1
|
Çalışkan H, Koçak S, Güneş E. Epoetin alfa has a potent anxiolytic effect on naive female rats. BMC Pharmacol Toxicol 2025; 26:18. [PMID: 39876022 PMCID: PMC11773716 DOI: 10.1186/s40360-025-00845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Epoetin alfa is a derivative of the erythropoietin hormone. This study aims to investigate the epoetin alfa effect on anxiety-like behaviors. METHODS Adult female Wistar Albino rats were divided into Control (n = 8), 1000 U Epoetien alfa, and 2000 U Epoetien alpha. Epoetin alfa was administered intraperitoneally once a week for 4 weeks. The animals were then subjected to open field test, elevated plus maze, light-dark box, and the behaviors were video recorded. RESULTS Epoetin alfa significantly reduced anxiety-like behaviors in both low- and high-dose groups in a dose-independent manner. This anxiolytic effect was seen in all three anxiety tests. Further, exploratory behaviors such as unsupported rearing and head-dipping behaviors increased with the application of Epoetin alfa. This protocol did not alter locomotor activity. CONCLUSION The present study found beneficial effects of epoetin alfa on behaviors. Further studies on the effect of derivatives of erythropoietin hormone on anxiety-like behaviors are needed.
Collapse
Affiliation(s)
- Hasan Çalışkan
- Department of Physiology, Balıkesir University Medicine Faculty, Balıkesir, Turkey.
| | - Seda Koçak
- Department of Physiology, Kırşehir Ahi Evran University Medicine Faculty, Kırşehir, Turkey
| | - Emel Güneş
- Department of Physiology, Ankara University Medicine Faculty, Ankara, Turkey
| |
Collapse
|
2
|
Norouzi E, Mohammadi R, Fadaei R, Moradi MT, Hosseini H, Rezaie L, Khazaie H. A systematic review and meta-analysis on the levels of brain-derived neurotrophic factor in insomnia patients with and without comorbid depression. BIOL RHYTHM RES 2023; 54:467-478. [DOI: 10.1080/09291016.2023.2222239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/01/2023] [Indexed: 08/28/2024]
Affiliation(s)
- Ebrahim Norouzi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Reza Mohammadi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mohammad-Taher Moradi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Hossein Hosseini
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leeba Rezaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| |
Collapse
|
3
|
Kim M, Lee Y, Kang H. Effects of Exercise on Positive Symptoms, Negative Symptoms, and Depression in Patients with Schizophrenia: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3719. [PMID: 36834415 PMCID: PMC9967614 DOI: 10.3390/ijerph20043719] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This study was performed to evaluate the effects of exercise on positive and negative symptoms and depression in patients with schizophrenia through a systematic review and meta-analysis focusing on randomized controlled trials (RCTs). PubMed, Embase, CINAHL, MEDLINE, Cochrane Library, PsycINFO, and Web of Science were searched from their inception to 31 October 2022. We also conducted a manual search using Google Scholar. This meta-analysis was conducted according to the PRISMA guidelines. The methodological quality of the studies was assessed using the Cochrane risk-of-bias tool for randomized trials. To identify the cause of heterogeneity, subgroup analysis, meta-ANOVA, and meta-regression analyses were performed as moderator analyses. Fifteen studies were included. The meta-analysis (random-effects model) for overall exercise showed a medium significant effect (standardized mean difference [SMD] = -0.51, 95% confidence interval [CI]: -0.72 to -0.31) on negative symptoms, a small significant effect (SMD = -0.24, 95% CI: -0.43 to -0.04) on positive symptoms, and a nonsignificant effect (SMD = -0.87, 95% CI: -1.84 to 0.10) on depression. Our findings demonstrate that exercise can relieve the negative and positive symptoms of schizophrenia. However, the quality of some included studies was low, limiting our results for clear recommendations.
