1
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Consortium of Lactobacillus crispatus 2029 and Ligilactobacillus salivarius 7247 Strains Shows In Vitro Bactericidal Effect on Campylobacter jejuni and, in Combination with Prebiotic, Protects Against Intestinal Barrier Dysfunction. Antibiotics (Basel) 2024; 13:1143. [PMID: 39766533 PMCID: PMC11672454 DOI: 10.3390/antibiotics13121143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives:Campylobacter jejuni (CJ) is the etiological agent of the world's most common intestinal infectious food-borne disease, ranging from mild symptoms to fatal outcomes. The development of innovative synbiotics that inhibit the adhesion and reproduction of multidrug-resistant (MDR) CJ in animals and humans, thereby preserving intestinal homeostasis, is relevant. We have created a synbiotic based on the consortium of Lactobacillus crispatus 2029 (LC2029), Ligilactobacillus salivarius 7247 (LS7247), and a mannan-rich prebiotic (Actigen®). The purpose of this work was to study the in vitro anti-adhesive and antagonistic activities of the created synbiotic against MDR CJ strains, along with its role in preventing intestinal barrier dysfunction, which disrupts intestinal homeostasis. Methods: A complex of microbiological, immunological, and molecular biological methods was used. The ability of the LC2029 and LS7247 consortium to promote intestinal homeostasis in vitro was assessed by the effectiveness of controlling CJ-induced TLR4 activation, secretion of pro-inflammatory cytokines, development of intestinal barrier dysfunction, and production of intestinal alkaline phosphatase (IAP). Results: All MDR CJ strains showed marked adhesion to human Caco-2, pig IPEC-J2, chicken CPCE, and bovine BPCE enterocytes. For the first time, we found that the prebiotic and cell-free culture supernatant (CFS) from the consortium of LC2029 and LS7247 strains exhibit an additive effect in inhibiting the adhesion of MDR strains of CJ to human and animal enterocytes. CFS from the LC2029 and LS7247 consortium increased the permeability of the outer and inner membranes of CJ cells, which led to extracellular leakage of ATP and provided access to the peptidoglycan of the pathogen for the peptidoglycan-degrading bacteriocins nisin and enterolysin A produced by LS7247. The LC2029 and LS7247 consortium showed a bactericidal effect on CJ strains. Co-cultivation of the consortium with CJ strains resulted in a decrease in the viability of the pathogen by 6 log. CFS from the LC2029 and LS7247 consortium prevented the growth of CJ-induced TLR4 mRNA expression in enterocytes. The LC2029 and LS7247 consortium inhibited a CJ-induced increase in IL-8 and TNF-α production in enterocytes, prevented CJ-induced intestinal barrier dysfunction, maintained the transepithelial electrical resistance of the enterocyte monolayers, and prevented an increase in intestinal paracellular permeability and zonulin secretion. CFS from the consortium stimulated IAP mRNA expression in enterocytes. The LC2029 and LS7247 consortium and the prebiotic Actigen represent a new synergistic synbiotic with anti-CJ properties that prevents intestinal barrier dysfunction and preserves intestinal homeostasis. Conclusions: These data highlight the potential of using a synergistic synbiotic as a preventive strategy for creating feed additives and functional nutrition products based on it to combat the prevalence of campylobacteriosis caused by MDR strains in animals and humans.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Budgetary Educational Institution of Higher Education, St. Petersburg State University of Veterinary Medicine, 196084 Saint Petersburg, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia; (T.V.P.); (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
2
|
Hock L, Walczak C, Mosser J, Ragimbeau C, Cauchie HM. Exploring the Role of the Environment as a Reservoir of Antimicrobial-Resistant Campylobacter: Insights from Wild Birds and Surface Waters. Microorganisms 2024; 12:1621. [PMID: 39203463 PMCID: PMC11356556 DOI: 10.3390/microorganisms12081621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing global health challenge, compromising bacterial infection treatments and necessitating robust surveillance and mitigation strategies. The overuse of antimicrobials in humans and farm animals has made them hotspots for AMR. However, the spread of AMR genes in wildlife and the environment represents an additional challenge, turning these areas into new AMR hotspots. Among the AMR bacteria considered to be of high concern for public health, Campylobacter has been the leading cause of foodborne infections in the European Union since 2005. This study examines the prevalence of AMR genes and virulence factors in Campylobacter isolates from wild birds and surface waters in Luxembourg. The findings reveal a significant prevalence of resistant Campylobacter strains, with 12% of C. jejuni from wild birds and 37% of C. coli from surface waters carrying resistance genes, mainly against key antibiotics like quinolones and tetracycline. This study underscores the crucial role of the environment in the spread of AMR bacteria and genes, highlighting the urgent need for enhanced surveillance and control measures to curb AMR in wildlife and environmental reservoirs and reduce transmission risks to humans. This research supports One Health approaches to tackling antimicrobial resistance and protecting human, animal, and environmental health.
