1
|
Yama N, Tatsumi H, Akatsuka M, Hatakenaka M. Blood-pool SUV analysis of 99mTc-galactosyl human serum albumin (99mTc-GSA) normalized by blood volume for prediction of short-term survival in severe liver failure: preliminary report. Ann Nucl Med 2024:10.1007/s12149-024-01975-9. [PMID: 39254922 DOI: 10.1007/s12149-024-01975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE This study evaluated the usefulness of SUV analysis of 99mTc-galactosyl human serum albumin (99mTc-GSA) scintigraphy including SUV analysis of the cardiac blood pool normalized by blood volume as a predictor of short-term survival in severe liver failure. PATIENTS AND METHODS We enrolled 24 patients with severe liver failure who underwent 99mTc-GSA scintigraphy and were admitted to the intensive care unit. Patients were divided into survival and non-survival groups at 7, 14, and 28 days from the performance of 99mTc-GSA scintigraphy. From SPECT images we calculated SUVs of the cardiac blood pool, performing normalization for body weight, lean body weight, Japanese lean body weight, and blood volume and we calculated SUVs of the liver, normalizing by body weight, lean body weight, and Japanese lean body weight. We also calculated the uptake ratio of the heart at 15 min to that at 3 min (HH15) and the uptake ratio of the liver at 15 min to the liver plus the heart at 15 min (LHL15) from planar images of 99mTc-GSA scintigraphy. RESULTS There were significant differences between the 7 day survival and non-survival groups for all SUVs of the heart and the liver and HH15, for 14 day survival groups in SUVs of the heart normalized by Japanese lean body weight and blood volume, and no significant differences between 28 day survival groups for any SUVs, HH15, or LHL15. Although the difference was not significant, SUV analysis of the heart normalized by blood volume showed the highest value for the area under the receiver-operating-characteristics curve for both 7 day and 14 day survival. CONCLUSION SUV analysis of 99mTc-GSA including SUV analysis of cardiac blood pool normalized by blood volume is of value for prediction of short-term survival in cases with severe liver failure.
Collapse
Affiliation(s)
- Naoya Yama
- Department of Diagnostic Radiology, School of Medicine, Sapporo Medical University, South 1 West 17, Chuo-Ku, Sapporo, 060-8556, Japan.
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masayuki Akatsuka
- Department of Intensive Care Medicine, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Masamitsu Hatakenaka
- Department of Diagnostic Radiology, School of Medicine, Sapporo Medical University, South 1 West 17, Chuo-Ku, Sapporo, 060-8556, Japan
| |
Collapse
|
2
|
Nakamura S, Nakatani K, Yoshino K, Koyama T. Effects of Glucose Intolerance on Physiological Accumulation in Salivary Glands and Palatine Tonsils During 18F-Fluorodeoxyglucose Positron Emission Tomography. Cureus 2024; 16:e67387. [PMID: 39310613 PMCID: PMC11414136 DOI: 10.7759/cureus.67387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
PURPOSE We evaluated the effects of chronic hyperglycemia on physiological accumulation in salivary glands and tonsils during 18F-fluorodeoxyglucose positron emission tomography (FDG-PET/CT). MATERIALS AND METHODS 12,738 patients underwent whole-body FDG-PET/CT in our institute during the study period. Of these, the case group comprised 777 patients with a blood glucose (BG) level >140 mg/dL; the control group comprised an equal number of randomly selected age- and sex-matched individuals with a BG level <110 mg/dL. Within the case group, the diabetic subgroup was defined as individuals with a BG level >200 mg/dL. Visual assessment and accumulation intensity among tissues were compared between the case and control groups, including (1) the mean difference in maximum standardized uptake value (SUVmax), (2) the difference in the proportion of patients with visible tissues on maximum intensity projection images, and (3) differences between the diabetic subgroup and the control group. RESULTS Parotid, submandibular, sublingual, and tonsillar tissues all showed significantly lower SUVmax in the case group than in the control group. The proportions of individuals with visible uptake in the parotid and tonsillar tissues and in the sublingual gland were significantly smaller in the case group than in the control group. Tonsillar uptake was observed in more than 90% of individuals in the control group but in two-thirds of patients in the diabetic subgroup. Accumulation in the parotid and submandibular glands was visible in approximately 80% of individuals in the control group but only half of patients in the diabetic subgroup. CONCLUSION Physiological accumulation in salivary glands and tonsils is significantly reduced among individuals with hyperglycemia or diabetes.
Collapse
Affiliation(s)
- Shoki Nakamura
- Department of Diagnostic Radiology, Kurashiki Central Hospital, Kurashiki, JPN
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Hospital, Kyoto, JPN
| | - Koya Nakatani
- Department of Diagnostic Radiology, Kurashiki Central Hospital, Kurashiki, JPN
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, JPN
| | - Kumiko Yoshino
- Department of Diagnostic Radiology, Kurashiki Central Hospital, Kurashiki, JPN
| | - Takashi Koyama
- Department of Diagnostic Radiology, Kurashiki Central Hospital, Kurashiki, JPN
| |
Collapse
|
3
|
Sarikaya I. Letter to the Editor. Clin Nucl Med 2024:00003072-990000000-01214. [PMID: 39010323 DOI: 10.1097/rlu.0000000000005382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Affiliation(s)
- Ismet Sarikaya
- Department of Nuclear Medicine, Kirklareli University Faculty of Medicine, Kirklareli, Turkey
| |
Collapse
|
4
|
Magbanua MJM, Li W, van ’t Veer LJ. Integrating Imaging and Circulating Tumor DNA Features for Predicting Patient Outcomes. Cancers (Basel) 2024; 16:1879. [PMID: 38791958 PMCID: PMC11120531 DOI: 10.3390/cancers16101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Biomarkers for evaluating tumor response to therapy and estimating the risk of disease relapse represent tremendous areas of clinical need. To evaluate treatment efficacy, tumor response is routinely assessed using different imaging modalities like positron emission tomography/computed tomography or magnetic resonance imaging. More recently, the development of circulating tumor DNA detection assays has provided a minimally invasive approach to evaluate tumor response and prognosis through a blood test (liquid biopsy). Integrating imaging- and circulating tumor DNA-based biomarkers may lead to improvements in the prediction of patient outcomes. For this mini-review, we searched the scientific literature to find original articles that combined quantitative imaging and circulating tumor DNA biomarkers to build prediction models. Seven studies reported building prognostic models to predict distant recurrence-free, progression-free, or overall survival. Three discussed building models to predict treatment response using tumor volume, pathologic complete response, or objective response as endpoints. The limited number of articles and the modest cohort sizes reported in these studies attest to the infancy of this field of study. Nonetheless, these studies demonstrate the feasibility of developing multivariable response-predictive and prognostic models using regression and machine learning approaches. Larger studies are warranted to facilitate the building of highly accurate response-predictive and prognostic models that are generalizable to other datasets and clinical settings.
Collapse
Affiliation(s)
- Mark Jesus M. Magbanua
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94115, USA;
| | - Wen Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94115, USA;
| | - Laura J. van ’t Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94115, USA;
| |
Collapse
|
5
|
Alyamany R, El Fakih R, Alnughmush A, Albabtain A, Kharfan-Dabaja MA, Aljurf M. A comprehensive review of the role of bone marrow biopsy and PET-CT in the evaluation of bone marrow involvement in adults newly diagnosed with DLBCL. Front Oncol 2024; 14:1301979. [PMID: 38577334 PMCID: PMC10991722 DOI: 10.3389/fonc.2024.1301979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is one of the most prevalent subtypes of non-Hodgkin lymphoma (NHL) and is known for commonly infiltrating extra-nodal sites. The involvement of the bone marrow by lymphoma cells significantly impacts the staging, treatment, and prognosis among the extra-nodal sites in DLBCL. Bone marrow biopsy has been considered the standard diagnostic procedure for detecting bone marrow involvement. However, advancements in imaging techniques, such as positron emission tomography-computed tomography (PET-CT), have shown an improved ability to detect bone marrow involvement, making the need for bone marrow biopsy debatable. This review aims to emphasize the importance of bone marrow evaluation in adult patients newly diagnosed with DLBCL and suggest an optimal diagnostic approach to identify bone marrow involvement in these patients.
