1
|
Tarazona JV, de Alba-Gonzalez M, Bedos C, Benoit P, Bertrand C, Crouzet O, Dagès C, Dorne JLC, Fernandez-Agudo A, Focks A, Gonzalez-Caballero MDC, Kroll A, Liess M, Loureiro S, Ortiz-Santaliestra ME, Rasmussen JJ, Royauté R, Rundlöf M, Schäfer RB, Short S, Siddique A, Sousa JP, Spurgeon D, Staub PF, Topping CJ, Voltz M, Axelman J, Aldrich A, Duquesne S, Mazerolles V, Devos Y. A conceptual framework for landscape-based environmental risk assessment (ERA) of pesticides. ENVIRONMENT INTERNATIONAL 2024; 191:108999. [PMID: 39276592 DOI: 10.1016/j.envint.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
While pesticide use is subject to strict regulatory oversight worldwide, it remains a main concern for environmental protection, including biodiversity conservation. This is partly due to the current regulatory approach that relies on separate assessments for each single pesticide, crop use, and non-target organism group at local scales. Such assessments tend to overlook the combined effects of overall pesticide usage at larger spatial scales. Integrative landscape-based approaches are emerging, enabling the consideration of agricultural management, the environmental characteristics, and the combined effects of pesticides applied in a same or in different crops within an area. These developments offer the opportunity to deliver informative risk predictions relevant for different decision contexts including their connection to larger spatial scales and to combine environmental risks of pesticides, with those from other environmental stressors. We discuss the needs, challenges, opportunities and available tools for implementing landscape-based approaches for prospective and retrospective pesticide Environmental Risk Assessments (ERA). A set of "building blocks" that emerged from the discussions have been integrated into a conceptual framework. The framework includes elements to facilitate its implementation, in particular: flexibility to address the needs of relevant users and stakeholders; means to address the inherent complexity of environmental systems; connections to make use of and integrate data derived from monitoring programs; and options for validation and approaches to facilitate future use in a regulatory context. The conceptual model can be applied to existing ERA methodologies, facilitating its comparability, and highlighting interoperability drivers at landscape level. The benefits of landscape-based pesticide ERA extend beyond regulation. Linking and validating risk predictions with relevant environmental impacts under a solid science-based approach will support the setting of protection goals and the formulation of sustainable agricultural strategies. Moreover, landscape ERA offers a communication tool on realistic pesticide impacts in a multistressors environment for stakeholders and citizens.
Collapse
Affiliation(s)
- Jose V Tarazona
- Spanish National Environmental Health Center, Instituto de Salud Carlos III, Madrid, Spain.
| | | | - Carole Bedos
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Pierre Benoit
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Colette Bertrand
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Olivier Crouzet
- French Agency for Biodiversity (OFB), Direction de la Recherche et de l'Appui Scientifique (DRAS), Vincennes, France
| | - Cécile Dagès
- French Research Institute for Agriculture, Food and Environment (INRAE), Soil-Agrosystem-Hydrosystem Interaction Lab (LISAH) Montpellier Cedex, France.
| | | | - Ana Fernandez-Agudo
- Spanish National Environmental Health Center, Instituto de Salud Carlos III, Madrid, Spain.
| | - Andreas Focks
- Research Center Environmental Systems Research, Osnabrück University, Osnabrück, Germany
| | | | - Alexandra Kroll
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), Dübendorf, Switzerland
| | - Matthias Liess
- Helmholtz Centre for Environmental Research (UFZ), System-Ecotoxicology, Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research, Aachen, Germany
| | - Susana Loureiro
- Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | - Raphaël Royauté
- French Research Institute for Agriculture, Food and Environment (INRAE), Functional Ecology and Ecotoxicology of Agroecosystems, ECOSYS, Palaiseau, France
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden
| | - Ralf B Schäfer
- Faculty of Biology, University of Duisburg-Essen, 45141, Essen, Germany; Research Centre One Health Ruhr, Research Alliance Ruhr, Germany
| | | | - Ayesha Siddique
- Helmholtz Centre for Environmental Research (UFZ), System-Ecotoxicology, Leipzig, Germany
| | - José Paulo Sousa
- Centre for Functional Ecology (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Pierre-François Staub
- French Agency for Biodiversity (OFB), Direction de la Recherche et de l'Appui Scientifique (DRAS), Vincennes, France
| | - Chris J Topping
- Social-Ecological Systems Simulation Centre, Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Marc Voltz
- French Research Institute for Agriculture, Food and Environment (INRAE), Soil-Agrosystem-Hydrosystem Interaction Lab (LISAH) Montpellier Cedex, France.
