1
|
Wang C, Yang S, Deng J, Shi L, Chang J, Meng J, Liu W, Zeng J, Xing K, Wen J, Liang B, Xing D. The research progress on the anxiolytic effect of plant-derived flavonoids by regulating neurotransmitters. Drug Dev Res 2023; 84:458-469. [PMID: 36744648 DOI: 10.1002/ddr.22038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
Phytopharmaceuticals have attracted a lot of attention due to their multicomponent and multiple targets. The natural phenolic chemicals known as flavonoids are found in a wide variety of plants, fruits, vegetables, and herbs. Recently, they have been found to have modulatory effects on anxiety disorders, with current research focusing on the modulation of neurotransmitters. There has not yet been a review of the various natural flavonoid monomer compounds and total plant flavonoids that have been found to have anxiolytic effects. The study on the anti-anxiety effects of plant-derived flavonoids on neurotransmitters was reviewed in this paper. We, therefore, anticipate that further study on the conformational interaction underlying flavonoids' anti-anxiety effects will offer a theoretical framework for the creation of pertinent treatments.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jingsen Meng
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenjing Liu
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jun Zeng
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester, UK
| | - Jialian Wen
- School of Social Science, The University of Manchester, Manchester, UK
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, Shandong, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
G S, S VP, E P, G A. Comparative synthesis and characterization of nanocomposites using chemical and green approaches including a comparison study on in vivo and in vitro biological properties. NANOSCALE ADVANCES 2023; 5:767-785. [PMID: 36756509 PMCID: PMC9890937 DOI: 10.1039/d2na00677d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
In this study, the anti-diabetic, anti-inflammatory, anti-cytotoxic, and antibacterial effects of various substances were studied in vitro. Malachite green's photocatalytic effects were used to determine the optimised sample while it was exposed to visible light. The intended nanocomposites were created without any contaminants, according to XRD data. The overall characterisation results of the green synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)) were superior to those of the chemical synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)). At the five doses examined, the green synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)) and chemical synthesis of CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)) resulted in higher α-glucosidase inhibition percentages in the antidiabetic assay. HaCaT cells and MCF-7 cells were less harmful when treated with chemically synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)), and green synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)). From the results of the cytotoxicity tests against MCF-7 cells and HaCaT cells using the nanocomposites, the IC50 values of Salacia reticulata, green synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)), and chemically synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(C)) were calculated. This research work shows that the green synthesized CS/SiO2/TiO2/CeO2/Fe3O4 nanocomposites (CSTCF(G)) have strong anti-inflammatory, antibacterial and anti-diabetic properties, as well as considerable suppression of high activation in in vivo zebrafish embryo toxicity. The novelty of this study focused on the revelation that green synthesized nanocomposites are more affordable, environmentally friendly and biocompatible than chemically synthesized ones.
Collapse
Affiliation(s)
- Sabeena G
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | - Vainath Praveen S
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | - Pushpalakshmi E
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | - Annadurai G
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| |
Collapse
|
3
|
Kumar A, Sharma M, Richardson CD, Kelvin DJ. Potential of Natural Alkaloids From Jadwar ( Delphinium denudatum) as Inhibitors Against Main Protease of COVID-19: A Molecular Modeling Approach. Front Mol Biosci 2022; 9:898874. [PMID: 35620478 PMCID: PMC9127362 DOI: 10.3389/fmolb.2022.898874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
The ongoing pandemic coronavirus disease (COVID-19) caused by a novel corona virus, namely, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has had a major impact on global public health. COVID-19 cases continue to increase across the globe with high mortality rates in immunocompromised patients. There is still a pressing demand for drug discovery and vaccine development against this highly contagious disease. To design and develop antiviral drugs against COVID-19, the main protease (Mpro) has emerged as one of the important drug targets. In this context, the present work explored Jadwar (Delphinium denudatum)-derived natural alkaloids as potential inhibitors against Mpro of SARS-CoV-2 by employing a combination of molecular docking and molecular dynamic simulation-based methods. Molecular docking and interaction profile analysis revealed strong binding on the Mpro functional domain with four natural alkaloids viz. panicutine (-7.4 kcal/mol), vilmorrianone (-7.0 kcal/mol), denudatine (-6.0 kcal/mol), and condelphine (-5.9 kcal/mol). The molecular docking results evaluated by using the MD simulations on 200 nanoseconds confirmed highly stable interactions of these compounds with the Mpro. Additionally, mechanics/generalized Born/Poisson-Boltzmann surface area (MM/G/P/BSA) free energy calculations also affirmed the docking results. Natural alkaloids explored in the present study possess the essential drug-likeness properties, namely, absorption, distribution, metabolism, and excretion (ADME), and are in accordance with Lipinski's rule of five. The results of this study suggest that these four bioactive molecules, namely, condelphine, denudatine, panicutine, and vilmorrianone, might be effective candidates against COVID-19 and can be further investigated using a number of experimental methods.
