1
|
Satué K, Fazio E, La Fauci D, Medica P. Hematological indexes and iron status in pregnant mares. Arch Anim Breed 2023; 66:197-205. [PMID: 37560356 PMCID: PMC10407308 DOI: 10.5194/aab-66-197-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/21/2023] [Indexed: 08/11/2023] Open
Abstract
During pregnancy, iron requirements are increased to meet optimal placental and fetal growth and the expansion of the maternal red-cell mass and to prevent complications related to the mother's iron deficiency anemia. Red-cell parameters and iron status provide consistent additional information for diagnosis of iron deficiency conditions. The aim of this study was to evaluate the serum iron status and its relation to hematological indexes in pregnant mares. Blood samples were taken from 31 Spanish Purebred mares over 11 months of pregnancy. Concentrations of iron (Fe), ferritin (Ferr), transferrin (T), and total iron-binding capacity (TIBC) increased significantly and unsaturated iron-binding capacity (UIBC) decreased as the pregnancy progressed without changes in red blood cell (RBC) count, hemoglobin (HB) concentration, packed cell volume (PCV), and transferrin saturation (TSAT). Fe and Ferr were positively correlated (r = 0.21 ). Fe and T (r = 0.69 ) and Fe and TSAT (r = 0.94 ) were positively correlated, and Fe and UIBC were negatively correlated (r = - 0.69 ). T and TIBC were positively correlated (r = 1.00 ). Pregnancy in the Spanish Purebred mare is characterized by a progressive increase in Fe, Ferr, T, and TIBC and a decrease in UIBC without modification in hematological indexes. Hematological parameters and iron status seem to indicate a sufficiency for Fe transport and its related mobilization and utilization during gestation in Spanish Purebred mares.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary
Medicine, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo
Universitario Annunziata, Viale Palatucci 13, 98168 Messina, Italy
| | - Deborah La Fauci
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo
Universitario Annunziata, Viale Palatucci 13, 98168 Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo
Universitario Annunziata, Viale Palatucci 13, 98168 Messina, Italy
| |
Collapse
|
2
|
Satué K, Fazio E, Cravana C, Medica P. Hepcidin, ferritin and iron homeostasis in pregnant Spanish Purebred mares. Theriogenology 2023; 206:78-86. [PMID: 37201298 DOI: 10.1016/j.theriogenology.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
During pregnancy, maternal erythropoietic expansion and fetal development require greater mobilization of available iron (Fe) stores. These adjustments in Fe metabolism in humans and rodents are largely mediated by the hormone hepcidin (Hepc), which controls the expression of ferroportin (Fpn), a transporter responsible for exporting Fe from stores to extracellular fluid and plasma. These mechanisms based on the regulation of Hepc on the availability of Fe during gestation in healthy mares remain unknown. The objective of this study was to determine the existence of interrelationships among concentrations of Hepc, ferritin (Ferr), Fe, and estrone (E1) and progesterone (P4) in Spanish Purebred mares along the whole gestation. Blood samples were taken from 31 Spanish Purebred mares each month, during 11 months of pregnancy. Fe and Ferr significantly increased and Hepc decreased during pregnancy (P < 0.05). The secretion peak of estrone (E1) was reached in the 5th month and progesterone (P4) between the 2nd and 3rd months of gestation (P < 0.05). Fe and Ferr were weakly positively correlated (r = 0.57; P < 0.05). Fe and Ferr were negatively correlated with Hepc (r = -0.80 and r = -0.67, respectively) (P < 0.05). P4 was positively correlated with Hepc (r = 0.53; P < 0.05). Pregnancy in the Spanish Purebred mare was characterized by a progressive increase in Fe and Ferr and a reduction in Hepc concentrations. E1 was partially responsible for the suppression of Hepc; on the other hand, P4 induced its stimulation during pregnancy in the mare.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115, Valencia, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Cristina Cravana
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| |
Collapse
|
3
|
Tan C, Huang Z, Xiong W, Ye H, Deng J, Yin Y. A review of the amino acid metabolism in placental function response to fetal loss and low birth weight in pigs. J Anim Sci Biotechnol 2022; 13:28. [PMID: 35232472 PMCID: PMC8889744 DOI: 10.1186/s40104-022-00676-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/09/2022] [Indexed: 11/10/2022] Open