| | | | | | | | - Vanessa Mazerolles
- Regulated Products Assessment Directorate, Anses (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Yann Devos
- European Food Safety Authority (EFSA), Parma, Italy
| |
Collapse
|
2
|
Ernst G, Amorim MJB, Bottoms M, Brooks AC, Hodson ME, Kimmel S, Kotschik P, Marx MT, Natal-da-Luz T, Pelosi C, Pieper S, Schimera A, Scott-Fordsmand J, Sharples A, Sousa JP, van Gestel CAM, van Hall B, Bergtold M. Intermediate-tier options in the environmental risk assessment of plant protection products for soil invertebrates-Synthesis of a workshop. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:780-793. [PMID: 37563990 DOI: 10.1002/ieam.4825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
The European environmental risk assessment (ERA) of plant protection products follows a tiered approach. The approach for soil invertebrates currently consists of two steps, starting with a Tier 1 assessment based on reproduction toxicity tests with earthworms, springtails, and predatory mites. In case an unacceptable risk is identified at Tier 1, field studies can be conducted as a higher-tier option. For soil invertebrates, intermediate tiers are not implemented. Hence, there is limited possibility to include additional information for the ERA to address specific concerns when the Tier 1 fails, as an alternative to, for example, a field study. Calibrated intermediate-tier approaches could help to address risks for soil invertebrates with less time and resources but also with sufficient certainty. A multistakeholder workshop was held on 2-4 March 2022 to discuss potential intermediate-tier options, focusing on four possible areas: (1) natural soil testing, (2) single-species tests (other than standard species), (3) assessing recovery in laboratory tests, and (4) the use of assembled soil multispecies test systems. The participants acknowledged a large potential in the intermediate-tier options but concluded that some issues need to be clarified before routine application of these approaches in the ERA is possible, that is, sensitivity, reproducibility, reliability, and standardization of potential new test systems. The definition of suitable assessment factors needed to calibrate the approaches to the protection goals was acknowledged. The aims of the workshop were to foster scientific exchange and a data-driven dialog, to discuss how the different approaches could be used in the risk assessment, and to identify research priorities for future work to address uncertainties and strengthen the tiered approach in the ERA for soil invertebrates. This article outlines the background, proposed methods, technical challenges, difficulties and opportunities in the ERA, and conclusions of the workshop. Integr Environ Assess Manag 2024;20:780-793. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Gregor Ernst
- Bayer AG, CropScience Division, Monheim, Germany
| | - Mónica J B Amorim
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Melanie Bottoms
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, UK
| | - Amy C Brooks
- Cambridge Environmental Assessments, Cambridge, UK
| | - Mark E Hodson
- Department of Environment and Geography, University of York, York, UK
| | | | - Pia Kotschik
- German Environment Agency (UBA), Dessau-Roßlau, Germany
| | | | - Tiago Natal-da-Luz
- Associate Laboratory TERRA, Department of Life Sciences, CFE-Centre for Functional Ecology - Science for the People and the Planet, University of Coimbra, Coimbra, Portugal
| | - Céline Pelosi
- INRAE, Avignon Université, UMR EMMAH, Avignon, France
| | - Silvia Pieper
- German Environment Agency (UBA), Dessau-Roßlau, Germany
| | | | | | | | - José P Sousa
- Associate Laboratory TERRA, Department of Life Sciences, CFE-Centre for Functional Ecology - Science for the People and the Planet, University of Coimbra, Coimbra, Portugal
| | - Cornelis A M van Gestel
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bart van Hall
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
3
|
Nys C, Van Sprang P, Lofts S, Baken S, Delbeke K, De Schamphelaere K. Updated Chronic Copper Bioavailability Models for Invertebrates and Algae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:450-467. [PMID: 38018744 DOI: 10.1002/etc.5796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Chronic copper (Cu) bioavailability models have been successfully implemented in European risk assessment frameworks and compliance evaluations. However, they were developed almost two decades ago, which calls for an update. In the study, we present updated chronic Cu bioavailability models for invertebrates and algae. They consider recent ecotoxicity data sets and use the more recent speciation model Windermere Humic Aqueous Model (WHAM) VII and an optimized model structure (i.e., a generalized bioavailability model [gBAM]). Contrary to the classic biotic ligand model, a gBAM models the effect of pH on Cu2+ toxicity via a log-linear relationship parametrized through the pH slope