Collapse
Affiliation(s)
- Anuj Kumar
- Laboratory of Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Mansi Sharma
- Laboratory of Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Christopher D. Richardson
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - David J. Kelvin
- Laboratory of Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology CCfV, Faculty of Medicine, Dalhousie University, Halifax, Canada
| |
Collapse
|
4
|
Atchou K, Lawson-Evi P, Diallo A, Eklu-Gadegbeku K. Toxicological evaluation of the dried hydroethanolic extract of Amaranthus spinosus L. roots in Artemia salina larvae and Sprague Dawley rats. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00304-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Amaranthus spinosus is a medicinal plant used in traditional medicine to treat several diseases including diabetes and its complications. The aim of this study was to prove the safety of the plant in animal health.
Methods
The dry extract was obtained following the hydroethanolic extraction of A. spinosus roots. The cytotoxicity was evaluated in vitro by incubating Artemia salina larvae with the extract for 24 h. In vivo toxicity was assessed in Sprague Dawley rats. A single dose of 5000 mg/kg bw of extract was administered orally to female rats in acute toxicity and observed for 14 days for mortality and signs of toxicity. In subchronic toxicity, extract doses of 500 and 1000 mg/kg bw were administered orally to male and female rats for 28 consecutive days and observed for previous signs. Body weight was recorded daily and blood glucose levels every week. On day 29, blood was collected for biochemical and hematological studies. Organs were then exised for gross autopsy and histopathological examination.
Results
The in vitro study showed that the extract had a LC50 = 1.178 mg/mL in larvae and was considered to be non-cytotoxic. Oral administration of extract at a single dose of 5000 mg/kg bw did not cause any mortality or sign of toxicity in gross necropsy. In subchronic oral toxicity, repeated doses of 500 and 1000 mg/kg bw of extract, did not also cause any mortality or significant change in body weight, relative weight of vital organs. Furthermore, hematological and biochemical parameters and histopathological examination did not show any significant change. The observed decrease in blood glucose levels did not correlate with organ damage and supports the safety of the plant. However, the reduction of LDL-cholesterol has shown that the extract can prevent cardiovascular disease.
Conclusions
This finding demonstrated that A. spinosus root is non-toxic with a LD50 > 5000 mg/kg bw. Thus, the extract can be used for cutaneous and subchronic oral administration at doses ≤ 1000 mg/kg bw. However, further studies such as embryo/fetotoxicity, genotoxicity and neurotoxicity will be needed to prove the safety of chronic administration of the extract in patients and fetuses.
Collapse
|
5
|
Qureshi MA, Husain GM, Urooj M, Khan MA, Husain M, Kazmi MH. Preclinical safety, anxiolytic and antidepressant activity of Sufoof Jawahar Mohra: A Unani formulation. ADVANCES IN INTEGRATIVE MEDICINE 2021. [DOI: 10.1016/j.aimed.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Abstract
Plants of Delphinium are herbal medicine used in the Tibet region with whole grass as a drug, which have the effects of analgesic, antibacterial, antipyretic, and anticancer. The main bioactive compounds are alkaloids, flavonoids, and sterols. This review summarized the compounds and pharmacological effects of Delphinium and provides a reference for further research on Delphinium.
Collapse
|
7
|
Chopade AR, Pol RP, Patil PA, Dharanguttikar VR, Naikwade NS, Dias RJ, Mali SN. An Insight Into the Anxiolytic Effects of Lignans (Phyllanthin and Hypophyllanthin) and Tannin (Corilagin) Rich Extracts of Phyllanthus amarus : An In-Silico and In-vivo approaches. Comb Chem High Throughput Screen 2020; 24:415-422. [PMID: 32503404 DOI: 10.2174/1386207323666200605150915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
The extracts and the compounds isolated from Phyllanthus amarus Schumm and Thonn (Family: Euphorbiaceae) have shown a wide spectrum of pharmacological activities including antiviral, antibacterial, antiplasmodial, antimalarial, antimicrobial, anticancer, antidiabetic, hypolipidemic, antioxidant, hepatoprotective, nephroprotective and diurectic properties. BACKGROUND This investigation was aimed at exploring the anxiolytic potential of Phyllanthus amarus standardized extracts and predict probable role of marker phyto constitutents. OBJECTIVE AND METHODS Three standardized extracts of Phyllanthus amarus plant viz. standardized aqueous extract of Phyllanthus amarus whole plant (PAAE), standardized methanolic extract of P. amarus leaf (PAME) and the standardized hydro-methanolic extract of P. amarus leaf (PAHME) were tested in the classical animal models of anxiety: Elevated plus-maze model and Light & Dark Exploration test. RESULTS The lower doses of the tannin rich extract (PAHME) of the P. amarus possess significant anxiolytic activity compared to lignin rich (PAME) and aqueous extracts (PAAE), while at a higher dose (400mg/kg) the results of all three extracts appears to be potentially sedative. While the molecular docking studies support these probable anxiolytic, the sedative effects of the Phyllanthus amarus extracts could be due to the interaction of tannins and lignans with the GABAbenzodiazepine receptor complex. CONCLUSION The results of the present study indicate that the tannin-rich extract of the P. amarus may have potential clinical applications in the management of anxiety. It can be further studied for optimum dosage to be used as a future of anti-anxiety drug development or as a standardized Phytomedicine.
