1
|
Pasciu V, Nieddu M, Baralla E, Muzzeddu M, Porcu C, Sotgiu FD, Berlinguer F. Non-invasive Assay for Measurement of Fecal Triiodothyronine (T3) Metabolite Levels in European Mouflon (Ovis aries musimon). Front Vet Sci 2022; 9:851794. [PMID: 35711806 PMCID: PMC9196329 DOI: 10.3389/fvets.2022.851794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Thyroid hormones (THs) are important indicators of metabolism and animal health. Traditionally, they have been determined from blood or urine samples. However, as their collection may be stressful and requires ethical approval, alternative non-invasive matrices are preferred when dealing with wild animals. Triiodothyronine (T3) is the active form of THs in blood and the major metabolite excreted in feces. This creates the ideal conditions for its assay in fecal samples. Fecal sampling eliminates the stress of the animals and the need to physically capture them. However, in wild species it is rare to find species-specific kits for the hormone assay. So, the objective of this work was to validate a method for the quantification of T3 metabolite (FTM) levels in feces of European mouflon by using an economic and easily available ELISA kit designed to quantify T3 in human plasma. Analytical and biological validations were performed in feces collected from 10 mouflons (5 ewes and 5 rams). An efficient liquid-extraction method was optimized. Precision, dilution linearity, parallelism, recovery and stability of T3 in fecal samples were calculated. Obtained data were considered acceptable according to international guidelines. The reliability of the results was verified comparing human plasma and mouflon fecal samples fortified with the same T3 standard solutions. The biological validation showed higher FTM levels in March compared to June, and no differences between mouflon ewes and rams. The validation of the present method provides a non-invasive and affordable tool for the quantification of FTM in European mouflon.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
- *Correspondence: Valeria Pasciu
| | - Maria Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Marco Muzzeddu
- Agenzia Regionale FoReSTAS, Centro di Allevamento e Recupero della fauna Selvatica di Bonassai, Sassari, Italy
| | - Cristian Porcu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | | |
Collapse
|
2
|
Standardised Sampling Approach for Investigating Pathogens or Environmental Chemicals in Wild Game at Community Hunts. Animals (Basel) 2022; 12:ani12070888. [PMID: 35405877 PMCID: PMC8996972 DOI: 10.3390/ani12070888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Wild game can host pathogens capable of infecting humans, livestock, and companion animals or accumulate environmental chemicals that may be transferred via food of animal origin. For food safety research, as well as for various other scientific purposes, the provision of a sufficient number of samples without unnecessary disturbance or killing of animals is a major limitation. With the presented approach, it was possible to obtain samples from game animals killed as part of standard ungulate management practice. Examples of organs, tissues, and other matrices that have been used in wild ungulate studies in Europe and that may be obtained through this approach are summarised as well. The basis of this approach was a framework agreement with the BImA, whereby federal forest officials carried out sampling with the help of hunters at drive hunts from 2017/18 to 2020/21 in Brandenburg, Germany. Numerous samples from four ungulate species were obtained. The number of sampled animals per hunt differed between hunting districts and hunting seasons. Districts with higher hunting bags also promise higher sampling success. This approach can serve as the basis for long-term monitoring of animal and public health threats associated with wildlife and is adaptable to other regions. Abstract Wildlife may host pathogens and chemicals of veterinary and public health relevance, as well as pathogens with significant economic relevance for domestic livestock. In conducting research on the occurrence and distribution of these agents in wildlife, a major challenge is the acquisition of a sufficient number of samples coupled with efficient use of manpower and time. The aim of this article is to present the methodology and output of a sampling approach for game animals, which was implemented from 2017/18 to 2020/21 at drive hunts in Brandenburg, Germany. The central element was a framework agreement with the BImA, whereby federal forest officials and other hunters collected most of the samples during field dressing. Further samples of game carcasses were obtained by scientists during subsequent gathering at a collection point. Altogether, 3185 samples from 938 wild ungulates of four species were obtained for various studies analysing—in this case—food-borne agents in game animals. Sampling was representative and reflected the proportional distribution of ungulate species hunted in Brandenburg. Hunting district and hunting season strongly influenced hunting bag and hence sampling success. This sampling approach was demonstrated to be a suitable basis for monitoring programs, that can be adapted to other regions.