Collapse
Affiliation(s)
- Louise Hock
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| | - Cécile Walczak
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| | - Juliette Mosser
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| | - Catherine Ragimbeau
- Epidemiology and Microbial Genomics, Laboratoire National de Santé (LNS), 1 Rue Louis Rech, L-3555 Dudelange, Luxembourg;
| | - Henry-Michel Cauchie
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41 Rue du Brill, L-4422 Belvaux, Luxembourg; (C.W.); (H.-M.C.)
| |
Collapse
|
3
|
Hu K, Meyer F, Deng ZL, Asgari E, Kuo TH, Münch PC, McHardy AC. Assessing computational predictions of antimicrobial resistance phenotypes from microbial genomes. Brief Bioinform 2024; 25:bbae206. [PMID: 38706320 PMCID: PMC11070729 DOI: 10.1093/bib/bbae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
The advent of rapid whole-genome sequencing has created new opportunities for computational prediction of antimicrobial resistance (AMR) phenotypes from genomic data. Both rule-based and machine learning (ML) approaches have been explored for this task, but systematic benchmarking is still needed. Here, we evaluated four state-of-the-art ML methods (Kover, PhenotypeSeeker, Seq2Geno2Pheno and Aytan-Aktug), an ML baseline and the rule-based ResFinder by training and testing each of them across 78 species-antibiotic datasets, using a rigorous benchmarking workflow that integrates three evaluation approaches, each paired with three distinct sample splitting methods. Our analysis revealed considerable variation in the performance across techniques and datasets. Whereas ML methods generally excelled for closely related strains, ResFinder excelled for handling divergent genomes. Overall, Kover most frequently ranked top among the ML approaches, followed by PhenotypeSeeker and Seq2Geno2Pheno. AMR phenotypes for antibiotic classes such as macrolides and sulfonamides were predicted with the highest accuracies. The quality of predictions varied substantially across species-antibiotic combinations, particularly for beta-lactams; across species, resistance phenotyping of the beta-lactams compound, aztreonam, amoxicillin/clavulanic acid, cefoxitin, ceftazidime and piperacillin/tazobactam, alongside tetracyclines demonstrated more variable performance than the other benchmarked antibiotics. By organism, Campylobacter jejuni and Enterococcus faecium phenotypes were more robustly predicted than those of Escherichia coli, Staphylococcus aureus, Salmonella enterica, Neisseria gonorrhoeae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Streptococcus pneumoniae and Mycobacterium tuberculosis. In addition, our study provides software recommendations for each species-antibiotic combination. It furthermore highlights the need for optimization for robust clinical applications, particularly for strains that diverge substantially from those used for training.
