1
|
Pal R, Mukherjee S, Khan A, Nathani M, Maji S, Tandey R, Das S, Patra A, Mandal V. A critical appraisal on the involvement of plant-based extracts as neuroprotective agents (2012-2022): an effort to ease out decision-making process for researchers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9367-9415. [PMID: 38985312 DOI: 10.1007/s00210-024-03266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The purpose of this review study is to provide a condensed compilation of 164 medicinal plants that have been investigated for their neuroprotective aspects by researchers between the years 2012 and 2022 which also includes a recent update of 2023-2024. After using certain keywords to retrieve the data from SCOPUS, it was manually sorted to eliminate any instances of duplication. The article is streamlined into three major segments. The first segment takes a dig into the current global trend and attempts to decrypt vital information related to plant names, families, plant parts used, and neurological disorders investigated. The second segment of the article makes an attempt to present a comprehensive insight into the various mechanistic pathways through which phytochemicals can intervene to exert neuroprotection. The final segment of the manuscript is a bibliometric appraisal of all researches conducted. The study is based on 256 handpicked articles based on decided inclusion criteria. Illustrative compilation of various pathways citing their activation and deactivation channels are also presented with possible hitting points of various phytochemicals. The present study employed Microsoft Excel 2019 and VOS viewer as data visualisation tools.
Collapse
Affiliation(s)
- Riya Pal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Souvik Mukherjee
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Altamash Khan
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Mansi Nathani
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Sayani Maji
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Roshni Tandey
- Department of B. Pharm Ayurveda, Delhi Pharmaceutical Sciences and Research University, Sector-3, MB Road, Pushp Vihar, New Delhi, 110017, India
| | - Sinchan Das
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Arjun Patra
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Vivekananda Mandal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India.
| |
Collapse
|
2
|
Ma J, Zhang M, Fu P, Yin X, Chen Z. Chemokines play a role in nerve damage and neuroprotection in vascular dementia. IBRO Neurosci Rep 2024; 17:154-160. [PMID: 39206161 PMCID: PMC11350449 DOI: 10.1016/j.ibneur.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Various Chemotactic Factors (FCs) play different roles in neuronal injury in vascular dementia. CXCL5 and CCL11 exacerbate neurological injury by promoting inflammatory responses. CXCL12/SDF-1 and CX3CL1 play neuroprotective roles.CXCL13, XCL-1 and CCL2/ MCP-1 exacerbate neurological injury in the early stage, while exerting neuronal regeneration and neuroprotective effects in the chronic progressive phase. Chemokines often play an important role in the course of vascular dementia by regulating inflammatory responses, oxidative stress, and autophagy. Activation of microglia plays an important role in the regression of vascular dementia. Activated microglia M1 causes neuronal damage through the release of chemokines. And microglia M2 has anti-inflammatory effects and is involved in the repair of brain damage. Therefore, dynamic monitoring of various related FCs and understanding the relationship between FCs and microglia can help to understand and regulate the disease course progression of vascular dementia.At present, many scholars have confirmed in basic research that different subgroups of chemokines are closely related to vascular dementia. In clinical research, new immunotherapy methods that upregulate XCL-1 and drugs that regulate the activity of CCL2/CCR2 signaling pathways are being studied and promoted.
Collapse
Affiliation(s)
- Jinming Ma
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang,Jiangxi, 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Peijie Fu
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang,Jiangxi, 332000, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang,Jiangxi, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi,332000, China
| | - Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang,Jiangxi, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi,332000, China
| |
Collapse
|
3
|
Peng J, Ai W, Yin X, Huang D, Li S. A Comparison Analysis of Four Different Drying Treatments on the Volatile Organic Compounds of Gardenia Flowers. Molecules 2024; 29:4300. [PMID: 39339295 PMCID: PMC11433852 DOI: 10.3390/molecules29184300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The gardenia flower not only has extremely high ornamental value but also is an important source of natural food and spices, with a wide range of uses. To support the development of gardenia flower products, this study used headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) technology to compare and analyze the volatile organic compounds (VOCs) of fresh gardenia flower and those after using four different drying methods (vacuum freeze-drying (VFD), microwave drying (MD), hot-air drying (HAD), and vacuum drying (VD)). The results show that, in terms of shape, the VFD sample is almost identical to fresh gardenia flower, while the HAD, MD, and VD samples show significant changes in appearance with clear wrinkling; a total of 59 volatile organic compounds were detected in the gardenia flower, including 13 terpenes, 18 aldehydes, 4 esters, 8 ketones, 15 alcohols, and 1 sulfide. Principal component analysis (PCA), cluster analysis (CA), and partial least-squares regression analysis (PLS-DA) were performed on the obtained data, and the research found that different drying methods impact the VOCs of the gardenia flower. VFD or MD may be the most effective alternative to traditional sun-drying methods. Considering its drying efficiency and production cost, MD has the widest market prospects.