Collapse
Affiliation(s)
| | | | - Hyunju Kang
- College of Nursing, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| |
Collapse
|
4
|
Rezaee Z, Marandi SM, Alaei H. Molecular Mechanisms of Exercise in Brain Disorders: a Focus on the Function of Brain-Derived Neurotrophic Factor-a Narrative Review. Neurotox Res 2022; 40:1115-1124. [PMID: 35655062 DOI: 10.1007/s12640-022-00527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
The natural aging process as well as many age-related diseases is associated with impaired metabolic adaptation and declined ability to cope with stress. As major causes of disability and morbidity during the aging process, brain disorders, including psychiatric and neurodegenerative disorders, are likely to increase across the globe in the future decades. This narrative review investigates the link among exercise and brain disorders, aging, and inflammatory biomarkers, along with the function of brain-derived neurotrophic factor. For this study, related manuscript from all databases, Google scholar, Scopus, PubMed, and ISI were assessed. Also, in the search process, the keywords of exercise, neurodegeneration, neurotrophin, mitochondrial dysfunction, and aging were used. Mitochondrial abnormality increases neuronal abnormality and brain disease during the aging process. Stress and inflammatory factors caused by lifestyle and aging also increase brain disorders. Evidences suggest that exercise, as a noninvasive treatment strategy, has antioxidant effects and can reduce neuronal lesions. Brain-derived neurotrophic factor expression following the exercise can reduce brain symptoms; however, careful consideration should be given to a number of factors affecting the results.
Collapse
Affiliation(s)
- Zeinab Rezaee
- Faculty of Physical Education & Sport Sciences, Department of Sport Physiology, University of Isfahan, Azadi Sq, HezarJerib Ave, P.O. Box, Isfahan, 81799-54359, Iran.
| | - Sayed Mohammad Marandi
- Faculty of Physical Education & Sport Sciences, Department of Sport Physiology, University of Isfahan, Azadi Sq, HezarJerib Ave, P.O. Box, Isfahan, 81799-54359, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, University of Isfahan Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Lee B, Shin E, Song I, Chang B. Depression in Adolescence and Brain-Derived Neurotrophic Factor. Front Mol Neurosci 2022; 15:947192. [PMID: 35875661 PMCID: PMC9302599 DOI: 10.3389/fnmol.2022.947192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
The incidence of depression among adolescents has been rapidly increasing in recent years. Environmental and genetic factors have been identified as important risk factors for adolescent depression. However, the mechanisms underlying the development of adolescent depression that are triggered by these risk factors are not well understood. Clinical and preclinical studies have focused more on adult depression, and differences in depressive symptoms between adolescents and adults make it difficult to adequately diagnose and treat adolescent depression. Brain-derived neurotrophic factor (BDNF) is known to play a critical role in the pathophysiology of many psychiatric disorders, including depression. However, there are still few studies on adolescent depression. Therefore, in this review paper, the causes and treatment of adolescent depression and the function of BDNF are investigated.
Collapse
|
6
|
Borsdorf B, Dahmen B, Buehren K, Dempfle A, Egberts K, Ehrlich S, Fleischhaker C, Konrad K, Schwarte R, Timmesfeld N, Wewetzer C, Biemann R, Scharke W, Herpertz-Dahlmann B, Seitz J. BDNF levels in adolescent patients with anorexia nervosa increase continuously to supranormal levels 2.5 years after first hospitalization. J Psychiatry Neurosci 2021; 46:E568-E578. [PMID: 34654737 PMCID: PMC8526129 DOI: 10.1503/jpn.210049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/14/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) influences brain plasticity and feeding behaviour, and it has been linked to anorexia nervosa in numerous studies. Findings in mostly adult patients point to reduced serum BDNF levels in the acute stage of anorexia nervosa and rising levels with weight recovery. However, it is unclear whether this increase leads to normalization or supranormal levels, a difference that is potentially important for the etiology of anorexia nervosa and relapse. METHODS We measured serum BDNF at admission (n = 149), discharge (n = 130), 