1
|
Li T, Shao J, An N, Chang Y, Xia Y, Han Q, Zhu F. Combined proteomics and metabolomics analysis reveal the effect of a training course on the immune function of Chinese elite short-track speed skaters. Immun Inflamm Dis 2024; 12:e70030. [PMID: 39352112 PMCID: PMC11443606 DOI: 10.1002/iid3.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
INTRODUCTION The aim of this study was to combine proteomics and metabolomics to evaluate the immune system of short-track speed skaters (STSS) before and after a training course. Our research focused on changes in urinary proteins and metabolites that have the potential to serve as indicators for training load. METHODS Urine samples were collected from 21 elite STSS (13 male and 8 female) of the China National Team before and immediately after one training course. First-beat sports sensor was used to monitor the training load. Proteomic detection was performed using a Thermo UltiMate 3000 ultra high performence chromatography nano liquid chromatograph and an Orbitrap Exploris 480 mass spectrometer. MSstats (R package) was used for the statistical evaluation of significant differences in proteins from the samples. Two filtration criteria (fold change [FC] > 2 and p < 0.05) were used to identify the differential expressed proteins. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis for differential proteins was performed to identify the pathways involved. Nontargeted metabolomic detection was performed using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS_) with an ACQUITY 2D UPLC plus Q Exactive (QE) hybrid Quadrupole-Orbitrap mass spectrometer. Differential metabolites were identified using non-parametric statistical methods (Wilcox's rank test). Two filtration criteria (FC > 1.2 and p < 0.05) were used to identify differential metabolites. Combined analysis of proteomic and metabolomics were performed on the "Wu Kong" platform. Correlation analysis was performed using Spearman's rank correlation coefficient. RESULTS (1) The most upregulated proteins were immune-related proteins, including complement proteins (C9, C4-B, and C9) and immunoglobulins (IgA, IgM, and IgG). The most downregulated proteins were osteopontin (OPN) and CD44 in urine. The correlation analysis showed that the content of OPN and CD44 (the receptor for OPN) in urine were significantly negatively correlated with the upregulated immune-related proteins. The content of OPN and CD44 is sex-dependent and negatively correlated with the training load. (2) The most upregulated metabolites included lactate, cortisol, inosine, glutamine, argininosuccinate (the precursor for arginine synthesis), 3-methyl-2-oxobutyrate (the catabolite of valine), 3-methyl-2-oxovalerate (the catabolite of isoleucine), and 4-methyl-2-oxopentanoate (the catabolite of leucine), which is sex-dependent and negatively correlated with OPN and CD44. (3) The joint analysis revealed five main related pathways, including the immune and innate immune systems. The enriched immune-related proteins included complements, immunoglobulins, and protein catabolism-related proteins. The enriched immune-related metabolites included cAMP, N-acetylgalactosamine, and glutamate. (4) There is a significant negative correlation between the content of OPN and CD44 in urine and the training load. CONCLUSION One training course can lead to the activation of the immune system and a sex-dependent decrease in the content of OPN and CD44. Training load has a significant and negative correlation with the content of OPN and CD44, suggesting that OPN and CD44 could be potential indicators for training load.
Collapse
Affiliation(s)
- Tieying Li
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Jing Shao
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Nan An
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Yashan Chang
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Yishi Xia
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Qi Han
- Sports Nutrition Center, National Institute of Sports MedicineBeijingChina
- Key Lab of Sports NutritionState General Administration of Sport of ChinaBeijingChina
- National Testing & Research Center for Sports Nutrition, Ministry of Science and Technology of the People's Republic of ChinaBeijingChina
| | - Fenglin Zhu
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| |
Collapse
|
2
|
Fleming SA, Reyes SM, Donovan SM, Hernell O, Jiang R, Lönnerdal B, Neu J, Steinman L, Sørensen ES, West CE, Kleinman R, Wallingford JC. An expert panel on the adequacy of safety data and physiological roles of dietary bovine osteopontin in infancy. Front Nutr 2024; 11:1404303. [PMID: 38919388 PMCID: PMC11197938 DOI: 10.3389/fnut.2024.1404303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human milk, due to its unique composition, is the optimal standard for infant nutrition. Osteopontin (OPN) is abundant in human milk but not bovine milk. The addition of bovine milk osteopontin (bmOPN) to formula may replicate OPN's concentration and function in human milk. To address safety concerns, we convened an expert panel to assess the adequacy of safety data and physiological roles of dietary bmOPN in infancy. The exposure of breastfed infants to human milk OPN (hmOPN) has been well-characterized and decreases markedly over the first 6 months of lactation. Dietary bmOPN is resistant to gastric and intestinal digestion, absorbed and cleared from circulation within 8-24 h, and represents a small portion (<5%) of total plasma OPN. Label studies on hmOPN suggest that after 3 h, intact or digested OPN is absorbed into carcass (62%), small intestine (23%), stomach (5%), and small intestinal perfusate (4%), with <2% each found in the cecum, liver, brain, heart, and spleen. Although the results are heterogenous with respect to bmOPN's physiologic impact, no adverse impacts have been reported across growth, gastrointestinal, immune, or brain-related outcomes. Recombinant bovine and human forms demonstrate similar absorption in plasma as bmOPN, as well as effects on cognition and immunity. The panel recommended prioritization of trials measuring a comprehensive set of clinically relevant outcomes on immunity and cognition to confirm the safety of bmOPN over that of further research on its absorption, distribution, metabolism, and excretion. This review offers expert consensus on the adequacy of data available to assess the safety of bmOPN for use in infant formula, aiding evidence-based decisions on the formulation of infant formula.
