treatment with etanercept sustained chemokines suppression.
Collapse
Affiliation(s)
- Piotr Adrian Klimiuk
- Department of Rheumatology and Internal Diseases, Medical University of Bialystok, M.C. Sklodowskiej 24a, 15-276 Bialystok, Poland.
| | | | | | | |
Collapse
|