SpH . The recalibrated SpH parameters are -0.208 for invertebrates (Daphnia magna, two clones) and -0.975 for algae (Raphidocelis subcapitata and Chlorella vulgaris). The updated models predict 80% to 100% of the observed effect levels for eight different species within a factor of 2. The only exception was one of the two data sets considering subchronic 7-day mortality to Hyalella azteca: the prediction performance of the updated invertebrate model at pH ≥ 8.3 was poor because the effect of pH on Cu2+ toxicity appeared to be dependent on the pH itself (with a steeper pH slope compared with the updated invertebrate model at pH ≥ 8.1). The prediction performance of the updated Cu bioavailability models was similar to or better than that of the models used for regulatory application in Europe until now, with one exception (i.e., H. azteca). Together with the recently published fish bioavailability model, the models developed in the present study constitute a complete, updated, and consistent bioavailability model set. Overall, the updated chronic Cu bioavailability model set is robust and can be used in regulatory applications. The updated bioavailability model set is currently used under the European Union Registration, Evaluation, Authorisation, and Restriction of Chemicals framework regulation to guide the safe use of Cu. Environ Toxicol Chem 2024;43:450-467. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Stephen Lofts
- UK Centre for Ecology and Hydrology (UKCEH), Lancaster, UK
| | - Stijn Baken
- International Copper Association, Brussels, Belgium
| | | | | |
Collapse
|
4
|
Brulle F, Amossé J, Bart S, Conrad A, Mazerolles V, Nélieu S, Lamy I, Péry A, Pelosi C. Toward a harmonized methodology to analyze field side effects of two pesticide products on earthworms at the EU level. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:254-271. [PMID: 35703133 PMCID: PMC10084329 DOI: 10.1002/ieam.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Before plant protection product (PPP) marketing authorization, a risk assessment for nontarget soil organisms (e.g., earthworms) is required as part of Regulation (EC) No. 1107/2009. Following a stepwise approach, higher tier earthworm field studies are needed if they cannot demonstrate low long-term risk based on laboratory studies. The European guidance for terrestrial ecotoxicology refers to ISO guideline 11268-3 as a standard to conduct earthworm field studies. Assessment of such studies may be challenging, as no European harmonized guidance is available to properly analyze the accuracy, representativeness, and appropriateness of experimental designs, as well as the statistical analysis robustness of results and their scientific reliability. Following the ISO guideline 11268-3, a field study was performed in 2016-2017 (Versailles, France). An assessment of the first year of this field study was performed in agreement with the quality criteria provided in 2006 in the guidance document published by de Jong and collaborators and recommendations by Kula and collaborators that allows describing the protocol and results of earthworm field studies. Not only did we underline the importance of a detailed analysis of raw data on the effects of pesticides on earthworms in field situations, but we also provided recommendations to harmonize protocols for assessing higher tier field studies devoted to earthworms to advance a better assessment of PPP fate and ecotoxicity. In particular, we provided practical field observations related to the study design, pesticide applications, and earthworm sampling. Concurrently, in addition to the conventional earthworm community study, we propose carrying out an assessment of soil function (i.e., organic matter decomposition, soil structuration, etc.) and calculating diversity indices to obtain information about earthworm community dynamics after the application of PPPs. Finally, through field observations, any relevant observation of external and/or internal recovery should be reported. Integr Environ Assess Manag 2023;19:254-271. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Franck Brulle
- Ecotoxicological and Environmental Fate Unit for Pesticides and Fertilisers, Regulated Products Assessment DepartmentANSESMaisons‐AlfortFrance
| | - Joël Amossé
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Sylvain Bart
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
- MOECO (modeling and data analyses for ecology and ecotoxicology)ParisFrance
| | - Arnaud Conrad
- Ecotoxicological and Environmental Fate Unit for Pesticides and Fertilisers, Regulated Products Assessment DepartmentANSESMaisons‐AlfortFrance
| | - Vanessa Mazerolles
- Ecotoxicological and Environmental Fate Unit for Pesticides and Fertilisers, Regulated Products Assessment DepartmentANSESMaisons‐AlfortFrance
| | - Sylvie Nélieu
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Isabelle Lamy
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Alexandre Péry