Collapse
Affiliation(s)
- Atul R Chopade
- Department of Pharmacology, Rajarambapu College of Pharmacy, Kasegaon, 415404, India
| | - Rahul P Pol
- Department of Pharmacology, Appasaheb Birnale College of Pharmacy, Sangli -416416, India
| | - Pramod A Patil
- Department of Pharmacology, Rajarambapu College of Pharmacy, Kasegaon, 415404, India
| | | | - Nilofar S Naikwade
- Department of Pharmacology, Appasaheb Birnale College of Pharmacy, Sangli -416416, India
| | - Remeth J Dias
- Departement of Pharmacy, Govt. Polytechnic Jalgaon, Maharashtra, India
| | - Suraj N Mali
- Departement of Pharmacy, Govt. College of Pharmacy, Karad, Maharashtra, India
| |
Collapse
|
8
|
Daneshfard B, Yekta NH, Khoshdel A, Heiran A, Cheraghi R, Yarmohammadi H. The effect of Delphinium denudatum (Jadwar) on fatigue: A randomized double blind placebo-controlled clinical trial. Complement Ther Med 2019; 46:29-35. [PMID: 31519284 DOI: 10.1016/j.ctim.2019.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Fatigue is a common problem in modern-day life. The aim of this study was to evaluate the effect of Delphinium denudatum (Jadwar) on fatigue. METHODS This study was a randomized double-blind placebo-controlled clinical trial between healthy normal university students. In each group, participants were given one capsule of either WEACURE® (containing 500 mg of Jadwar root powder) or placebo for 15 consecutive days. Multidimensional Fatigue Inventory (MFI) questionnaire was used before and after the intervention to evaluate different aspects of fatigue. RESULTS A total number of 64 participants completed the study. Data analysis showed decrease in the scores of all five domains of fatigue in Jadwar group (13.31 ± 3.05-7.75 ± 2.66, 12.31 ± 3.55-7.63 ± 2.62, 12.22 ± 4.26-6.97 ± 2.06, 11.56 ± 4.21 to 7.28 ± 2.37, 12.91 ± 3.09-7.34 ± 2.13 in general fatigue, physical fatigue, reduced activity, reduced motivation, and mental fatigue domains, respectively) which was statistically significant (P value<0.0001). This situation was significantly superior to the placebo group. Prescribed dosage of WEACURE® capsule was well tolerated. CONCLUSION As a complementary tonic agent, Jadwar have a potential to reduce fatigue in normal population. However, objective evaluation of its anti-fatigue effect should be further evaluated.
Collapse
Affiliation(s)
- Babak Daneshfard
- Department of Persian Medicine, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Nafiseh Hosseini Yekta
- Department of Persian Medicine, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| | - Alireza Khoshdel
- Epidemiology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Heiran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Cheraghi
- R&D manager, Shefanegar Nazari Pharmaceutical corporation, Qom, Iran
| | - Hassan Yarmohammadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Green BT, Lee ST, Gardner DR, Welch KD, Cook D. Bioactive Alkaloids from Plants Poisonous to Livestock in North America. Isr J Chem 2019. [DOI: 10.1002/ijch.201800169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Benedict T. Green
- USDA-ARS, Poisonous Plant Research Laboratory 1150 East 1400 North, Logan UT 84341 USA
| | - Stephen T. Lee
- USDA-ARS, Poisonous Plant Research Laboratory 1150 East 1400 North, Logan UT 84341 USA
| | - Dale R. Gardner
- USDA-ARS, Poisonous Plant Research Laboratory 1150 East 1400 North, Logan UT 84341 USA
| | - Kevin D. Welch
- USDA-ARS, Poisonous Plant Research Laboratory 1150 East 1400 North, Logan UT 84341 USA
| | - Daniel Cook
- USDA-ARS, Poisonous Plant Research Laboratory 1150 East 1400 North, Logan UT 84341 USA
| |
Collapse
|