1-year follow-up (n = 116) and 2.5-year follow-up (n = 76) in adolescent female patients with anorexia nervosa hospitalized for the first time, and in healthy controls (n = 79). We analyzed associations with body mass index, eating disorder psychopathology and comorbidities. RESULTS Serum BDNF was only nominally lower at admission in patients with anorexia nervosa compared to healthy controls, but it increased continuously and reached supranormal levels at 2.5-year follow-up. BDNF was inversely associated with eating disorder psychopathology at discharge and positively associated with previous weight gain at 1-year follow-up. LIMITATIONS We compensated for attrition and batch effects using statistical measures. CONCLUSION In this largest longitudinal study to date, we found only nonsignificant reductions in BDNF in the acute stage of anorexia nervosa, possibly because of a shorter illness duration in adolescent patients. Supranormal levels of BDNF at 2.5-year follow-up could represent a pre-existing trait or a consequence of the illness. Because of the anorexigenic effect of BDNF, it might play an important predisposing role for relapse and should be explored further in studies that test causality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jochen Seitz
- From the Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH University Aachen, Germany (Borsdorf, Dahmen, Buehren, Scharke, Herpertz-Dahlmann, Seitz); the kbo-Heckscher Klinikum, Academic Teaching Hospital, Ludwig Maximilian University, Munich, Germany (Buehren); the Institute of Medical Informatics and Statistics, Kiel University, Germany (Dempfle); the Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Wuerzburg, Germany (Egberts); the Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany (Ehrlich); the Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany (Ehrlich); the Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Freiburg, Germany (Fleischhaker); the Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH University Aachen (Konrad); the JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Juelich Research Centre, Germany (Konrad); the Oberberg Fachklinik Konraderhof, Cologne-Huerth, Germany (Schwarte); the Institute of Medical Biometry and Epidemiology, Philipps-University Marburg, Germany (Timmesfeld); the Department of Medical Informatics, Biometrics and Epidemiology, Ruhr University Bochum, Germany (Timmesfeld); the Department of Child and Adolescent Psychiatry and Psychotherapy, Cologne City Hospitals, Germany (Wewetzer); the Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany (Biemann); the Cognitive and Experimental Psychology, Institute of Psychology, RWTH Aachen University, Germany (Scharke)
| |
Collapse
|
7
|
Martinelli S, Anderzhanova EA, Bajaj T, Wiechmann S, Dethloff F, Weckmann K, Heinz DE, Ebert T, Hartmann J, Geiger TM, Döngi M, Hafner K, Pöhlmann ML, Jollans L, Philipsen A, Schmidt SV, Schmidt U, Maccarrone G, Stein V, Hausch F, Turck CW, Schmidt MV, Gellner AK, Kuster B, Gassen NC. Stress-primed secretory autophagy promotes extracellular BDNF maturation by enhancing MMP9 secretion. Nat Commun 2021; 12:4643. [PMID: 34330919 PMCID: PMC8324795 DOI: 10.1038/s41467-021-24810-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
The stress response is an essential mechanism for maintaining homeostasis, and its disruption is implicated in several psychiatric disorders. On the cellular level, stress activates, among other mechanisms, autophagy that regulates homeostasis through protein degradation and recycling. Secretory autophagy is a recently described pathway in which autophagosomes fuse with the plasma membrane rather than with lysosomes. Here, we demonstrate that glucocorticoid-mediated stress enhances secretory autophagy via the stress-responsive co-chaperone FK506-binding protein 51. We identify the matrix metalloproteinase 9 (MMP9) as one of the proteins secreted in response to stress. Using cellular assays and in vivo microdialysis, we further find that stress-enhanced MMP9 secretion increases the cleavage of pro-brain-derived neurotrophic factor (proBDNF) to its mature form (mBDNF). BDNF is essential for adult synaptic plasticity and its pathway is associated with major depression and posttraumatic stress disorder. These findings unravel a cellular stress adaptation mechanism that bears the potential of opening avenues for the understanding of the pathophysiology of stress-related disorders.