Collapse
Affiliation(s)
- Ruah Alyamany
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Riad El Fakih
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmed Alnughmush
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdulwahab Albabtain
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed A. Kharfan-Dabaja
- Division of Hematology-Oncology, Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL, United States
| | - Mahmoud Aljurf
- Department of Hematology, Stem Cell Transplant and Cellular Therapy, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Metrard G, Cohen C, Bailly M. Comprehensive literature review of oral and intravenous contrast-enhanced PET/CT: a step forward? Front Med (Lausanne) 2024; 11:1373260. [PMID: 38566921 PMCID: PMC10985176 DOI: 10.3389/fmed.2024.1373260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The integration of diagnostic CT scans into PET/CT facilitates a comprehensive single examination, presenting potential advantages for patients seeking a thorough one-shot check-up. The introduction of iodinated contrast media during PET scanning raises theoretical concerns about potential interference with uptake quantification, due to the modification of tissue density on CT. Nevertheless, this impact appears generally insignificant for clinical use, compared to the intrinsic variability of standardized uptake values. On the other hand, with the growing indications of PET, especially 18F-FDG PET, contrast enhancement increases the diagnostic performances of the exam, and provides additional information. This improvement in performance achieved through contrast-enhanced PET/CT must be carefully evaluated considering the associated risks and side-effects stemming from the administration of iodinated contrast media. Within this article, we present a comprehensive literature review of contrast enhanced PET/CT, examining the potential impact of iodinated contrast media on quantification, additional side-effects and the pivotal clinically demonstrated benefits of an all-encompassing examination for patients. In conclusion, the clinical benefits of iodinated contrast media are mainly validated by the large diffusion in PET protocols. Contrary to positive oral contrast, which does not appear to offer any major advantage in patient management, intravenous iodine contrast media provides clinical benefits without significant artifact on images or quantification. However, studies on the benefit-risk balance for patients are still lacking.
Collapse
Affiliation(s)
- Gilles Metrard
- Nuclear Medicine Department, Orléans University Hospital, Orléans, France
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Orléans, France
| | - Clara Cohen
- Radiology Department, Orléans University Hospital, Orléans, France
| | - Matthieu Bailly
- Nuclear Medicine Department, Orléans University Hospital, Orléans, France
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Orléans, France
| |
Collapse
|
7
|
Chen J, Li XL, Huang M. Utility of 18F-FDG PET/CT for differential diagnosis between IgG4-related lymphadenopathy and angioimmunoblastic T-cell lymphoma. Clin Radiol 2024; 79:205-212. [PMID: 38218705 DOI: 10.1016/j.crad.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/15/2024]
Abstract
AIM To explore the utility of the 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) in the differential diagnosis of IgG4-related lymphadenopathy (IgG4-RLAD) and angioimmunoblastic T-cell lymphoma (AITL). MATERIALS AND METHODS Retrospective analysis of 18F-FDG PET/CT imaging findings in clinically diagnosed IgG4-RLAD and AITL cases was undertaken to record the distribution, morphological characteristics, and imaging features of the affected lymph nodes, as well as FDG uptake of the spleen and bone marrow. Standardised uptake values normalised to lean body mass were evaluated for maximum (SULmax), average (SULavg), and peak values (SULpeak). Univariate and multivariate logistic regression was used to screen for statistically significant imaging findings to discriminate IgG4-RLAD from AITL. RESULTS Twenty-two cases of IgG4-RLAD (17 men, five women, median age 49.5 years) and 22 cases of AITL (16 men, six women, median age 55 years) were finally included in the analysis. There were no AITL patients with involvement of a single lymph node region. AITL patients had more involvement of the different nodal regions except cervical and pelvic nodal regions. A practical assessment method based on a combination of SULpeak-LN/SULavg-liver, SULpeak-spleen, and the number of involved nodal regions, improved the performance for differential diagnosis between both groups with an overall classification accuracy of 90.9%. CONCLUSIONS 18F-FDG PET/CT is a useful tool for distinguishing AITL from IgG4-RLAD, and it can also help determine the optimal biopsy site for suspected cases of IgG4-RLAD or AITL, reduce the need for re-biopsy procedures, and enable physicians to develop timely treatment strategies.
Collapse
Affiliation(s)
- J Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - X L Li
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - M Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Vakati GR, Ratnagiri R, Srivastava MK. Fluorine-18 FDG PET/CT and New NIMS Grading System for Chemotherapy Response in Breast Cancer. Indian J Nucl Med 2024; 39:106-114. [PMID: 38989317 PMCID: PMC11232735 DOI: 10.4103/ijnm.ijnm_117_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 07/12/2024] Open
Abstract
Background Positron emission tomography with computed tomography (PET-CT) using fluorine 18-fluorodeoxyglucose (F-18 FDG) is increasingly used to stage patients with locally advanced breast cancer and for assessing treatment response after neoadjuvant chemotherapy (NACT). Aims and Objectives The aim of the study was to assess the correlation between PET-CT parameters and pathologic response of breast primary after NACT in breast cancer patients and to devise a grading system called NIMS grading system for response assessment using PET quantitative parameters. Materials and Methods 55 patients who underwent F-18 FDG PET-CT before starting the therapy and again after completion of therapy were identified and included in the study. The clinical data and the histopathologic findings were recorded. All the patients received chemotherapy followed by surgery with axillary lymph node dissection. The PET-CT results were interpreted both qualitatively by visual analysis and quantitatively by estimating maximum Standardized uptake values(SUVmax) and other parameters - SUVmean, SUL, SUVBSA, Metabolic tumor volume (MTV) and Total lesion glycolysis (TLG). Results The sensitivity and specificity of F-18 FDG PET-CT to detect the residual disease after neoadjuvant chemotherapy was 75.6% & 92.8% respectively. Differences between complete response and residual disease were significant for ΔSUVmax(p=0.005), ΔSUVmean(p=0.006), ΔSUL (0.005) and ΔSUVBSA(0.004), while ΔMTV and ΔTLG were not significantly different between the two groups. The new NIMS grading system included scoring of ΔSUVmax, ΔSUVBSA, ΔTLG and ΔMTV on scale of 1 to 4 and correlated well with PERCIST criteria. Conclusion F-18 FDG PET-CT had a good accuracy in the detection of residual disease after completion of NACT. Pre chemotherapy PET-CT is not adequate to predict the response of primary tumour to chemotherapy. However, changes in the values of various PET-CT parameters are a sensitive tool to assess the response to chemotherapy. The new grading system is easy to use and showed good correlation to PERCIST.
Collapse
Affiliation(s)
- Geethika Reddy Vakati
- Department of Surgical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Ranganath Ratnagiri
- Department of Surgical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Madhur Kumar Srivastava
- Department of Nuclear Medicine, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Huang Y, Chen H, Zhang L, Xie Y, Li C, Yu Z, Jiang Z, Zheng W, Li Z, Ge X, Liang Y, Wu Z. Design of Novel 18F-Labeled Amino Acid Tracers Using Sulfur 18F-Fluoride Exchange Click Chemistry. ACS Med Chem Lett 2024; 15:294-301. [PMID: 38352831 PMCID: PMC10860173 DOI: 10.1021/acsmedchemlett.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
[18F]Gln-OSO2F, [18F]Arg-OSO2F, and [18F]FSY-OSO2F were designed by introducing sulfonyl 18F-fluoride onto glutamine, arginine, and tyrosine, respectively. [18F]FSY-OSO2F can be prepared directly by sulfur 18F-fluoride exchange, while [18F]Gln-OSO2F and [18F]Arg-OSO2F require a two-step labeling method. Those tracers retain their typical transport characteristics for unmodified amino acids. Both PET imaging and biodistribution confirmed that [18F]FSY-OSO2F visualized MCF-7 and 22Rv1 subcutaneous tumors with high contrast, and its tumor-to-muscle ratio was better than that of [18F]FET. However, [18F]Gln-OSO2F and [18F]Arg-OSO2F poorly image MCF-7 subcutaneous tumors, possibly due to differences in the types and amounts of transporters expressed in tumors. All three tracers can visualize the U87MG glioma. According to our biological evaluation, none of the tracers evaluated in this study exhibited obvious defluorination, and subtle structural changes led to different imaging characteristics, indicating that the application of sulfur 18F-fluoride exchange click chemistry in the design of radioactive sulfonyl fluoride amino acids is feasible and offers significant advantages.