Collapse
Affiliation(s)
- Kaixin Hu
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Fernando Meyer
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Zhi-Luo Deng
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Ehsaneddin Asgari
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, USA
| | - Tzu-Hao Kuo
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Philipp C Münch
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover Braunschweig, Braunschweig, Germany
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
4
|
Garcia-Fernandez A, Janowicz A, Marotta F, Napoleoni M, Arena S, Primavilla S, Pitti M, Romantini R, Tomei F, Garofolo G, Villa L. Antibiotic resistance, plasmids, and virulence-associated markers in human strains of Campylobacter jejuni and Campylobacter coli isolated in Italy. Front Microbiol 2024; 14:1293666. [PMID: 38260875 PMCID: PMC10800408 DOI: 10.3389/fmicb.2023.1293666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Campylobacteriosis, a prevalent foodborne gastrointestinal infection in Europe, is primarily caused by Campylobacter jejuni and Campylobacter coli, with rising global concerns over antimicrobial resistance in these species. This study comprehensively investigates 133 human-origin Campylobacter spp. strains (102 C. jejuni and 31 C. coli) collected in Italy from 2013 to 2021. The predominant Multilocus Sequence Typing Clonal complexes (CCs) were ST-21 CC and ST-206 CC in C. jejuni and ST-828 CC in C. coli. Ciprofloxacin and tetracycline resistance, mainly attributed to GyrA (T86I) mutation and tet(O) presence, were prevalent, while erythromycin resistance was associated with 23S rRNA gene mutation (A2075G), particularly in C. coli exhibiting multidrug-resistant pattern CipTE. Notable disparities in virulence factors among strains were observed, with C. jejuni exhibiting a higher abundance compared to C. coli. Notably, specific C. jejuni sequence types, including ST-21, ST-5018, and ST-1263, demonstrated significantly elevated counts of virulence genes. This finding underscores the significance of considering both the species and strain-level variations in virulence factor profiles, shedding light on potential differences in the pathogenicity and clinical outcomes associated with distinct C. jejuni lineages. Campylobacter spp. plasmids were classified into three groups comprising pVir-like and pTet-like plasmids families, exhibiting diversity among Campylobacter spp. The study underscores the importance of early detection through Whole Genome Sequencing to identify potential emergent virulence, resistance/virulence plasmids, and new antimicrobial resistance markers. This approach provides actionable public health data, supporting the development of robust surveillance programs in Italy.
Collapse
Affiliation(s)
| | - Anna Janowicz
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Francesca Marotta
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Maira Napoleoni
- Centro di Riferimento Regionale Patogeni Enterici, CRRPE, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, Perugia, Italy
| | - Sergio Arena
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Primavilla
- Centro di Riferimento Regionale Patogeni Enterici, CRRPE, Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, Perugia, Italy
| | - Monica Pitti
- Centro di Riferimento per la Tipizzazione delle Salmonelle, CeRTiS, Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Romina Romantini
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | | | - Giuliano Garofolo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Laura Villa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
Aksomaitiene J, Novoslavskij A, Malakauskas M. Whole-Genome Sequencing-Based Profiling of Antimicrobial Resistance Genes and Core-Genome Multilocus Sequence Typing of Campylobacter jejuni from Different Sources in Lithuania. Int J Mol Sci 2023; 24:16017. [PMID: 37958998 PMCID: PMC10648690 DOI: 10.3390/ijms242116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Campylobacter jejuni is known as one of the main causative agents of gastroenteritis in humans worldwide, and the rise of antimicrobial resistance (AMR) in Campylobacter is a growing public health challenge of special concern. Whole-genome sequencing (WGS) was used to characterize genetic determinants of AMR in 53 C. jejuni isolates from dairy cattle, broiler products, wild birds, and humans in Lithuania. The WGS-based study revealed 26 C. jejuni AMR markers that conferred resistance to various antimicrobials. Genetic markers associated with resistance to beta-lactamases, tetracycline, and aminoglycosides were found in 79.3%, 28.3%, and 9.4% of C. jejuni isolates, respectively. Additionally, genetic markers associated with multidrug resistance (MDR) were found in 90.6% of C. jejuni isolates. The WGS data analysis revealed that a common mutation in the quinolone resistance-determining region (QRDR) was R285K (854G > A) at 86.8%, followed by A312T (934G > A) at 83% and T86I (257C > T) at 71.7%. The phenotypic resistance analysis performed with the agar dilution method revealed that ciprofloxacin (CIP) (90.6%), ceftriaxone (CRO) (67.9%), and tetracycline (TET) (45.3%) were the predominant AMR patterns. MDR was detected in 41.5% (22/53) of the isolates tested. Fifty-seven virulence genes were identified in all C. jejuni isolates; most of these genes were associated with motility (n = 28) and chemotaxis (n = 10). Additionally, all C. jejuni isolates harbored virulence genes related to adhesion, invasion, LOS, LPS, CPS, transportation, and CDT. In total, 16 sequence types (STs) and 11 clonal complexes (CC) were identified based on core-genome MLST (cgMLST) analysis. The data analysis revealed distinct diversity depending on phenotypic and genotypic antimicrobial resistance of C. jejuni.