Collapse
Affiliation(s)
- Jiangli Peng
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (J.P.); (W.A.); (X.Y.)
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Wen Ai
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (J.P.); (W.A.); (X.Y.)
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xinyi Yin
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (J.P.); (W.A.); (X.Y.)
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
| | - Dan Huang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (J.P.); (W.A.); (X.Y.)
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shunxiang Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (J.P.); (W.A.); (X.Y.)
- Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
4
|
Pang QQ, Zang CX, Li T, Zeng XC, Liu LX, Zhang D, Yao XS, Yu Y. Neuroprotective effect of GJ-4 against cognitive impairments in vascular dementia by improving white matter damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155877. [PMID: 39032283 DOI: 10.1016/j.phymed.2024.155877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND White matter lesions (WMLs) are increasingly linked to the pathological process of chronic vascular dementia (VaD). An effective crocins fraction extracted from Gardenia Fructus, GJ-4, has been shown to improve cognitive function in several Alzheimer's disease models and VaD models. OBJECTIVES To explore the potential mechanisms of GJ-4 on WMLs in a chronic VaD mouse model. METHODS The chronic VaD mouse model was established, and WMLs were characterized by cerebral blood flow (CBF), behavioral tests, LFB staining, and immunohistochemistry. The anti-oxidative effect of GJ-4 was validated by examining biochemical parameters (SOD, MDA, and GSH) and the Keap1-Nrf2/HO-1 pathway. The impact of GJ-4 on lipid metabolism in WM was further investigated through lipidomic analysis. RESULTS GJ-4 significantly attenuated cognitive impairments and improved the CBF of BCAS (bilateral common carotid artery stenosis)-induced mice. Mechanism research showed that GJ-4 could enhance cognition by promoting the repair of WMLs by inhibiting oxidative stress. Furthermore, GJ-4 treatment significantly reduced chronic cerebral hypoperfusion (CCH)-induced WMLs via improving lipid metabolism disorder in the WM. CONCLUSION This research has provided valuable insights into the significance of WMLs in CCH-induced VaD and underscored the potential of GJ-4 as a therapeutic agent for improving cognitive function by targeting WMLs. These findings suggest that GJ-4 is a promising candidate for the treatment of VaD.
Collapse
Affiliation(s)
- Qian-Qian Pang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China; University of Michigan Life Sciences Institute, Ann Arbor, MI 48109-2216, United States
| | - Cai-Xia Zang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Ting Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiao-Chun Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China
| | - Ling-Xian Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China
| | - Dan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Xin-Sheng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Yang Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy; Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
5
|
Yin S, Niu L, Zhang J, Liu Y. Gardenia yellow pigment: Extraction methods, biological activities, current trends, and future prospects. Food Res Int 2024; 179:113981. [PMID: 38342530 DOI: 10.1016/j.foodres.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jian Zhang
- Future Food (Bai Ma) Research Institute, Nanjing, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
6
|
Song C, Long X, He J, Huang Y. Recent evaluation about inflammatory mechanisms in nonalcoholic fatty liver disease. Front Pharmacol 2023; 14:1081334. [PMID: 37007030 PMCID: PMC10061077 DOI: 10.3389/fphar.2023.1081334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is common chronic metabolic liver disorder which is associated with fat accumulation in the liver. It causes a wide range of pathological effects such as insulin resistance, obesity, hypertension, diabetes, non-alcoholic steatohepatitis (NASH) and cirrhosis, cardiovascular diseases. The molecular mechanisms that cause the initiation and progression of NAFLD remain fully unclear. Inflammation is regarded as a significant mechanism which could result in cell death and tissue injury. Accumulation of leukocytes and hepatic inflammation are important contributors in NAFLD. Excessive inflammatory response can deteriorate the tissue injury in NAFLD. Thus, inhibition of inflammation improves NAFLD by reducing intrahepatic fat content, increasing β-oxidation of fatty acids, inducing hepato-protective autophagy, overexpressing peroxisome proliferator-activated receptor- γ (PPAR-γ), as well as attenuating hepatocyte apoptosis and increasing insulin sensitivity. Therefore, understanding the molecules and signaling pathways suggests us valuable information about NAFLD progression. This review aimed to evaluate the inflammation in NAFLD and the molecular mechanism on NAFLD.
Collapse
Affiliation(s)
- Chong Song
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Xian Long
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Jianbin He
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Huaihua, Affiliated to University of South China, Huaihua, Hunan, China
- *Correspondence: Yongpan Huang, ; Jianbin He,
| | - Yongpan Huang
- Medicine School, Changsha Social Work College, Changsha, Hunan, China
- *Correspondence: Yongpan Huang, ; Jianbin He,
| |
Collapse
|