Collapse
Affiliation(s)
- Yong Huang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Hualong Chen
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Lu Zhang
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Yi Xie
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Chengze Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Ziyue Yu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zeng Jiang
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Wei Zheng
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Zhongjing Li
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Xuan Ge
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- Department
of Nuclear Medicine, National Cancer Center, National Clinical Research
Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing
Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry
of Science and Technology, Collaborative Innovation Center for Brain
Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Wang X, Zhou D, Kong Y, Cheng N, Gao M, Zhang G, Ma J, Chen Y, Ge S. Value of 18F-FDG-PET/CT radiomics combined with clinical variables in the differential diagnosis of malignant and benign vertebral compression fractures. EJNMMI Res 2023; 13:89. [PMID: 37819414 PMCID: PMC10567613 DOI: 10.1186/s13550-023-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Vertebral compression fractures (VCFs) are common clinical problems that arise from various reasons. The differential diagnosis of benign and malignant VCFs is challenging. This study was designed to develop and validate a radiomics model to predict benign and malignant VCFs with 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (18F-FDG-PET/CT). RESULTS Twenty-six features (9 PET features and 17 CT features) and eight clinical variables (age, SUVmax, SUVpeak, SULmax, SULpeak, osteolytic destruction, fracture line, and appendices/posterior vertebrae involvement) were ultimately selected. The area under the curve (AUCs) of the radiomics and clinical-radiomics models were significantly different from that of the clinical model in both the training group (0.986, 0.987 vs. 0.884, p < 0.05) and test group (0.962, 0.948 vs. 0.858, p < 0.05), while there was no significant difference between the radiomics model and clinical-radiomics model (p > 0.05). The accuracies of the radiomics and clinical-radiomics models were 94.0% and 95.0% in the training group and 93.2% and 93.2% in the test group, respectively. The three models all showed good calibration (Hosmer-Lemeshow test, p > 0.05). According to the decision curve analysis (DCA), the radiomics model and clinical-radiomics model exhibited higher overall net benefit than the clinical model. CONCLUSIONS The PET/CT-based radiomics and clinical-radiomics models showed good performance in distinguishing between malignant and benign VCFs. The radiomics method may be valuable for treatment decision-making.
Collapse
Affiliation(s)
- Xun Wang
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Dandan Zhou
- Big Data and Artificial Intelligence, Jining Polytechnic, Jinyu Road, Jining, Shandong, China
| | - Yu Kong
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Nan Cheng
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Ming Gao
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Guqing Zhang
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Junli Ma
- Department of Radiation Oncology, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China
| | - Yueqin Chen
- Department of Medical Imaging, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China.
| | - Shuang Ge
- Department of Radiation Oncology, Affiliated Hospital of Jining Medical University, Guhuai Road, Jining, Shandong, China.
| |
Collapse
|
11
|
Liu X, Zou Q, Sun Y, Liu H, Cailiang G. Role of multiple dual-phase 18F-FDG PET/CT metabolic parameters in differentiating adenocarcinomas from squamous cell carcinomas of the lung. Heliyon 2023; 9:e20180. [PMID: 37767476 PMCID: PMC10520777 DOI: 10.1016/j.heliyon.2023.e20180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Purpose To evaluate the ability of multiple dual-phase 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) metabolic parameters to distinguish the histological subtypes of non-small cell lung cancer (NSCLC). Methods Data from 127 patients with non-small cell lung cancer who underwent preoperative dual-phase 18F-FDG PET/CT scanning at the PET-CT center of our hospital from December 2020 to October 2021 were collected, and the metabolic parameters of their primary lesions were measured and analyzed retrospectively. Intraclass correlation coefficients (ICC) were calculated for consistency between readers. Metabolic parameters in the early (SUVpeak, SUVmean, SUVmin, SUVmax, MTV, and TLG) and delayed phases (dpSUVpeak, dpSUVmean, dpSUVmin, dpSUVmax, dpMTV, and dpTLG) were calculated. We drew receiver operating characteristic (ROC) curves to compare the differences in different metabolic parameters between the adenocarcinoma (AC) and squamous cell carcinoma (SCC) groups and evaluated the ability of different metabolic parameters to distinguish AC from SCC. Results Inter-reader agreement, as assessed by the intraclass correlation coefficient (ICC), was good (ICC = 0.71, 95% CI:0.60-0.79). The mean MTV, SUVmax, TLG, SUVpeak, SUVmean, dpSUVmax, dpTLG, dpSUVpeak, dpSUVmean, and dpSUVmin of the tumors were significantly higher in SCC lesions than in AC lesions (P = 0.049, < 0.001, 0.016, < 0.001, 0.001, < 0.001, 0.018, < 0.001, 0.001, and 0.001, respectively). The diagnostic efficacy of the metabolic parameters in 18F-FDG PET/CT for differentiating adenocarcinoma from squamous cell carcinoma ranged from high to low as follows: SUVpeak (AUC = 0.727), SUVmax (AUC = 0.708), dpSUVmax (AUC = 0.699), dpSUVpeak (AUC = 0.698), TLG (AUC = 0.695), and dpTLG (AUC = 0.692), SUVmean (AUC = 0.690), dpSUVmean (AUC = 0.687), dpSUVmin (AUC = 0.680), SUVmin (AUC = 0.676), and MTV (AUC = 0.657). Conclusions Squamous cell carcinoma of the lung had higher mean MTV, SUVmax, TLG, SUVpeak, SUVmean, SUVmin, dpSUVpeak, dpSUVmean, dpSUVmin, dpSUVmax, and dpTLG than AC, which can be helpful tools in differentiating between the two. The metabolic parameters of the delayed phase (2 h after injection) 18F-FDG PET/CT did not improve the diagnostic efficacy in distinguishing lung AC from SCC. Conventional dual-phase 18F-FDG PET/CT is not recommended.
Collapse
Affiliation(s)
| | | | - Yu Sun
- Department of Nuclear Medicine, Chongqing University Three Gorges Hospital, Wanzhou, 404100, Chongqing, China
| | - Huiting Liu
- Department of Nuclear Medicine, Chongqing University Three Gorges Hospital, Wanzhou, 404100, Chongqing, China
| | - Gao Cailiang
- Department of Nuclear Medicine, Chongqing University Three Gorges Hospital, Wanzhou, 404100, Chongqing, China
| |
Collapse
|
12
|
Cheng MF, Guo YL, Yen RF, Wu YW, Wang HP. Pretherapy 18F-FDG PET/CT in Predicting Disease Relapse in Patients With Immunoglobulin G4-Related Disease: A Prospective Study. Korean J Radiol 2023; 24:590-598. [PMID: 37271212 DOI: 10.3348/kjr.2022.0576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE To investigate whether the levels of inflammation detected by 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) can predict disease relapse in immunoglobulin G4-related disease (IgG4-RD) patients receiving standard induction steroid therapy. MATERIALS AND METHODS This prospective study analyzed pretherapy FDG PET/CT images from 48 patients (mean age, 63 ± 12.9 years; 45 males and 3 females) diagnosed with IgG4-RD between September 2008 and February 2018, who subsequently received standard induction steroid therapy as the first-line treatment. Multivariable Cox proportional hazards models were used to identify the potential prognostic factors associated with relapse-free survival (RFS). RESULTS The median follow-up time for the entire cohort was 1913 days (interquartile range [IQR], 803-2929 days). Relapse occurred in 81.3% (39/48) patients during the follow-up period. The median time to relapse was 210 days (IQR, 140-308 days) after completion of standardized induction steroid therapy. Among the 17 parameters analyzed, Cox proportional hazard analysis identified whole-body total lesion glycolysis (WTLG) > 600 on FDG-PET as an independent risk factor for disease relapse (median RFS, 175 vs. 308 days; adjusted hazard ratio, 2.196 [95% confidence interval: 1.080-4.374]; P = 0.030). CONCLUSION WTLG on pretherapy FDG PET/CT was the only significant factor associated with RFS in IgG-RD patients receiving standard steroid induction therapy.