Collapse
Affiliation(s)
| | | | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Olle Hernell
- Department of Clinical Sciences and Pediatrics, Umeå University, Umeå, Sweden
| | - Rulan Jiang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL, United States
| | - Lawrence Steinman
- Departments of Pediatrics and of Neurology and Neurological Sciences, Interdepartmental Program in Immunology, Beckman Center for Molecular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Esben S. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christina E. West
- Department of Clinical Sciences and Pediatrics, Umeå University, Umeå, Sweden
| | - Ronald Kleinman
- Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
3
|
Wang X, Cui D, Qu X, You H, Lei F, Li J, Xie Y, Zhang H, Zhang Y, Jiang S, Xie Q. Analytical Ultracentrifugation-Calibrated Anion-Exchange Chromatography for Sensitive and Intact Determination of Osteopontin in Infant Formula and Dairy Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13880-13888. [PMID: 37669461 PMCID: PMC10515612 DOI: 10.1021/acs.jafc.3c03589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Osteopontin is a crucial protein ingredient that has been applied in fortified dairy products and infant formula. It has great significance to infant gut health and brain development. However, current techniques including enzyme-linked immunosorbent assay and liquid chromatography coupled with mass spectrometry are still facing the bottleneck of low sensitivity and indirect quantification. Moreover, the unavailable certified commercial OPN standard hinders its accurate quantification. Herein, a novel method of anion-exchange chromatography was established to determine OPN concentration in several dairy matrices. The polarity-reversed capillary isoelectric focusing was utilized to measure the exact isoelectric point (pI) to support method development for OPN separation. Analytical ultracentrifugation was used to calibrate the purity of intact OPN to develop an in-house reference standard. The method showed the merits of limits of detection to 0.04 mg/100 g, relative standard deviation of reproducibility <5% for 13 out of 14 tested matrices, and an average recovery rate of 101.3%. This method has shown the potential to be adopted as an international standard method for the quantification of intact OPN in infant formula and dairy products.
Collapse
Affiliation(s)
- Xiangxin Wang
- Heilongjiang
Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Dongying Cui
- Heilongjiang
Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Xueyin Qu
- China
Excellent Milk Academy (Tianjin) Co., Ltd., 300400 Tianjin, China
| | - Hong You
- Eurofins
US Food, 2200 Rittenhouse
St Ste 175, Des Moines, Iowa 50321-3155, United
States
| | - Fan Lei
- State
Key Laboratory of Membrane Biology, Tsinghua
University, Beijing 100084, China
| | - Jianqiao Li
- Heilongjiang
Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Yang Xie
- Heilongjiang
Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Haoshu Zhang
- Heilongjiang
Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Yongjiu Zhang
- Heilongjiang
Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Shilong Jiang
- Heilongjiang
Feihe Dairy Co., Ltd., Beijing 100015, China
| | - Qinggang Xie
- Heilongjiang
Feihe Dairy Co., Ltd., Beijing 100015, China
| |
Collapse
|
4
|
Kristensen MF, Sørensen ES, Del Rey YC, Schlafer S. Prevention of Initial Bacterial Attachment by Osteopontin and Other Bioactive Milk Proteins. Biomedicines 2022; 10:biomedicines10081922. [PMID: 36009469 PMCID: PMC9405890 DOI: 10.3390/biomedicines10081922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
A considerable body of work has studied the involvement of osteopontin (OPN) in human physiology and pathology, but comparably little is known about the interaction of OPN with prokaryotic cells. Recently, bovine milk OPN has been proposed as a therapeutic agent to prevent the build-up of dental biofilms, which are responsible for the development of caries lesions. Bioactive milk proteins are among the most exciting resources for caries control, as they hamper bacterial attachment to teeth without affecting microbial homeostasis in the mouth. The present work investigated the ability of OPN to prevent the adhesion of three dental biofilm-forming bacteria to saliva-coated surfaces under shear-controlled flow conditions in comparison with the major milk proteins α-lactalbumin, β-lactoglobulin, αs1-casein, β-casein and κ-casein, as well as crude milk protein. OPN was the most effective single protein to reduce the adhesion of Actinomyces naeslundii, Lactobacillus paracasei subsp. paracasei and Streptococcus mitis. β-casein and crude milk protein also had a pronounced effect on all three species, which suggests binding to different microbial surface structures rather than the blocking of a specific bacterial adhesin. Bioactive milk proteins show potential to delay harmful biofilm formation on teeth and hence the onset of biofilm-related oral disease.
Collapse
Affiliation(s)
- Mathilde Frost Kristensen
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, 8000 Aarhus, Denmark
| | | | - Yumi Chokyu Del Rey
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, 8000 Aarhus, Denmark
| | - Sebastian Schlafer
- Department of Dentistry and Oral Health, Section for Oral Ecology and Caries Control, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|