Collapse
Affiliation(s)
- Jurgita Aksomaitiene
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (A.N.); (M.M.)
| | | | | |
Collapse
|
6
|
Baker M, Zhang X, Maciel-Guerra A, Dong Y, Wang W, Hu Y, Renney D, Hu Y, Liu L, Li H, Tong Z, Zhang M, Geng Y, Zhao L, Hao Z, Senin N, Chen J, Peng Z, Li F, Dottorini T. Machine learning and metagenomics reveal shared antimicrobial resistance profiles across multiple chicken farms and abattoirs in China. NATURE FOOD 2023; 4:707-720. [PMID: 37563495 PMCID: PMC10444626 DOI: 10.1038/s43016-023-00814-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
China is the largest global consumer of antimicrobials and improving surveillance methods could help to reduce antimicrobial resistance (AMR) spread. Here we report the surveillance of ten large-scale chicken farms and four connected abattoirs in three Chinese provinces over 2.5 years. Using a data mining approach based on machine learning, we analysed 461 microbiomes from birds, carcasses and environments, identifying 145 potentially mobile antibiotic resistance genes (ARGs) shared between chickens and environments across all farms. A core set of 233 ARGs and 186 microbial species extracted from the chicken gut microbiome correlated with the AMR profiles of Escherichia coli colonizing the same gut, including Arcobacter, Acinetobacter and Sphingobacterium, clinically relevant for humans, and 38 clinically relevant ARGs. Temperature and humidity in the barns were also correlated with ARG presence. We reveal an intricate network of correlations between environments, microbial communities and AMR, suggesting multiple routes to improving AMR surveillance in livestock production.
Collapse
Affiliation(s)
- Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Xibin Zhang
- Shandong New Hope Liuhe Group Co. Ltd and Qingdao Key Laboratory of Animal Feed Safety, Qingdao, People's Republic of China
| | | | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Yujie Hu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - David Renney
- Nimrod Veterinary Products Ltd., Moreton-in-Marsh, UK
| | - Yue Hu
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Longhai Liu
- Shandong Kaijia Food Co., Weifang, People's Republic of China
| | - Hui Li
- Luoyang Center for Disease Control and Prevention, Luoyang City, People's Republic of China
| | - Zhiqin Tong
- Luoyang Center for Disease Control and Prevention, Luoyang City, People's Republic of China
| | - Meimei Zhang
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang City, People's Republic of China
| | - Yingzhi Geng
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang City, People's Republic of China
| | - Li Zhao
- Agricultural Biopharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao City, People's Republic of China
| | - Zhihui Hao
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing City, People's Republic of China
| | - Nicola Senin
- Department of Engineering, University of Perugia, Perugia, Italy
| | - Junshi Chen
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China.
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China.
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK.