Collapse
Affiliation(s)
- Mei-Fang Cheng
- Department of Nuclear Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
| | - Yue Leon Guo
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yen-Wen Wu
- Department of Nuclear Medicine, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Po Wang
- Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.
| |
Collapse
|
13
|
Schreier A, Zappasodi R, Serganova I, Brown KA, Demaria S, Andreopoulou E. Facts and Perspectives: Implications of tumor glycolysis on immunotherapy response in triple negative breast cancer. Front Oncol 2023; 12:1061789. [PMID: 36703796 PMCID: PMC9872136 DOI: 10.3389/fonc.2022.1061789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 01/11/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive disease that is difficult to treat and portends a poor prognosis in many patients. Recent efforts to implement immune checkpoint inhibitors into the treatment landscape of TNBC have led to improved outcomes in a subset of patients both in the early stage and metastatic settings. However, a large portion of patients with TNBC remain resistant to immune checkpoint inhibitors and have limited treatment options beyond cytotoxic chemotherapy. The interplay between the anti-tumor immune response and tumor metabolism contributes to immunotherapy response in the preclinical setting, and likely in the clinical setting as well. Specifically, tumor glycolysis and lactate production influence the tumor immune microenvironment through creation of metabolic competition with infiltrating immune cells, which impacts response to immune checkpoint blockade. In this review, we will focus on how glucose metabolism within TNBC tumors influences the response to immune checkpoint blockade and potential ways of harnessing this information to improve clinical outcomes.
Collapse
Affiliation(s)
- Ashley Schreier
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States,Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| | - Inna Serganova
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States,Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Sandra Demaria
- Department of Radiation Oncology and Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Eleni Andreopoulou
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States,*Correspondence: Eleni Andreopoulou,
| |
Collapse
|
14
|
Predictive Value of 18F-Fluorodeoxyglucose Positron-Emission Tomography Metabolic and Volumetric Parameters for Systemic Metastasis in Tonsillar Cancer. Cancers (Basel) 2022; 14:cancers14246242. [PMID: 36551727 PMCID: PMC9777518 DOI: 10.3390/cancers14246242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Although the prognosis of tonsillar cancer (human papillomavirus-positive oropharyngeal squamous cell carcinoma) is improving, disease control failure (distant metastasis) still occurs in some cases. We explored whether several 18F-fluorodeoxyglucose (FDG) positron-emission tomography (PET) parameters can predict metastasis. We retrospectively reviewed the medical records of 55 patients with tonsil squamous cell carcinoma who underwent pretreatment 18F-FDG positron-emission tomography/computed tomography (PET/CT) followed by primary surgery. During the follow-up period, systemic metastases were found in 7 of the 55 patients. The most common sites were the lungs (33%), bone (22%), brain/skull base (22%), small bowel (11%), and liver (11%). Pathologically, P53 mutation was less common in patients with systemic metastasis (41.7% vs. 14.3%, p = 0.054) than without systemic metastasis. In terms of PET parameters, the metabolic tumor volume (MTV2.5) and total lesion glycolysis (TLG2.5) values were lower in the primary tumor, and higher in the metastatic lymph nodes, of human papillomavirus (HPV)-positive compared to HPV-negative patients (all p < 0.05). The MTV2.5, TLG2.5, and tumor−to−liver uptake ratio were 36.07 ± 54.24 cm3, 183.46 ± 298.62, and 4.90 ± 2.77, respectively, in the systemic metastasis group, respectively; all of these values were higher than those of the patients without systemic metastasis (all p < 0.05). The MTV2.5 value was significantly different between the groups even when the values for the primary tumor and metastatic lymph nodes were summed (53.53 ± 57.78 cm3, p = 0.036). The cut-off value, area under the curve (95% confidence interval), sensitivity, and specificity of MTV2.5 for predicting systemic metastasis were 11.250 cm3, 0.584 (0.036−0.832), 0.571, and 0.565, respectively. The MTV2.5 of metastatic lymph nodes and summed MTV2.5 values of the primary tumor and metastatic lymph nodes were significantly higher in tonsillar cancer patients with than without systemic metastases. We suggest PET/CT scanning for pre-treatment cancer work-up and post-treatment surveillance to consider additional systemic therapy in patients with a high risk of disease control failure.
Collapse
|
15
|
18F FDG-PET/CT analysis of spread through air spaces (STAS) in clinical stage I lung adenocarcinoma. Ann Nucl Med 2022; 36:897-903. [PMID: 35829825 DOI: 10.1007/s12149-022-01773-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE The purpose of this retrospective study was to investigate the utility of F-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F FDG-PET/CT) to predict spread through air spaces (STAS) in clinical stage I lung adenocarcinoma. METHODS Between April 2020 and January 2022, 52 patients (55 lesions) who underwent surgery for clinical stage I lung adenocarcinoma were enrolled. The lesions were divided into two groups according to the presence of STAS. 18F FDG-PET/CT parameters, specifically the maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG), were calculated. The SUVmax, MTV, and TLG were compared between the two groups upon surgical pathological examination. Receiver operating characteristic (ROC) curve analysis was performed to identify a cut-off value. RESULTS Nineteen lesions (35%) were positive for STAS and 36 lesions were negative for STAS. According to the presence of STAS, significant differences were detected in the SUVmax (5.21 [range 1.52-16.50] vs. 2.42 [range 0.74-11.80], p = 0.0040) but not MTV (3.44 [range 0.65-24.36] vs. 2.95 [0.00-20.07], p = 0.20) and TLG (7.92 [range 0.93-47.82] vs. 5.63 [0.00-58.66], p = 0.14). SUVmax had an AUC value of 0.74 (95% CI 0.61-0.87) with a sensitivity of 89.5% and specificity of 52.8% at a cut-off of 2.48. CONCLUSIONS SUVmax rather than MTV and TLG were shown to be valuable indices for the prediction of STAS in clinical stage I lung adenocarcinoma.
Collapse
|
16
|
Gao Y, Yuan L, Zeng J, Li F, Li X, Tan F, Liu X, Wan H, Kui X, Liu X, Ke C, Pei Z. eIF6 is potential diagnostic and prognostic biomarker that associated with 18F-FDG PET/CT features and immune signatures in esophageal carcinoma. Lab Invest 2022; 20:303. [PMID: 35794622 PMCID: PMC9258187 DOI: 10.1186/s12967-022-03503-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Background Although eukaryotic initiation factor 6 (eIF6) is a novel therapeutic target, data on its importance in the development of esophageal carcinoma (ESCA) remains limited. This study evaluated the correlation between eIF6 expression and metabolic analysis using fluorine-18 fluorodeoxyglucose (18F-FDG) -Positron emission tomography (PET) and immune gene signatures in ESCA. Methods This study employed The Cancer Genome Atlas (TCGA) to analyze the expression and prognostic value of eIF6, as well as its relationship with the immune gene signatures in ESCA patients. The qRT-PCR and Western blot analyses were used to profile the expression of eIF6 in ESCA tissues and different ESCA cell lines. The expression of tumor eIF6 and glucose transporter 1 (GLUT1) was examined using immunohistochemical tools in fifty-two ESCA patients undergoing routine 18F-FDG PET/CT before surgery. In addition, the cellular responses to eIF6 knockdown in human ESCA cells were assessed via the MTS, EdU, flow cytometry and wound healing assays. Results Our data demonstrated that compared with the normal esophageal tissues, eIF6 expression was upregulated in ESCA tumor tissues and showed a high diagnostic value with an area under curve of 0.825 for predicting ESCA. High eIF6 expression was significantly correlated with shorter overall survival of patients with esophagus adenocarcinoma (p = 0.038), but not in squamous cell carcinoma of the esophagus (p = 0.078). In addition, tumor eIF6 was significantly associated with 18F-FDG PET/CT parameters: maximal and mean standardized uptake values (SUVmax and SUVmean) and total lesion glycolysis (TLG) (rho = 0.458, 0.460, and 0.300, respectively, p < 0.01) as well as GLUT1 expression (rho = 0.453, p < 0.001). A SUVmax cutoff of 18.2 led to prediction of tumor eIF6 expression with an accuracy of 0.755. Functional analysis studies demonstrated that knockdown of eIF6 inhibited ESCA cell growth and migration, and fueled cell apoptosis. Moreover, the Bulk RNA gene analysis revealed a significant inverse association between eIF6 and the tumor-infiltrating immune cells (macrophages, T cells, or Th1 cells) and immunomodulators in the ESCA microenvironment. Conclusion Our study suggested that eIF6 might serve as a potential prognostic biomarker associated with metabolic variability and immune gene signatures in ESCA tumor microenvironment.
