1
|
Pliasas VC, Fthenakis GC, Kyriakis CS. Editorial: Novel Vaccine Technologies in Animal Health. Front Vet Sci 2022; 9:866908. [PMID: 35296057 PMCID: PMC8920542 DOI: 10.3389/fvets.2022.866908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | | | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- *Correspondence: Constantinos S. Kyriakis
| |
Collapse
|
2
|
Lipničanová S, Legerská B, Chmelová D, Ondrejovič M, Miertuš S. Optimization of an Inclusion Body-Based Production of the Influenza Virus Neuraminidase in Escherichia coli. Biomolecules 2022; 12:331. [PMID: 35204831 PMCID: PMC8869668 DOI: 10.3390/biom12020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Neuraminidase (NA), as an important protein of influenza virus, represents a promising target for the development of new antiviral agents for the treatment and prevention of influenza A and B. Bacterial host strain Escherichia coli BL21 (DE3)pLysS containing the NA gene of the H1N1 influenza virus produced this overexpressed enzyme in the insoluble fraction of cells in the form of inclusion bodies. The aim of this work was to investigate the effect of independent variables (propagation time, isopropyl β-d-1-thiogalactopyranoside (IPTG) concentration and expression time) on NA accumulation in inclusion bodies and to optimize these conditions by response surface methodology (RSM). The maximum yield of NA (112.97 ± 2.82 U/g) was achieved under optimal conditions, namely, a propagation time of 7.72 h, IPTG concentration of 1.82 mM and gene expression time of 7.35 h. This study demonstrated that bacterially expressed NA was enzymatically active.
Collapse
Affiliation(s)
- Sabina Lipničanová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (S.L.); (B.L.); (D.C.); (S.M.)
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (S.L.); (B.L.); (D.C.); (S.M.)
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (S.L.); (B.L.); (D.C.); (S.M.)
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (S.L.); (B.L.); (D.C.); (S.M.)
- International Centre for Applied Research and Sustainable Technology n.o., Jamnického 19, SK-84101 Bratislava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, SK-91701 Trnava, Slovakia; (S.L.); (B.L.); (D.C.); (S.M.)
- International Centre for Applied Research and Sustainable Technology n.o., Jamnického 19, SK-84101 Bratislava, Slovakia
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Neuraminidase inhibitors (NAIs), including oseltamivir, zanamivir, and peramivir, is the main class of antiviral available for clinical use. As such, development of resistance toward these agents is of great clinical and public health concern. RECENT FINDINGS At present, NAI resistance remains uncommon among the circulating viruses (oseltamivir <3.5%, zanamivir <1%). Resistance risk is slightly higher in A(H1N1) than A(H3N2) and B viruses. Resistance may emerge during drug exposure, particularly among young children (<5 years), the immunocompromised, and individuals receiving prophylactic regimens. H275Y A(H1N1) variant, showing high-level oseltamivir resistance, is capable of causing outbreaks. R294K A(H7N9) variant shows reduced inhibition across NAIs. Multi-NAI resistance has been reported in the immunocompromised. SUMMARY These findings highlight the importance of continuous surveillance, and assessment of viral fitness and transmissibility of resistant virus strains. Detection can be challenging, especially in a mix of resistant and wild-type viruses. Recent advances in molecular techniques (e.g. targeted mutation PCR, iART, ddPCR, pyrosequencing, next-generation sequencing) have improved detection and our understanding of viral dynamics. Treatment options available for oseltamivir-resistant viruses are limited, and susceptibility testing of other NAIs may be required, but non-NAI antivirals (e.g. polymerase inhibitors) that are active against these resistant viruses are in late-stage clinical development.
Collapse
|
4
|
Hodges EN, Mishin VP, De la Cruz J, Guo Z, Nguyen HT, Fallows E, Stevens J, Wentworth DE, Davis CT, Gubareva LV. Detection of oseltamivir-resistant zoonotic and animal influenza A viruses using the rapid influenza antiviral resistance test. Influenza Other Respir Viruses 2019; 13:522-527. [PMID: 31187572 PMCID: PMC6692545 DOI: 10.1111/irv.12661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/28/2022] Open
Abstract
Mutations in the influenza virus neuraminidase (NA) that cause reduced susceptibility to the NA inhibitor (NAI) oseltamivir may occur naturally or following antiviral treatment. Currently, detection uses either a traditional NA inhibition assay or gene sequencing to identify known markers associated with reduced inhibition by oseltamivir. Both methods are laborious and require trained personnel. The influenza antiviral resistance test (iART), a prototype system developed by Becton, Dickinson and Company for research use only, offers a rapid and simple method to identify such viruses. This study investigated application of iART to influenza A viruses isolated from non-human hosts with a variety of NA subtypes (N1-N9).