- Centre for Smart Food Research, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, People's Republic of China.
| |
Collapse
|
7
|
Tedersoo T, Roasto M, Mäesaar M, Fredriksson-Ahomaa M, Meremäe K. Antimicrobial Resistance of Campylobacter coli Isolated from Caecal Samples of Fattening Pigs at Slaughter. Microorganisms 2023; 11:1540. [PMID: 37375042 DOI: 10.3390/microorganisms11061540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Pigs are known as the main Campylobacter coli reservoirs. Campylobacteriosis, the most commonly reported gastrointestinal disease in humans, is mainly caused by the consumption of poultry meat, and little is known about the role of pork. Pigs are often associated with C. coli, including antimicrobial-resistant isolates. Therefore, the entire pork production chain must be considered as an important source of antimicrobial-resistant C. coli. This study aimed to determine the antimicrobial resistance of Campylobacter spp. isolated from caecal samples of fattening pigs at the Estonian slaughterhouse level over a five-year period. The proportion of Campylobacter-positive caecal samples was 52%. All Campylobacter isolates were identified as C. coli. A high proportion of the isolates were resistant to most of the studied antimicrobials. The resistance to streptomycin, tetracycline, ciprofloxacin and nalidixic acid was 74.8%, 54.4%, 34.4% and 31.9%, respectively. In addition, a high proportion (15.1%) of the isolates were multidrug-resistant and, in total, 93.3% were resistant to at least one antimicrobial.
Collapse
Affiliation(s)
- Triin Tedersoo
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51014 Tartu, Estonia
- National Centre for Laboratory Research and Risk Assessment, Kreutzwaldi 30, 51006 Tartu, Estonia
| | - Mati Roasto
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51014 Tartu, Estonia
| | - Mihkel Mäesaar
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51014 Tartu, Estonia
| | - Maria Fredriksson-Ahomaa
- Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, PL 66 (Agnes Sjöbergin katu 2), 00014 Helsinki, Finland
| | - Kadrin Meremäe
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51014 Tartu, Estonia
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Campylobacter is a major foodborne pathogen that infects the human intestinal tract. This review discusses the current status of antibiotic resistance, transmission of antibiotic resistance genes, and strategies to combat the global Campylobacter epidemic. RECENT FINDINGS Over the past 18 months, articles on Campylobacter antibiotic resistance have been published in ∼39 countries. Antibiotic-resistant Campylobacter have been detected in humans, livestock, poultry, wild animals, the environment, and food. Campylobacter spp. are resistant to a wide spectrum of antimicrobial agents, including the antibiotics quinolones, macrolides, tetracyclines, aminoglycosides, and chloramphenicols. Multidrug resistance is a globally emerging problem. Continuous antibiotic pressure promotes the spread of drug-resistant Campylobacter spp. Additionally, Campylobacter is well adapted to acquiring foreign drug resistance genes, including ermB, optrA, fexA, and cfrC, which are usually acquired from gram-positive bacteria. SUMMARY The widespread use of antibiotics has caused a global epidemic of drug-resistant Campylobacter infections. Many countries are actively reducing the use of antibiotics and adopting alternatives in the livestock and poultry industries to control the spread of drug-resistant Campylobacter spp.
Collapse
|
9
|
Detection of human pathogenic bacteria in rectal DNA samples from Zalophus californianus in the Gulf of California, Mexico. Sci Rep 2022; 12:14859. [PMID: 36050340 PMCID: PMC9434536 DOI: 10.1038/s41598-022-18903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Human intrusions into undisturbed wildlife areas greatly contribute to the emergence of infectious diseases. To minimize the impacts of novel emerging infectious diseases (EIDs) on human health, a comprehensive understanding of the microbial species that reside within wildlife species is required. The Gulf of California (GoC) is an example of an undisturbed ecosystem. However, in recent decades, anthropogenic activities within the GoC have increased. Zalophus californianus has been proposed as the main sentinel species in the GoC; hence, an assessment of sea lion bacterial microbiota may reveal hidden risks for human health. We evaluated the presence of potential human pathogenic bacterial species from the gastrointestinal (GI) tracts of wild sea lions through a metabarcoding approach. To comprehensively evaluate this bacterial consortium, we considered the genetic information of six hypervariable regions of 16S rRNA. Potential human pathogenic bacteria were identified down to the species level by integrating the RDP and Pplacer classifier outputs. The combined genetic information from all analyzed regions suggests the presence of at least 44 human pathogenic bacterial species, including Shigella dysenteriae and Bacillus anthracis. Therefore, the risks of EIDs from this area should be not underestimated.
Collapse
|