Collapse
|
17
|
Hashimoto K, Nishimura S, Ito T, Oka N, Kakinoki R, Akagi M. Clinicopathological assessment of cancer/testis antigens NY‑ESO‑1 and MAGE‑A4 in osteosarcoma. Eur J Histochem 2022; 66:3377. [PMID: 35736245 PMCID: PMC9251608 DOI: 10.4081/ejh.2022.3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
The cancer/testis antigens (CTAs), New York esophageal squamous cell carcinoma-1 (NY-ESO-1) and melanoma antigen gene (MAGE)-A4 are normally restricted to male germ cells but are aberrantly expressed in several cancers. Considering the limited information regarding their significance in osteosarcoma (OS), the purpose of this study was to determine the clinical significance of NY-ESO-1 and MAGE-A4 expression in OS. Nine patients with OS treated at Kindai University Hospital were included in the study. The median age was 27 years, and median follow-up period was 40 months. The specimens obtained at the time of biopsy were used to perform immunostaining for NY-ESO, MAGE-A4, p53, and Ki-67. The positive cell rates and positive case rates of NY-ESO, MAGE-A4, p53, and Ki-67 were calculated. The correlation between the positive cell rate of immunohistochemical markers was also calculated. The correlation between the positive cell rate of NY-ESO-1 or MAGE-A4 and tumor size or maximum standardized uptake (SUV-max) was also determined. The positive cell rates of NY-ESO-1 or MAGE-A4 in continuous disease-free (CDF) cases were also compared with those in alive with disease (AWD) or dead of disease (DOD) cases. The average positive cell rates of NY-ESO, MAGEA4, p53, and Ki-67 were 71.7%, 85.1%, 16.2%, and 14.7%, and their positive case rates were 33.3%, 100%, 44.4%, and 100%, respectively. The positivity rates of NY-ESO-1 and p53 were strongly correlated, whereas those of NY-ESO-1 and Ki-67 were moderately correlated. The MAGE-A4 and p53 positivity rates and the MAGE-A4 and Ki-67 positive cell rates were both strongly correlated. The NY-ESO-1 and MAGE-A4 positivity rates were moderately correlated. The positive correlation between the NY-ESO-1 positive cell rate and tumor size was medium, and that between the MAGE-A4 positivity rate and SUV-max was very strong. There was no significant difference in the positive cell rates of NY-ESO-1 or MAGE-A4 between CDF cases and AWD or DOD cases. Overall, our results suggest that NY-ESO-1 and MAGE-A4 may be involved in the aggressiveness of OS.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Shunji Nishimura
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Tomohiko Ito
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Naohiro Oka
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Ryosuke Kakinoki
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| |
Collapse
|
18
|
Lumbroso J. Functional imaging for evaluation of cancers and biologically conformal radiotherapy: Past-history and present-day perspectives. Presse Med 2022; 51:104124. [PMID: 35500752 DOI: 10.1016/j.lpm.2022.104124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Over the past twenty years, nuclear medicine has enhanced the role of functional imaging in cancerology. A major milestone was achieved in the early 2000s with widespread availability of the positron emitter tracer 18F- deoxyglucose (FDG) and the introduction of hybrid imagers, i.e. positron imagers coupled with an X CT, providing anatomical landmarks and potently contributing to attenuation and scatter correction of the images. Other technical advances have progressively increased the quality of positron images. To date, the most widely used tracer remains FDG, which is highly beneficial in terms of sensitivity and specificity in detection of tumor sites, also providing biological information on tumors and early evaluation of treatment response for most cancers. Other highly specific tracers have been developed and are now routinely used for pheochromocytoma and paraganglioma, neuroendocrine tumors, and prostate cancer. Biological Radiotherapy has two aspects: Internal radiotherapy consisting in administration of a tumor-specific molecule radiolabeled with an isotope delivering an adequate radiation dose to the targeted tumor sites (on the model of thyroid cancer treated with radioiodine) and external radiotherapy designed to determine tumor volume, assess response and to dose radiation according to the tumor characteristics shown by functional imaging.
Collapse
Affiliation(s)
- Jean Lumbroso
- Service de Médecine Nucléaire, Gustave Roussy Cancer Campus, 114, rue Édouard-Vaillant, Villejuif 94805 CEDEX, France.
| |
Collapse
|
19
|
Sarikaya I. Biology of Cancer and PET Imaging: Pictorial Review. J Nucl Med Technol 2022; 50:jnmt.121.263534. [PMID: 35440477 DOI: 10.2967/jnmt.121.263534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Development and spread of cancer is a multi-step and complex process which involves number of alterations, interactions and molecular networks. PET imaging is closely related with biology of cancer as it detects the cancer based on biological and pathological changes in tumor cells and tumor microenvironment. In this review article, biology of development and spread of cancer and role of PET imaging in Oncology was summarized and supported with various PET images demonstrating cancer spread patterns.
Collapse
|
20
|
Rendl G, Schweighofer-Zwink G, Sorko S, Gallowitsch HJ, Hitzl W, Reisinger D, Pirich C. Assessment of Treatment Response to Lenvatinib in Thyroid Cancer Monitored by F-18 FDG PET/CT Using PERCIST 1.0, Modified PERCIST and EORTC Criteria-Which One Is Most Suitable? Cancers (Basel) 2022; 14:cancers14081868. [PMID: 35454777 PMCID: PMC9029268 DOI: 10.3390/cancers14081868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Background: We aimed to compare the established metabolic response criteria PERCIST and EORTC for their applicability and predictive value in terms of clinical response assessment early after the initiation of lenvatinib therapy in patients with metastatic radioiodine-refractory (RAI) thyroid cancer (TC). Methods: In 25 patients treated with lenvatinib, baseline and 4-month follow-up F-18 FDG PET/CT images were analyzed using PERCIST 1.0, modified PERCIST (using SUVpeak or SUVmax) and EORTC criteria. Two groups were defined: disease control (DC) and progressive disease (PD), which were correlated with PFS and OS. Results: PERCIST, mPERCIST, PERCISTmax and EORTC could be applied in 80%, 80%, 88% and 100% of the patients based on the requirements of lesion assessment criteria, respectively. With PERCIST, mPERCIST, PERCISTmax and EORTC, the patients classified as DC and PD ranged from 65 to 68% and from 32 to 35%, respectively. Patients with DC exhibited a longer median PFS than patients with PD for EORTC (p < 0.014) and for PERCIST and mPERCIST (p = 0.037), respectively. Conclusion: EORTC and the different PERCIST criteria performed equally regarding the identification of patients with PD requiring treatment changes. However, the applicability of PERCIST 1.0 using SULpeak seems restricted due to the significant proportion of small tumor lesions.
Collapse
Affiliation(s)
- Gundula Rendl
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
- Correspondence: ; Tel.: +43-5-7255-58994
| | - Gregor Schweighofer-Zwink
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
| | - Stefan Sorko
- Department of Nuclear Medicine and Endocrinology, PET/CT Centre, Klinikum Klagenfurt am Wörthersee, 9020 Klagenfurt, Austria; (S.S.); (H.-J.G.)
| | - Hans-Jürgen Gallowitsch
- Department of Nuclear Medicine and Endocrinology, PET/CT Centre, Klinikum Klagenfurt am Wörthersee, 9020 Klagenfurt, Austria; (S.S.); (H.-J.G.)
| | - Wolfgang Hitzl
- Research and Innovation Management, Biostatistics and Publication of Clinical Trial Studies, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
- Department of Ophthalmology and Optometry, University Hospital Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Research Program Experimental Ophthalmology and Glaucoma Research, University Hospital Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Diana Reisinger
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
| | - Christian Pirich
- Department of Nuclear Medicine and Endocrinology, University Hospital Salzburg, Paracelsus Medical University Salzburg, Müllner Hauptstr. 48, 5020 Salzburg, Austria; (G.S.-Z.); (D.R.); (C.P.)