Collapse
Affiliation(s)
- Erin N. Hodges
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
- CNI AdvantageAtlantaGeorgia
| | - Vasiliy P. Mishin
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| | - Juan De la Cruz
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
- Battelle Memorial InstituteAtlantaGeorgia
| | - Zhu Guo
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| | - Ha T. Nguyen
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
- Battelle Memorial InstituteAtlantaGeorgia
| | - Eric Fallows
- Becton, Dickinson and CompanyResearch Triangle ParkNorth Carolina
| | - James Stevens
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| | - David E. Wentworth
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| | - Charles Todd Davis
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| | - Larisa V. Gubareva
- Influenza DivisionCenters for Disease Control and Prevention (CDC)AtlantaGeorgia
| |
Collapse
|
5
|
Lackenby A, Besselaar TG, Daniels RS, Fry A, Gregory V, Gubareva LV, Huang W, Hurt AC, Leang SK, Lee RTC, Lo J, Lollis L, Maurer-Stroh S, Odagiri T, Pereyaslov D, Takashita E, Wang D, Zhang W, Meijer A. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016-2017. Antiviral Res 2018; 157:38-46. [PMID: 29981793 PMCID: PMC6094047 DOI: 10.1016/j.antiviral.2018.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
A total of 13672 viruses, collected by World Health Organization recognised National Influenza Centres between May 2016 and May 2017, were assessed for neuraminidase inhibitor susceptibility by four WHO Collaborating Centres for Reference and Research on Influenza and one WHO Collaborating Centre for the Surveillance Epidemiology and Control of Influenza. The 50% inhibitory concentration (IC50) was determined for oseltamivir and zanamivir for all viruses, and for peramivir and laninamivir in a subset (n = 8457). Of the viruses tested, 94% were obtained from the Western Pacific, Americas and European WHO regions, while limited viruses were available from the Eastern Mediterranean, African and South East Asian regions. Reduced inhibition (RI) by one or more neuraminidase inhibitor was exhibited by 0.2% of viruses tested (n = 32). The frequency of viruses with RI has remained low since this global analysis began (2015/16: 0.8%, 2014/15: 0.5%; 2013/14: 1.9%; 2012/13: 0.6%) but 2016/17 has the lowest frequency observed to date. Analysis of 13581 neuraminidase sequences retrieved from public databases, of which 5243 sequences were from viruses not included in the phenotypic analyses, identified 58 further viruses (29 without phenotypic analyses) with amino acid substitutions associated with RI by at least one neuraminidase inhibitor. Bringing the total proportion to 0.5% (90/18915). This 2016/17 analysis demonstrates that neuraminidase inhibitors remain suitable for treatment and prophylaxis of influenza virus infections, but continued monitoring is important. An expansion of surveillance testing is paramount since several novel influenza antivirals are in late stage clinical trials with some resistance already having been identified.
Collapse
Affiliation(s)
- Angie Lackenby
- National Infection Service, Public Health England, London, NW9 5HT, United Kingdom.
| | - Terry G Besselaar
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva 27, Switzerland
| | - Rod S Daniels
- The Francis Crick Institute, Worldwide Influenza Centre (WIC), WHO Collaborating Centre for Reference and Research on Influenza, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Alicia Fry
- WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Diseases Control and Prevention (CDC), 1600 Clifton RD NE, MS-G16, Atlanta, GA, 30329, USA
| | - Vicki Gregory
- The Francis Crick Institute, Worldwide Influenza Centre (WIC), WHO Collaborating Centre for Reference and Research on Influenza, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Larisa V Gubareva
- WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Diseases Control and Prevention (CDC), 1600 Clifton RD NE, MS-G16, Atlanta, GA, 30329, USA
| | - Weijuan Huang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, At the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sook-Kwan Leang
- WHO Collaborating Centre for Reference and Research on Influenza, At the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Raphael T C Lee
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Singapore
| | - Janice Lo
- Public Health Laboratory Centre, Centre for Health Protection, Department of Health, 382 Nam Cheong Street, Hong Kong, China
| | - Lori Lollis
- WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Diseases Control and Prevention (CDC), 1600 Clifton RD NE, MS-G16, Atlanta, GA, 30329, USA
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore; National Public Health Laboratory, Ministry of Health, 3 Biopolis Drive, Synapse #05-14 to 16, Singapore, 138623, Singapore
| | - Takato Odagiri
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Dmitriy Pereyaslov
- Division of Communicable Diseases, Health Security, & Environment, World Health Organization Regional Office for Europe, UN City, Marmorvej 51, DK-2100, Copenhagen Ø, Denmark
| | - Emi Takashita
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Dayan Wang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Wenqing Zhang
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva 27, Switzerland