Abstract
The fertility of sows mainly depends on the embryo losses during gestation and the survival rate of the post-farrowing piglets. The selection of highly-prolific sows has been mainly focused on the selection of genotypes with high ovulatory quota. However, in the early- and post-implantation stages, the rate of embryo losses was increased with the increase of zygotes. Among the various factors, placental growth and development is the vital determinant for fetal survival, growth, and development. Despite the potential survival of fetuses with deficient placental development, their life-conditions and growth can be damaged by a process termed intrauterine growth retardation (IUGR). The newborn piglets affected by IUGR are prone to increased morbidity and mortality rates; meanwhile, the growth, health and welfare of the surviving piglets will remain hampered by these conditions, with a tendency to exacerbate with age. Functional amino acids such as glycine, proline, and arginine continue to increase with the development of placenta, which are not only essential to placental growth (including vascular growth) and development, but can also be used as substrates for the production of glutathione, polyamines and nitric oxide to benefit placental function in many ways. However, the exact regulation mechanism of these amino acids in placental function has not yet been clarified. In this review, we provide evidence from literature and our own work for the role and mechanism of dietary functional amino acids during pregnancy in regulating the placental functional response to fetal loss and birth weight of piglets. This review will provide novel insights into the response of nutritionally nonessential amino acids (glycine and proline) to placental development as well as feasible strategies to enhance the fertility of sows.
Collapse
Affiliation(s)
- Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hongxuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
4
|
Fowden AL, Giussani DA, Forhead AJ. Physiological development of the equine fetus during late gestation. Equine Vet J 2020; 52:165-173. [PMID: 31721295 DOI: 10.1111/evj.13206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/08/2019] [Indexed: 02/02/2023]
Abstract
In many species, the pattern of growth and physiological development in utero has an important role in determining not only neonatal viability but also adult phenotype and disease susceptibility. Changes in fetal development induced by a range of environmental factors including maternal nutrition, disease, placental insufficiency and social stresses have all been shown to induce adult cardiovascular and metabolic dysfunction that often lead to ill health in later life. Compared to other precocious animals, much less is known about the physiological development of the fetal horse or the longer-term impacts on its phenotype of altered development in early life because of its inaccessibility in utero, large size and long lifespan. This review summaries the available data on the normal metabolic, cardiovascular and endocrine development of the fetal horse during the second half of gestation. It also examines the responsiveness of these physiological systems to stresses such as hypoglycaemia and hypotension during late gestation. Particular emphasis is placed on the role of the equine placenta and fetal endocrine glands in mediating the changes in fetal development seen towards term and in response to nutritional and other environmental cues. The final part of the review presents the evidence that the early life environment of the horse can alter its subsequent metabolic, cardiovascular and endocrine phenotype as well as its postnatal growth and bone development. It also highlights the immediate neonatal environment as a key window of susceptibility for programming of equine phenotype. Although further studies are needed to identify the cellular and molecular mechanisms involved, developmental programming of physiological phenotype is likely to have important implications for the health and potential athletic performance of horses, particularly if born with abnormal bodyweight, premature or dysmature characteristics or produced by assisted reproductive technologies, indicative of an altered early life environment.