| |
Collapse
|
21
|
Liberini V, Rubatto M, Mimmo R, Passera R, Ceci F, Fava P, Tonella L, Polverari G, Lesca A, Bellò M, Arena V, Ribero S, Quaglino P, Deandreis D. Predictive Value of Baseline [18F]FDG PET/CT for Response to Systemic Therapy in Patients with Advanced Melanoma. J Clin Med 2021; 10:jcm10214994. [PMID: 34768517 PMCID: PMC8584809 DOI: 10.3390/jcm10214994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background/Aim: To evaluate the association between baseline [18F]FDG-PET/CT tumor burden parameters and disease progression rate after first-line target therapy or immunotherapy in advanced melanoma patients. Materials and Methods: Forty four melanoma patients, who underwent [18F]FDG-PET/CT before first-line target therapy (28/44) or immunotherapy (16/44), were retrospectively analyzed. Whole-body and per-district metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were calculated. Therapy response was assessed according to RECIST 1.1 on CT scan at 3 (early) and 12 (late) months. PET parameters were compared using the Mann–Whitney test. Optimal cut-offs for predicting progression were defined using the ROC curve. PFS and OS were studied using Kaplan–Meier analysis. Results: Median (IQR) MTVwb and TLGwb were 13.1 mL and 72.4, respectively. Non-responder patients were 38/44, 26/28 and 12/16 at early evaluation, and 33/44, 21/28 and 12/16 at late evaluation in the whole-cohort, target, and immunotherapy subgroup, respectively. At late evaluation, MTVbone and TLGbone were higher in non-responders compared to responder patients (all p < 0.037) in the whole-cohort and target subgroup and MTVwb and TLGwb (all p < 0.022) in target subgroup. No significant differences were found for the immunotherapy subgroup. No metabolic parameters were able to predict PFS. Controversially, MTVlfn, TLGlfn, MTVsoft + lfn, TLGsoft + lfn, MTVwb and TLGwb were significantly associated (all p < 0.05) with OS in both the whole-cohort and target therapy subgroup. Conclusions: Higher values of whole-body and bone metabolic parameters were correlated with poorer outcome, while higher values of whole-body, lymph node and soft tissue metabolic parameters were correlated with OS.
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Torino, Italy; (R.P.); (G.P.); (A.L.); (M.B.); (D.D.)
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy
- Correspondence:
| | - Marco Rubatto
- Department of Medical Sciences, Section of Dermatology, University of Turin, C.so Dogliotti, 10126 Torino, Italy; (M.R.); (P.F.); (L.T.); (S.R.); (P.Q.)
| | - Riccardo Mimmo
- Department of Medical Science, University of Turin, 10126 Torino, Italy;
| | - Roberto Passera
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Torino, Italy; (R.P.); (G.P.); (A.L.); (M.B.); (D.D.)
| | - Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Paolo Fava
- Department of Medical Sciences, Section of Dermatology, University of Turin, C.so Dogliotti, 10126 Torino, Italy; (M.R.); (P.F.); (L.T.); (S.R.); (P.Q.)
| | - Luca Tonella
- Department of Medical Sciences, Section of Dermatology, University of Turin, C.so Dogliotti, 10126 Torino, Italy; (M.R.); (P.F.); (L.T.); (S.R.); (P.Q.)
| | - Giulia Polverari
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Torino, Italy; (R.P.); (G.P.); (A.L.); (M.B.); (D.D.)
- PET Center, Affidea IRMET, 10135 Torino, Italy;
| | - Adriana Lesca
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Torino, Italy; (R.P.); (G.P.); (A.L.); (M.B.); (D.D.)
| | - Marilena Bellò
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Torino, Italy; (R.P.); (G.P.); (A.L.); (M.B.); (D.D.)
| | | | - Simone Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, C.so Dogliotti, 10126 Torino, Italy; (M.R.); (P.F.); (L.T.); (S.R.); (P.Q.)
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, C.so Dogliotti, 10126 Torino, Italy; (M.R.); (P.F.); (L.T.); (S.R.); (P.Q.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Torino, Italy; (R.P.); (G.P.); (A.L.); (M.B.); (D.D.)
| |
Collapse
|
22
|
Zhang L, Ren Z, Xu C, Li Q, Chen J. Influencing Factors and Prognostic Value of 18F-FDG PET/CT Metabolic and Volumetric Parameters in Non-Small Cell Lung Cancer. Int J Gen Med 2021; 14:3699-3706. [PMID: 34321915 PMCID: PMC8312333 DOI: 10.2147/ijgm.s320744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Objective This study aims to explore factors influencing metabolic and volumetric parameters of [18F]fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) imaging in non-small cell lung cancer (NSCLC) and the predictive value for prognosis of NSCLC. Methods Retrospective analysis was performed on 133 NSCLC patients who received 18F-FDG PET/CT imaging. After 18F-FDG injection at 3.7 MBq/kg, 1 h early imaging and 2 h delayed imaging were performed. The metabolic and volumetric parameters such as SUVmax, SUVpeak, SULmax, SULpeak, MTV and TLG were measured. The tumor markers including CFYRA21-1, NSE, SCC-ag and the immunohistochemical biomarkers including Ki-67, P53 and CK-7 were examined. All patients were followed up for 24 months, and the 1-year and 2-year overall survival rate (OS) were recorded. Results There were significant differences in metabolic and volumetric parameters (SUVmax, SUVpeak, SULmax, SULpeak and TLG) between adenocarcinoma and squamous cell carcinoma of NSCLC. SUVmax, SUVpeak, SULmax, SULpeak, MTV and TLG were correlated with tumor marker NSE and TNM stage. MTV and TLG were related to CYFRA21-1, and only MTV was associated with SCC-ag. SUVpeak and SULmax were related to P53. In addition, early SULpeak and delayed MTV were significant prognostic factors of 1-year OS, while early SUVpeak, delayed TLG and delayed MTV were predictive factors of 2-year OS in NSCLC. Conclusion The metabolic and volumetric parameters of 18F-FDG PET/CT were related to a variety of factors such as NSE, CFYRA21-1, SCC-ag, P53 and TNM stage, and have a predictive value in prognosis of NSCLC.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Zhe Ren
- Department of Chest Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Caiyun Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Qiushuang Li
- Department of Clinical Evaluation Centers, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Jinyan Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, People's Republic of China
| |
Collapse
|
23
|
Chuang PJ, Wang HP, Lin YJ, Chen CC, Tien YW, Hsieh MS, Yang SH, Yen RF, Ko CL, Wu YW, Cheng MF. Preoperative 2-[ 18F]FDG PET-CT aids in the prognostic stratification for patients with primary ampullary carcinoma. Eur Radiol 2021; 31:8040-8049. [PMID: 33864503 DOI: 10.1007/s00330-021-07923-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES We sought to investigate whether preoperative dual-phase 2-[18F]FDG PET-CT identify predictors for poor survival in patients with ampullary carcinoma receiving pancreaticoduodenectomy. METHODS The preoperative PET-CT images of patients with resected ampullary carcinoma from June 2007 to July 2017 were analyzed. Survival curves were analyzed using the Kaplan-Meier method and compared with the log-rank test. Cox proportional hazard model was used to identify potential prognostic factors associated with disease-free survival (DFS) and overall survival (OS). RESULTS Fifty-four subjects (26 men, 28 women) were enrolled with a median tumor size of 20 mm. All patients were followed for a median period of 36.9 months with 3- and 5-year DFS of 50.3% and 44.2%, and OS of 77.0% and 68.2%, respectively. Parameters associated with DFS in multivariate analysis were lymphovascular invasion (hazard ratio [HR]: 9.45, p < 0.001), involved margin in pathology (HR: 7.67, p < 0.001), and tumor retention index (RI) from the dual-phase PET (HR: 2.41, p = 0.03), whereas involved margin (HR: 13.14, p < 0.001), post-recurrence chemotherapy (HR: 0.10, p < 0.001), and metabolic tumor volume (MTV) (HR: 4.62, p = 0.009) emerged as independent prognostic factors for OS. CONCLUSIONS Preoperative 2-[18F]FDG PET-CT offered independent prognostic biomarkers in patients with ampullary carcinoma receiving standard surgical resection. KEY POINTS • 2-[18F]FDG PET-CT offers good survival prediction before operation in primary malignant neoplasms at ampulla of Vater. • Dual-phase PET scan with bowel distention can better delineate Ampulla of Vater and characterize tumor physiology. • Preoperative risk stratification might aid in better treatment planning.