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
| | - Céline Pelosi
- Université Paris‐Saclay, INRAE, AgroParisTech, UMR ECOSYSVersaillesFrance
- INRAE, Avignon Université, UMR EMMAHAvignonFrance
| |
Collapse
|
5
|
More SJ, Bampidis V, Benford D, Bragard C, Halldorsson TI, Hernández‐Jerez AF, Bennekou SH, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter JR, Schrenk D, Turck D, Younes M, Boon P, Ferns GAA, Lindtner O, Smolders E, Wilks M, Bastaki M, de Sesmaisons‐Lecarré A, Ferreira L, Greco L, Kass GEN, Riolo F, Leblanc J. Re-evaluation of the existing health-based guidance values for copper and exposure assessment from all sources. EFSA J 2023; 21:e07728. [PMID: 36694841 PMCID: PMC9843535 DOI: 10.2903/j.efsa.2023.7728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Copper is an essential micronutrient and also a regulated product used in organic and in conventional farming pest management. Both deficiency and excessive exposure to copper can have adverse health effects. In this Scientific Opinion, the EFSA 2021 harmonised approach for establishing health-based guidance values (HBGVs) for substances that are regulated products and also nutrients was used to resolve the divergent existing HBGVs for copper. The tightly regulated homeostasis prevents toxicity manifestation in the short term, but the development of chronic copper toxicity is dependent on copper homeostasis and its tissue retention. Evidence from Wilson disease suggests that hepatic retention is indicative of potential future and possibly sudden onset of copper toxicity under conditions of continuous intake. Hence, emphasis was placed on copper retention as an early marker of potential adverse effects. The relationships between (a) chronic copper exposure and its retention in the body, particularly the liver, and (b) hepatic copper concentrations and evidence of toxicity were examined. The Scientific Committee (SC) concludes that no retention of copper is expected to occur with intake of 5 mg/day and established an Acceptable Daily Intake (ADI) of 0.07 mg/kg bw. A refined dietary exposure assessment was performed, assessing contribution from dietary and non-dietary sources. Background copper levels are a significant source of copper. The contribution of copper from its use as plant protection product (PPP), food and feed additives or fertilisers is negligible. The use of copper in fertilisers or PPPs contributes to copper accumulation in soil. Infant formula and follow-on formula are important contributors to dietary exposure of copper in infants and toddlers. Contribution from non-oral sources is negligible. Dietary exposure to total copper does not exceed the HBGV in adolescents, adults, elderly and the very elderly. Neither hepatic copper retention nor adverse effects are expected to occur from the estimated copper exposure in children due to higher nutrient requirements related to growth.
Collapse
|
6
|
Burtscher-Schaden H, Durstberger T, Zaller JG. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. TOXICS 2022; 10:toxics10120753. [PMID: 36548586 PMCID: PMC9783316 DOI: 10.3390/toxics10120753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 05/06/2023]
Abstract
There is much debate about whether the (mostly synthetic) pesticide active substances (AS) in conventional agriculture have different non-target effects than the natural AS in organic agriculture. We evaluated the official EU pesticide database to compare 256 AS that may only be used on conventional farmland with 134 AS that are permitted on organic farmland. As a benchmark, we used (i) the hazard classifications of the Globally Harmonized System (GHS), and (ii) the dietary and occupational health-based guidance values, which were established in the authorization procedure. Our comparison showed that 55% of the AS used only in conventional agriculture contained health or environmental hazard statements, but only 3% did of the AS authorized for organic agriculture. Warnings about possible harm to the unborn child, suspected carcinogenicity, or acute lethal effects were found in 16% of the AS used in conventional agriculture, but none were found in organic agriculture. Furthermore, the establishment of health-based guidance values for dietary and non-dietary exposures were relevant by the European authorities for 93% of conventional AS, but only for 7% of organic AS. We, therefore, encourage policies and strategies to reduce the use and risk of pesticides, and to strengthen organic farming in order to protect biodiversity and maintain food security.
Collapse
Affiliation(s)
- Helmut Burtscher-Schaden
- Umweltforschungsinstitut & Umweltorganisation Global 2000 (Friends of the Earth Austria), Neustiftgasse 36, 1070 Vienna, Austria
- Correspondence:
| | - Thomas Durstberger
- Umweltforschungsinstitut & Umweltorganisation Global 2000 (Friends of the Earth Austria), Neustiftgasse 36, 1070 Vienna, Austria
| | - Johann G. Zaller
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, 1180 Vienna, Austria
| |
Collapse
|