| | - Adam Meijer
- National Institute for Public Health and the Environment, PO Box 1, 3720 BA, Bilthoven, The Netherlands
| |
Collapse
|
6
|
Scheuch G, Canisius S, Nocker K, Hofmann T, Naumann R, Pleschka S, Ludwig S, Welte T, Planz O. Targeting intracellular signaling as an antiviral strategy: aerosolized LASAG for the treatment of influenza in hospitalized patients. Emerg Microbes Infect 2018; 7:21. [PMID: 29511170 PMCID: PMC5841227 DOI: 10.1038/s41426-018-0023-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/18/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022]
Abstract
Influenza has been a long-running health problem and novel antiviral drugs are urgently needed. In pre-clinical studies, we demonstrated broad antiviral activity of D, L-lysine-acetylsalicylate glycine (LASAG) against influenza virus (IV) in cell culture and protection against lethal challenge in mice. LASAG is a compound with a new antiviral mode of action. It inhibits the NF-κB signal transduction module that is essential for IV replication. Our goal was to determine whether aerosolized LASAG would also show a therapeutic benefit in hospitalized patients suffering from severe influenza. The primary endpoint was time to alleviation of clinical influenza symptoms. The primary analysis was based on the modified intention-to-treat (MITT) population. This included all patients with confirmed influenza virus infection who received at least one treatment. The per protocol (PP) analysis set included all subjects from the MITT population who underwent at least 13 inhalations. In the MITT group, 48 (41.7%) participants (29 LASAG; 19 placebo) had severe influenza. The mean time to symptom alleviation was 56.2 h in the placebo group and 43.0 h in the LASAG group. The PP set consisted of 41 patients (24 LASAG; 17 placebo). The mean time to symptom alleviation in the LASAG group (38.3 h; P = 0.0365) was lower than that in the placebo group (56.2 h). In conclusion, LASAG improved the time to alleviation of influenza symptoms in hospitalized patients. The present phase II proof-of-concept (PoC) study demonstrates that targeting an intra-cellular signaling pathway using aerosolized LASAG improves the time to symptom alleviation compared to standard treatment.
Collapse
Affiliation(s)
- Gerhard Scheuch
- Bio-Inhalation GmbH, 35285, Gemuenden/Wohra, Hessen, Germany
| | | | | | | | - Rolf Naumann
- Ventaleon GmbH, 35285, Gemuenden/Wohra, Hessen, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Hessen, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), Westfaelische Wilhelms-University Muenster, 48149, Muenster, North Rhine-Westphalia, Germany
| | - Tobias Welte
- Pneumology Clinic, Medical University Hannover, 30625, Hannover, Lower Saxony, Germany
| | - Oliver Planz
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard Karls Tuebingen University, 72076, Tuebingen, Baden-Württemberg, Germany.
| |
Collapse
|
7
|
McKimm-Breschkin JL, Jiang S, Hui DS, Beigel JH, Govorkova EA, Lee N. Prevention and treatment of respiratory viral infections: Presentations on antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral Group conference. Antiviral Res 2018; 149:118-142. [PMID: 29162476 PMCID: PMC7133686 DOI: 10.1016/j.antiviral.2017.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
The International Society for Influenza and other Respiratory Virus Diseases held its 5th Antiviral Group (isirv-AVG) Conference in Shanghai, China, in conjunction with the Shanghai Public Health Center and Fudan University from 14-16 June 2017. The three-day programme encompassed presentations on some of the clinical features, management, immune responses and virology of respiratory infections, including influenza A(H1N1)pdm09 and A(H7N9) viruses, MERS-CoV, SARS-CoV, adenovirus Type 80, enterovirus D68, metapneumovirus and respiratory syncytial virus (RSV). Updates were presented on several therapeutics currently in clinical trials, including influenza polymerase inhibitors pimodivir/JNJ6362387, S033188, favipiravir, monoclonal antibodies MHAA45449A and VIS410, and host directed strategies for influenza including nitazoxanide, and polymerase ALS-008112 and fusion inhibitors AK0529, GS-5806 for RSV. Updates were also given on the use of the currently licensed neuraminidase inhibitors. Given the location in China, there were also presentations on the use of Traditional Chinese Medicines. Following on from the previous conference, there were ongoing discussions on appropriate endpoints for severe influenza in clinical trials from regulators and clinicians, an issue which remains unresolved. The aim of this conference summary is to provide information for not only conference participants, but a detailed referenced review of the current status of clinical trials, and pre-clinical development of therapeutics and vaccines for influenza and other respiratory diseases for a broader audience.
Collapse
Affiliation(s)
| | - Shibo Jiang
- College of Basic Medical Sciences, Fudan University, Shanghai, China; Lindsley F. Kimball Research Institute, New York Blood Center, NY, USA
| | - David S Hui
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - John H Beigel
- Leidos Biomedical Research, Inc., Support to National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, USA
| | - Nelson Lee
- Faculty of Medicine and Dentistry, University of Alberta, Canada
| |
Collapse
|