Collapse
Affiliation(s)
- Pei-Ju Chuang
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, No.7, Chung-Shan South Road, Chung-Cheng District, Taipei, 100, Taiwan, Republic of China
| | - Hsiu-Po Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Jen Lin
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
| | - Chieh-Chang Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Hung Yang
- Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, No.7, Chung-Shan South Road, Chung-Cheng District, Taipei, 100, Taiwan, Republic of China
| | - Chi-Lun Ko
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, No.7, Chung-Shan South Road, Chung-Cheng District, Taipei, 100, Taiwan, Republic of China
| | - Yen-Wen Wu
- National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Nuclear Medicine and Cardiovascular Medical Centre (Cardiology), Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Mei-Fang Cheng
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, No.7, Chung-Shan South Road, Chung-Cheng District, Taipei, 100, Taiwan, Republic of China. .,Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
24
|
Koa B, Borja AJ, Aly M, Padmanabhan S, Tran J, Zhang V, Rojulpote C, Pierson SK, Tamakloe MA, Khor JS, Werner TJ, Fajgenbaum DC, Alavi A, Revheim ME. Emerging role of 18F-FDG PET/CT in Castleman disease: a review. Insights Imaging 2021; 12:35. [PMID: 33709329 PMCID: PMC7952491 DOI: 10.1186/s13244-021-00963-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Castleman disease (CD) describes a group of rare hematologic conditions involving lymphadenopathy with characteristic histopathology and a spectrum of clinical abnormalities. CD is divided into localized or unicentric CD (UCD) and multicentric CD (MCD) by imaging. MCD is further divided based on etiological driver into human herpesvirus-8-associated MCD, POEMS-associated MCD, and idiopathic MCD. There is notable heterogeneity across MCD, but increased level of pro-inflammatory cytokines, particularly interleukin-6, is an established disease driver in a portion of patients. FDG-PET/CT can help determine UCD versus MCD, evaluate for neoplastic conditions that can mimic MCD clinico-pathologically, and monitor therapy responses. CD requires more robust characterization, earlier diagnosis, and an accurate tool for both monitoring and treatment response evaluation; FDG-PET/CT is particularly suited for this. Moving forward, future prospective studies should further characterize the use of FDG-PET/CT in CD and specifically explore the utility of global disease assessment and dual time point imaging. Trial registration ClinicalTrials.gov, NCT02817997, Registered 29 June 2016, https://clinicaltrials.gov/ct2/show/NCT02817997
Collapse
Affiliation(s)
- Benjamin Koa
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,Drexel University College of Medicine, Philadelphia, PA, USA
| | - Austin J Borja
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mahmoud Aly
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sayuri Padmanabhan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Tran
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Vincent Zhang
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sheila K Pierson
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark-Avery Tamakloe
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Johnson S Khor
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas J Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David C Fajgenbaum
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mona-Elisabeth Revheim
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA. .,Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, 0372, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, 0316, Oslo, Norway.
| |
Collapse
|
25
|
Win Z, Weiner Rd J, Listanco A, Patel N, Sharma R, Greenwood A, Maertzdorf J, Mollenkopf HJ, Pizzoferro K, Cole T, Bodinham CL, Kaufmann SHE, Denoel P, Del Giudice G, Lewis DJM. Systematic Evaluation of Kinetics and Distribution of Muscle and Lymph Node Activation Measured by 18F-FDG- and 11C-PBR28-PET/CT Imaging, and Whole Blood and Muscle Transcriptomics After Immunization of Healthy Humans With Adjuvanted and Unadjuvanted Vaccines. Front Immunol 2021; 11:613496. [PMID: 33613536 PMCID: PMC7893084 DOI: 10.3389/fimmu.2020.613496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Systems vaccinology has been applied to detect signatures of human vaccine induced immunity but its ability, together with high definition in vivo clinical imaging is not established to predict vaccine reactogenicity. Within two European Commission funded high impact programs, BIOVACSAFE and ADITEC, we applied high resolution positron emission tomography/computed tomography (PET/CT) scanning using tissue-specific and non-specific radioligands together with transcriptomic analysis of muscle biopsies in a clinical model systematically and prospectively comparing vaccine-induced immune/inflammatory responses. 109 male participants received a single immunization with licensed preparations of either AS04-adjuvanted hepatitis B virus vaccine (AHBVV); MF59C-adjuvanted (ATIV) or unadjuvanted seasonal trivalent influenza vaccine (STIV); or alum-OMV-meningococcal B protein vaccine (4CMenB), followed by a PET/CT scan (n = 54) or an injection site muscle biopsy (n = 45). Characteristic kinetics was observed with a localized intramuscular focus associated with increased tissue glycolysis at the site of immunization detected by 18F-fluorodeoxyglucose (FDG) PET/CT, peaking after 1–3 days and strongest and most prolonged after 4CMenB, which correlated with clinical experience. Draining lymph node activation peaked between days 3–5 and was most prominent after ATIV. Well defined uptake of the immune cell-binding radioligand 11C-PBR28 was observed in muscle lesions and draining lymph nodes. Kinetics of muscle gene expression module upregulation reflected those seen previously in preclinical models with a very early (~6hrs) upregulation of monocyte-, TLR- and cytokine/chemokine-associated modules after AHBVV, in contrast to a response on day 3 after ATIV, which was bracketed by whole blood responses on day 1 as antigen presenting, inflammatory and innate immune cells trafficked to the site of immunization, and on day 5 associated with activated CD4+ T cells. These observations confirm the use of PET/CT, including potentially tissue-, cell-, or cytokine/chemokine-specific radioligands, is a safe and ethical quantitative technique to compare candidate vaccine formulations and could be safely combined with biopsy to guide efficient collection of samples for integrated whole blood and tissue systems vaccinology in small-scale but intensive human clinical models of immunization and to accelerate clinical development and optimisation of vaccine candidates, adjuvants, and formulations.
Collapse
Affiliation(s)
- Zarni Win
- Department of Nuclear Medicine and Radiological Sciences Unit, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom
| | - January Weiner Rd
- Department for Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.,Core Unit for Bioinformatics (CUBI), Berlin Institute of Health, Berlin, Germany
| | - Allan Listanco
- National Institute for Health Research (NIHR) Imperial Clinical Research Facility (NICRF), Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Neva Patel
- Department of Nuclear Medicine and Radiological Sciences Unit, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London (ICL), London, United Kingdom
| | - Aldona Greenwood
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Jeroen Maertzdorf
- Department for Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Kat Pizzoferro
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Thomas Cole
- National Institute for Health Research (NIHR) Imperial Clinical Research Facility (NICRF), Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Caroline L Bodinham
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Stefan H E Kaufmann
- Department for Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | - David J M Lewis
- National Institute for Health Research (NIHR) Imperial Clinical Research Facility (NICRF), Imperial College Healthcare NHS Trust, London, United Kingdom.,Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
26
|
Jiang C, Ding C, Xu J, Teng Y, Chen J, Wang Z, Zhou Z. Will Baseline Total Lesion Glycolysis Play a Role in Improving the Prognostic Value of the NCCN-IPI in Primary Gastric Diffuse Large B-Cell Lymphoma Patients Treated With the R-CHOP Regimen? Clin Nucl Med 2021; 46:1-7. [PMID: 33181743 DOI: 10.1097/rlu.0000000000003378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The aim was to explore whether baseline total lesion glycolysis (TLG) can improve the prognostic value of the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) in primary gastric diffuse large B-cell lymphoma (PG-DLBCL) patients treated with an R-CHOP-like regimen. MATERIALS AND METHODS Ninety-four PG-DLBCL patients who underwent baseline PET/CT between July 2010 and May 2019 were included in this retrospective study. FDG-avid lesions in each patient were segmented to calculate the SUVmax, total metabolic tumor volume (TMTV), and TLG. Progression-free survival (PFS) and overall survival (OS) were used as end points to evaluate prognosis. RESULTS During the follow-up period of 5 to 108 months (35.3 ± 23.5 months), high TLG and a high NCCN-IPI were significantly associated with poor PFS and OS. Total lesion glycolysis and the NCCN-IPI were independent predictors of PFS and OS. Patients were stratified into 3 groups according to the combination of TLG and the NCCN-IPI for PFS (P < 0.001) and OS (P < 0.001): high-risk group (TLG > 1159.1 and NCCN-IPI 4-8) (PFS and OS, 57.7% and 61.5%, respectively, n = 42), intermediate-risk group (TLG > 1159.1 or NCCN-IPI 4-8) (PFS and OS, both 76.9%, n = 26), and low-risk group (TLG ≤ 1159.1 and NCCN-IPI 0-3) (PFS and OS, 97.6% and 100.0%, respectively, n = 26). CONCLUSIONS Both TLG and the NCCN-IPI are independent predictors of PG-DLBCL patient survival. Moreover, the combination of TLG and the NCCN-IPI improved patient risk stratification and might help personalize therapeutic regimens.