Collapse
Affiliation(s)
- A L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - D A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Gibson C, de Ruijter-Villani M, Rietveld J, Stout TA. Expression of glucose transporters in the endometrium and early conceptus membranes of the horse. Placenta 2018; 68:23-32. [DOI: 10.1016/j.placenta.2018.06.308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022]
|
6
|
Valenzuela OA, Jellyman JK, Allen VL, Holdstock NB, Fowden AL. Effects of maternal dexamethasone treatment on pancreatic β cell function in the pregnant mare and post natal foal. Equine Vet J 2016; 49:99-106. [DOI: 10.1111/evj.12560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/11/2015] [Indexed: 01/06/2023]
Affiliation(s)
- O. A. Valenzuela
- Department of Physiology, Development and Neuroscience; University of Cambridge; CB2 3EG UK
| | - J. K. Jellyman
- Department of Physiology, Development and Neuroscience; University of Cambridge; CB2 3EG UK
| | - V. L. Allen
- Department of Physiology, Development and Neuroscience; University of Cambridge; CB2 3EG UK
| | - N. B. Holdstock
- Department of Clinical Veterinary Medicine; University of Cambridge; CB2 3EG UK
| | - A. L. Fowden
- Department of Physiology, Development and Neuroscience; University of Cambridge; CB2 3EG UK
| |
Collapse
|
7
|
Placentation, maternal-fetal interface, and conceptus loss in swine. Theriogenology 2015; 85:135-44. [PMID: 26324112 DOI: 10.1016/j.theriogenology.2015.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 12/20/2022]
Abstract
Pregnancy is a delicate yet complex physiological process that requires fine-tuning of many factors (hormones, growth factors, cytokines, and receptors) between the mother and the conceptus to ensure the survival of the conceptus(es) to term. Any disturbance in the maternal-conceptus dialog can have detrimental effects on the affected conceptus or even the outcome of pregnancy as a whole. Being a litter-bearing species, such disruptions can lead to a loss of up to 45% of the totally healthy offspring during early (periattachment) and midgestation to late gestation in pigs. Although the exact mechanism is not entirely understood, several factors have been associated with the fetal loss including but not limited to uterine capacity, placental efficiency, genetics, nutrition, and deficits in vascularization at the maternal-fetal interface. Over the years, we investigated how immune cells are recruited to the porcine maternal-fetal interface and whether they contribute to vascularization. We also delineated how cytokines, chemokines, and cytokine destabilizing factors fine-tune inflammation and whether the cytokine shift from early to midpregnancy exists at the porcine maternal-fetal interface. Finally, we evaluated the role of microRNAs in regulating immune cell recruitment and their angiogenic functions during pregnancy. Collectively our research points out that the immune-angiogenesis axis at the porcine maternal interface is significantly involved in promoting new blood vessel development, regulating inflammatory responses and ultimately contributing to pregnancy success. In this review, we summarized current knowledge on spontaneous fetal loss in swine, with special attention to the mechanisms in immune reactivity and interplay at the maternal-fetal interface.
Collapse
|
8
|
Affiliation(s)
- Anthony M. Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense DK-5000, Denmark;
| | - Allen C. Enders
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, California 95616;
| |
Collapse
|
9
|
Sibbons P. The role of stereology in the study of placental transfer between fetal foal and mare. Equine Vet J 2006; 38:106-7. [PMID: 16536376 DOI: 10.2746/042516406776563387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- P Sibbons
- Northwick Park Institute for Medical Research, Department of Surgical Research, Harrow, Middlesex, UK
| |
Collapse
|
10
|
Fowden AL, Ward JW, Wooding FPB, Forhead AJ, Constancia M. Programming placental nutrient transport capacity. J Physiol 2006; 572:5-15. [PMID: 16439433 PMCID: PMC1779642 DOI: 10.1113/jphysiol.2005.104141] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many animal studies and human epidemiological findings have shown that impaired growth in utero is associated with physiological abnormalities in later life and have linked this to tissue programming during suboptimal intrauterine conditions at critical periods of development. However, few of these studies have considered the contribution of the placenta to the ensuing adult phenotype. In mammals, the major determinant of intrauterine growth is the placental nutrient supply, which, in turn, depends on the size, morphology, blood supply and transporter abundance of the placenta and on synthesis and metabolism of nutrients and hormones by the uteroplacental tissues. This review examines the regulation of placental nutrient transfer capacity and the potential programming effects of nutrition and glucocorticoid over-exposure on placental phenotype with particular emphasis on the role of the Igf2 gene in these processes.
Collapse
Affiliation(s)
- A L Fowden
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | | | | | |
Collapse
|