Collapse
Affiliation(s)
- Silvia Martinelli
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Elmira A Anderzhanova
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Svenja Wiechmann
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- German Cancer Center (DKFZ), Heidelberg, Germany
| | - Frederik Dethloff
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Katja Weckmann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel E Heinz
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tim Ebert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
| | - Thomas M Geiger
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Döngi
- Institut für Physiologie II, University of Bonn, Bonn, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Max L Pöhlmann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lee Jollans
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | | | - Ulrike Schmidt
- Research Group Molecular and Clinical Psychotraumatology, Department of Psychiatry and Psychotherapy, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Research Group Traumatic Stress & Neurodegeneration & PTSD Treatment Unit, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Giuseppina Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Valentin Stein
- Institut für Physiologie II, University of Bonn, Bonn, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anne-Kathrin Gellner
- Institut für Physiologie II, University of Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- German Cancer Center (DKFZ), Heidelberg, Germany
- Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Rahmati-Ahmadabad S, Azarbayjani MA, Broom D, Nasehi M. Effects of high-intensity interval training and flaxseed oil supplement on learning, memory and immobility: relationship with BDNF and TrkB genes. COMPARATIVE EXERCISE PHYSIOLOGY 2021; 17:273-283. [DOI: 10.3920/cep200046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
This study examined the independent and combined effects of high-intensity interval training (HIIT) and flaxseed oil supplementation on cognitive/executive functions in middle-aged rats. Hippocampal neurotropic brain factor (BDNF) and tyrosine kinase receptor B (TrkB) gene expression were also measured. Animals were randomly divided into groups including no exercise control and saline (CS), no exercise control and flaxseed oil supplement (CF), exercise training-and saline (TS) and exercise training and flaxseed oil supplement (TF). The training groups undertook a program of HIIT (10 weeks, five sessions per week) and the supplement groups received flaxseed oil supplement (300 mg/kg). The results showed that HIIT and flaxseed oil supplementation independently had positive effects on memory and learning (P<0.05). HIIT and flaxseed oil independently decreased immobility behaviour and increased hippocampal BDNF and TrkB genes expression (P<0.05). HIIT and flaxseed oil combination had a greater effect on some variables (hippocampal TrkB gene expression, memory and immobility) compared to each intervention alone (P<0.05). In conclusion, HIIT and flaxseed oil can independently improve cognitive/executive functions. In addition, HIIT had a greater positive effect than flaxseed oil supplementation on memory and immobility. The combination of HIIT and flaxseed oil supplement had a more positive effect compared to each intervention alone on memory, and immobility. Hippocampal BDNF gene expression did not significantly differ in the combination or independent groups. Thus, future work is needed on several other genes in different segments of the brain to find the additive-mechanisms involved in memory and immobility regulation and younger and older species of rat should be examined.
Collapse
Affiliation(s)
- S. Rahmati-Ahmadabad
- Department of Physical Education, Pardis Branch, Islamic Azad University, Pardis 1658174583, Iran
| | - M.-A. Azarbayjani
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, P.O. Box 1955847781, Tehran, Iran
| | - D.R. Broom
- Centre for Sport, Exercise and Life Sciences, Coventry University, Alison Gingell Building, 20 Whitefriars Street, Coventry, CV1 2DS, United Kingdom
| | - M. Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran 193951495, Iran
| |
Collapse
|
9
|
Nieto RR, Carrasco A, Corral S, Castillo R, Gaspar PA, Bustamante ML, Silva H. BDNF as a Biomarker of Cognition in Schizophrenia/Psychosis: An Updated Review. Front Psychiatry 2021; 12:662407. [PMID: 34220575 PMCID: PMC8242210 DOI: 10.3389/fpsyt.2021.662407] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) has been linked to cognitive symptoms of schizophrenia, which has been documented in previous reviews by several authors. However, a trend has recently emerged in this field moving from studying schizophrenia as a disease to studying psychosis as a group. This review article focuses on recent BDNF studies in relation to cognition in human subjects during different stages of the psychotic process, including subjects at high risk of developing psychosis, patients at their first episode of psychosis, and patients with chronic schizophrenia. We aim to provide an update of BDNF as a biomarker of cognitive function on human subjects with schizophrenia or earlier stages of psychosis, covering new trends, controversies, current research gaps, and suggest potential future developments in the field. We found that most of current research regarding BDNF and cognitive symptoms in psychosis is done around schizophrenia as a disease. Therefore, it is necessary to expand the study of the relationship between BDNF and cognitive symptoms to psychotic illnesses of different stages and origins.