Collapse
|
3
|
Erythrocyte sedimentation rate and hemoglobin-binding protein in free-living box turtles (Terrapene spp.). PLoS One 2020; 15:e0234805. [PMID: 32555669 PMCID: PMC7299368 DOI: 10.1371/journal.pone.0234805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022] Open
Abstract
The acute phase response is a highly conserved reaction to infection, inflammation, trauma, stress, and neoplasia. Acute phase assays are useful for wildlife health assessment, however, they are infrequently utilized in reptiles. This study evaluated erythrocyte sedimentation rate (ESR) in eastern (Terrapene carolina carolina) and ornate box turtles (Terrapene ornata ornata) and hemoglobin-binding protein (HBP) in T. ornata. Erythrocyte sedimentation rate in 90 T. carolina and 105 T. ornata was negatively associated with packed cell volume and was greater in unhealthy turtles (p < 0.05). Female T. ornata had higher ESR values than males (p < 0.05). Measurement of ESR with a microhematocrit tube proportionally overestimated values from a commercial kit (Winpette), though both methods may retain utility with separate reference intervals. Hemoglobin-binding protein concentration in 184 T. ornata was significantly increased in adults and unhealthy turtles (p < 0.05). Erythrocyte sedimentation rate values were similar between seasons and populations, and HBP values were consistent between years, indicating that these analytes may have more stable baseline values than traditional health metrics in reptiles. This study demonstrates that ESR and HBP are promising diagnostics for health assessment in wild box turtles. Incorporating these tests into wild herptile health assessment protocols may support conservation efforts and improve ecosystem health monitoring.
Collapse
|
4
|
Glidden CK, Beechler B, Buss PE, Charleston B, de Klerk-Lorist LM, Maree FF, Muller T, Pérez-Martin E, Scott KA, van Schalkwyk OL, Jolles A. Detection of Pathogen Exposure in African Buffalo Using Non-Specific Markers of Inflammation. Front Immunol 2018; 8:1944. [PMID: 29375568 PMCID: PMC5768611 DOI: 10.3389/fimmu.2017.01944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023] Open
Abstract
Detecting exposure to new or emerging pathogens is a critical challenge to protecting human, domestic animal, and wildlife health. Yet, current techniques to detect infections typically target known pathogens of humans or economically important animals. In the face of the current surge in infectious disease emergence, non-specific disease surveillance tools are urgently needed. Tracking common host immune responses indicative of recent infection may have potential as a non-specific diagnostic approach for disease surveillance. The challenge to immunologists is to identify the most promising markers, which ideally should be highly conserved across pathogens and host species, become upregulated rapidly and consistently in response to pathogen invasion, and remain elevated beyond clearance of infection. This study combined an infection experiment and a longitudinal observational study to evaluate the utility of non-specific markers of inflammation [NSMI; two acute phase proteins (haptoglobin and serum amyloid A), two pro-inflammatory cytokines (IFNγ and TNF-α)] as indicators of pathogen exposure in a wild mammalian species, African buffalo (Syncerus caffer). Specifically, in the experimental study, we asked (1) How quickly do buffalo mount NSMI responses upon challenge with an endemic pathogen, foot-and-mouth disease virus; (2) for how long do NSMI remain elevated after viral clearance and; (3) how pronounced is the difference between peak NSMI concentration and baseline NSMI concentration? In the longitudinal study, we asked (4) Are elevated NSMI associated with recent exposure to a suite of bacterial and viral respiratory pathogens in a wild population? Among the four NSMI that we tested, haptoglobin showed the strongest potential as a surveillance marker in African buffalo: concentrations quickly and consistently reached high levels in response to experimental infection, remaining elevated for almost a month. Moreover, elevated haptoglobin was indicative of recent exposure to two respiratory pathogens assessed in the longitudinal study. We hope this work motivates studies investigating suites of NSMI as indicators for pathogen exposure in a broader range of both pathogen and host species, potentially transforming how we track disease burden in natural populations.
Collapse
Affiliation(s)
- Caroline K Glidden
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Brianna Beechler
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Peter Erik Buss
- SANPARKS, Veterinary Wildlife Services, Skukuza, South Africa
| | | | - Lin-Mari de Klerk-Lorist
- Office of the State Veterinarian, Department of Agriculture, Forestry and Fisheries, Skukuza, South Africa
| | - Francois Frederick Maree
- Vaccine and Diagnostic Development Programme, Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa.,Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| | - Timothy Muller
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | | | - Katherine Anne Scott
- Vaccine and Diagnostic Development Programme, Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Onderstepoort, South Africa
| | - Ockert Louis van Schalkwyk
- Office of the State Veterinarian, Department of Agriculture, Forestry and Fisheries, Skukuza, South Africa
| | - Anna Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States.,College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| |
Collapse
|