Collapse
Affiliation(s)
- Chong Jiang
- From the Department of Nuclear Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School
| | - Chongyang Ding
- Department of Nuclear Medicine, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital
| | | | - Yue Teng
- From the Department of Nuclear Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School
| | - Jieyu Chen
- Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School
| | - Zhen Wang
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zhengyang Zhou
- From the Department of Nuclear Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School
| |
Collapse
|
27
|
The role of 18F-FDG PET/CT metabolic parameters in pediatric lymphoblastic lymphoma. Rev Esp Med Nucl Imagen Mol 2021; 41:91-99. [DOI: 10.1016/j.remnie.2020.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/04/2020] [Indexed: 01/02/2023]
|
28
|
Jiang C, Teng Y, Chen J, Wang Z, Zhou Z, Ding C, Xu J. Value of 18F-FDG PET/CT for prognostic stratification in patients with primary intestinal diffuse large B cell lymphoma treated with an R-CHOP-like regimen. Ann Nucl Med 2020; 34:911-919. [PMID: 33057996 DOI: 10.1007/s12149-020-01536-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 01/30/2023]
Abstract
PURPOSE The prognostic value of 18F-FDG PET/CT for primary intestinal diffuse large B-cell lymphoma (PI-DLBCL) patients has not been determined. This prompted us to explore the value of 18F-FDG PET/CT for prognostic stratification in patients with PI-DLBCL treated with an R-CHOP-like regimen. MATERIALS AND METHODS Seventy-three PI-DLBCL patients who underwent baseline PET/CT between January 2010 and May 2019 were included in this retrospective study. Total metabolic tumor volume (TMTV) and total lesion glycolysis (TLG) were computed using the 41% SUVmax thresholding method. Progression-free survival (PFS) and overall survival (OS) were used as endpoints to evaluate prognosis. RESULTS During the follow-up period of 3-117 months (29.0 ± 25.5 months), high TLG, non-germinal center B-cell-like (non-GCB) and high National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) were significantly associated with inferior PFS and OS. TLG, cell-of-origin and NCCN-IPI were independent predictors of PFS, and both TLG and NCCN-IPI were independent predictors of OS. The grading system was based on the number of risk factors (high TLG, non-GCB, high NCCN-IPI) and patients were divided into 4 risk groups (PFS: χ2 = 33.858, P < 0.001; OS: χ2 = 29.435, P < 0.001): low-risk group (none of the 3 risk factors, 18 patients); low-intermediate risk group (1 risk factor, 24 patients); high-intermediate risk group (2 risk factors, 16 patients); and high-risk group (all 3 risk factors, 15 patients). CONCLUSIONS High TLG, non-GCB and high NCCN-IPI can identify a subset of PI-DLBCL patients with inferior survival outcomes. Furthermore, the grading system can identify PI-DLBCL patient groups with markedly different prognoses, which might contribute to the adjustment of the therapeutic regime.
Collapse
Affiliation(s)
- Chong Jiang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Teng
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jieyu Chen
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhen Wang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zhengyang Zhou
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
29
|
Wang L, Ruan M, Lei B, Yan H, Sun X, Chang C, Liu L, Xie W. The potential of 18F-FDG PET/CT in predicting PDL1 expression status in pulmonary lesions of untreated stage IIIB-IV non-small-cell lung cancer. Lung Cancer 2020; 150:44-52. [PMID: 33065462 DOI: 10.1016/j.lungcan.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To investigate the potential of 2-deoxy-2(18F)fluoro-d-glucose (18F-FDG) combined positron emission tomography and computed tomography (PET/CT) in predicting programmed cell death ligand-1 (PDL1) expression status in pulmonary lesions of advanced non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS This retrospective study includes 133 untreated stage IIIB-IV NSCLC patients who underwent pulmonary lesion biopsy for PDL1 immunochemistry 1-4 weeks after 18F-FDG PET/CT scanning, randomly assigned to cohorts for modelling and validation of PDL1 expression predictors. Mean and maximum standard uptake values (pSUVmean and pSUVmax), metabolic tumour volume (pMTV), and total lesion glycolysis (pTLG) of primary lesions were determined. PDL1 expression in pulmonary lesions (pPDL1) was determined using tumour proportion score (TPS), and pPDL1 TPS < 1%, 1-49 %, and ≥ 50 % were considered as pPDL1-negative, pPDL1-moderate, and pPDL1-strong, respectively. RESULTS pSUVmean and pSUVmax values were increased with the increase of pPDL1 levels, whereas pMTV and pTLG values were not associated with pPDL1 levels. In the modelling cohort, we found that pSUVmax rather than pSUVmean was an independent predictor for pPDL1-negative, pPDL1-moderate, and pPDL1-strong, whereas pSUVmax < 14.4, 14.4-17.5, and > 17.5 were suggested as predictors for pPDL1-negative, pPDL1-moderate, and pPDL1-strong, respectively (odds ratio: 4.82, 3.92, and 4.45, respectively; P = 0.002, 0.021, and 0.020, respectively). In the validation cohort, pSUVmax < 14.4, 14.4-17.5, and > 17.5 showed significantly high probabilities of being pPDL1-negative, pPDL1-moderate, and pPDL1-strong, respectively (P = 0.006). The accuracies of pSUVmax < 14.4, 14.4-17.5, and > 17.5 predicting pPDL1-negative, pPDL1-moderate, and pPDL1-strong, respectively, in validation cohort, were 66.7 %, 75.8 %, and 84.8 %, respectively. CONCLUSION pSUVmax on 18F-FDG PET/CT is a potential biomarker for pPDL1 TPS < 1%, 1-49 %, and ≥ 50 % in untreated stage IIIB-IV NSCLC, and therefore may be helpful for determining immunotherapeutic strategy for advanced NSCLC.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Xiaoyan Sun
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China.
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai 200030, China; Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 241 Huaihai West Road, Shanghai 200030, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China.
| |
Collapse
|
30
|
Reynolds JC, Maass-Moreno R, Thomas A, Ling A, Padiernos EB, Steinberg SM, Hassan R. 18F-FDG PET Assessment of Malignant Pleural Mesothelioma: Total Lesion Volume and Total Lesion Glycolysis-The Central Role of Volume. J Nucl Med 2020; 61:1570-1575. [PMID: 32284398 DOI: 10.2967/jnumed.119.238733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer survival is related to tumor volume. 18F-FDG PET measurement of tumor volume holds promise but is not yet a clinical tool. Measurements come in 2 forms: the first is total lesion volume (TLV) based on the number of voxels in the tumor, and the second is total lesion glycolysis (TLG), which is the TLV multiplied by the average SUL (i.e., SUV normalized for lean mass) of the tumor (SULaverage). In this study, we measured tumor volume in patients with malignant pleural mesothelioma (MPM). Methods: A threshold-based program in Interactive Data Language was developed to measure tumor volume in 18F-FDG PET images. Nineteen patients with MPM were studied before and after 2 cycles (6 wk) of chemoimmunotherapy. Measurements included TLV, TLG, the sum of the SULs in the tumor (SULtotal, a measure of total 18F-FDG uptake), and SULaverage Results: Baseline TLV ranged from 11 to 2,610 cm3 TLG ranged from 32 to 8,552 cm3 g/mL and correlated strongly with TLV. Although tumor volumes ranged over 3 orders of magnitude, SULaverage stayed within a narrow range of 2.4-5.3 units. Thus, TLV was the major component of TLG, whereas SULaverage was a minor component and was essentially constant. Further evaluation of SULaverage showed that in this cohort its 2 components, SULtotal and TLV, changed in parallel and were strongly correlated (r = 0.99, P < 0.01). Thus, whether the tumors were large or small, 18F-FDG uptake as measured by SULtotal was proportional to the TLV. Conclusion: TLG equals TLV multiplied by SULaverage, essentially TLV multiplied by a constant. Thus TLG, commonly considered a measure of metabolic activity in tumors, is also in this cohort a measure of tumor volume. The constancy of SULaverage is due to the fact that 18F-FDG uptake is proportional to tumor volume. Thus, in this study, 18F-FDG uptake was also a measure of volume.
Collapse
Affiliation(s)
- James C Reynolds
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Roberto Maass-Moreno
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Alexander Ling
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Emerson B Padiernos
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Raffit Hassan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| |
Collapse
|