Collapse
Affiliation(s)
- Rodrigo R Nieto
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Carrasco
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Sebastian Corral
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Facultad de Psicología, Universidad San Sebastián, Santiago, Chile
| | - Rolando Castillo
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Departamento de Neurología y Psiquiatría, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Universidad de Chile, Santiago, Chile
| | - Pablo A Gaspar
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Neurología y Psiquiatría, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - M Leonor Bustamante
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Hernan Silva
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Urbina-Varela R, Soto-Espinoza MI, Vargas R, Quiñones L, Del Campo A. Influence of BDNF Genetic Polymorphisms in the Pathophysiology of Aging-related Diseases. Aging Dis 2020; 11:1513-1526. [PMID: 33269104 PMCID: PMC7673859 DOI: 10.14336/ad.2020.0310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
For the first time in history, most of the population has a life expectancy equal or greater than 60 years. By the year 2050, it is expected that the world population in that age range will reach 2000 million, an increase of 900 million with respect to 2015, which poses new challenges for health systems. In this way, it is relevant to analyze the most common diseases associated with the aging process, namely Alzheimer´s disease, Parkinson Disease and Type II Diabetes, some of which may have a common genetic component that can be detected before manifesting, in order to delay their progress. Genetic inheritance and epigenetics are factors that could be linked in the development of these pathologies. Some researchers indicate that the BDNF gene is a common factor of these diseases, and apparently some of its polymorphisms favor the progression of them. In this regard, alterations in the level of BDNF expression and secretion, due to polymorphisms, could be linked to the development and/or progression of neurodegenerative and metabolic disorders. In this review we will deepen on the different polymorphisms in the BDNF gene and their possible association with age-related pathologies, to open the possibilities of potential therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Urbina-Varela
- 1Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Romina Vargas
- 1Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Quiñones
- 3Laboratorio de Carcinogenesis Química y Farmacogenética (CQF), Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile
| | - Andrea Del Campo
- 1Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Ozdemir F, Cansel N, Kizilay F, Guldogan E, Ucuz I, Sinanoglu B, Colak C, Cumurcu HB. The role of physical activity on mental health and quality of life during COVID-19 outbreak: A cross-sectional study. Eur J Integr Med 2020; 40:101248. [PMID: 33200007 PMCID: PMC7655489 DOI: 10.1016/j.eujim.2020.101248] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The COVID-19 pandemic has placed restrictions on people's physical activities. The aim of this study was to evaluate the physical activity levels of individuals and assess the effects of physical activity on quality of life, depression and anxiety levels during the COVID-19 outbreak. METHODS This cross-sectional study were included 2301 participants aged 20-75 years. The data were collected through the Google Forms web survey platform by the virtual snowball sampling method. In the multivariate analysis, the independent predictors were analyzed using possible factors identified in previous analyses by multinomial logistic regression analysis. Hosmer-Lemeshow and Omnibus tests were used to evaluate the logistic regression model and coefficients. RESULTS The mean weekly energy consumption of the participants was 875±1588 MET-min, and only 6.9% were physically active enough to maintain their health. There was a weak positive relationship between physical activity levels and quality of life, while there was a weak negative relationship between physical activity levels, depression and anxiety (p<0.05). In the multinomial logistic regression model established for comparison of physically active and inactive participants, general health status and physical health status variables were statistically significant (p<0.05). However, relationships between psychological status, social relationships and environment scores, Beck Depression and Beck Anxiety Inventory scores were not statistically significant (p>0.05). CONCLUSIONS Results showed that physical activity programs should be included in guidelines as an integrative approach to pandemic management. During COVID-19 outbreak, community-based rehabilitation programs are needed, and these programs should be carried out in cooperation with community stakeholders.
Collapse
Affiliation(s)
- Filiz Ozdemir
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Inonu University, 44280 Malatya, Turkey
| | - Neslihan Cansel
- Department of Psychiatry, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Fatma Kizilay
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Inonu University, 44280 Malatya, Turkey
| | - Emek Guldogan
- Department of Biostatistics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Ilknur Ucuz
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Bercem Sinanoglu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Inonu University, 44280 Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Hatice Birgul Cumurcu
- Department of Psychiatry, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|