1
|
Biswas D, Roy S, Vasudevan S. Biomedical Application of Photoacoustics: A Plethora of Opportunities. MICROMACHINES 2022; 13:1900. [PMID: 36363921 PMCID: PMC9692656 DOI: 10.3390/mi13111900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The photoacoustic (PA) technique is a non-invasive, non-ionizing hybrid technique that exploits laser irradiation for sample excitation and acquires an ultrasound signal generated due to thermoelastic expansion of the sample. Being a hybrid technique, PA possesses the inherent advantages of conventional optical (high resolution) and ultrasonic (high depth of penetration in biological tissue) techniques and eliminates some of the major limitations of these conventional techniques. Hence, PA has been employed for different biomedical applications. In this review, we first discuss the basic physics of PA. Then, we discuss different aspects of PA techniques, which includes PA imaging and also PA frequency spectral analysis. The theory of PA signal generation, detection and analysis is also detailed in this work. Later, we also discuss the major biomedical application area of PA technique.
Collapse
Affiliation(s)
- Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, HP, India
| | - Srivathsan Vasudevan
- Discipline of Electrical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol 453552, MP, India
| |
Collapse
|
2
|
Chen X, Zhang Y, Zhang H, Zhang L, Liu L, Cao Y, Ran H, Tian J. A non-invasive nanoparticles for multimodal imaging of ischemic myocardium in rats. J Nanobiotechnology 2021; 19:82. [PMID: 33752679 PMCID: PMC7986298 DOI: 10.1186/s12951-021-00822-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Ischemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide, and imposes a serious economic load. Thus, it is crucial to perform a timely and accurate diagnosis and monitoring in the early stage of myocardial ischemia. Currently, nanoparticles (NPs) have emerged as promising tools for multimodal imaging, because of their advantages of non-invasion, high-safety, and real-time dynamic imaging, providing valuable information for the diagnosis of heart diseases. RESULTS In this study, we prepared a targeted nanoprobe (termed IMTP-Fe3O4-PFH NPs) with enhanced ultrasound (US), photoacoustic (PA), and magnetic resonance (MR) performance for direct and non-invasive visual imaging of ischemic myocardium in a rat model. This successfully designed nanoprobe had excellent properties such as nanoscale size, good stability, phase transformation by acoustic droplet vaporization (ADV), and favorable safety profile. Besides, it realized obvious targeting performance toward hypoxia-injured cells as well as model rat hearts. After injection of NPs through the tail vein of model rats, in vivo imaging results showed a significantly enhanced US/PA/MR signal, well indicating the remarkable feasibility of nanoprobe to distinguish the ischemic myocardium. CONCLUSIONS IMTP-Fe3O4-PFH NPs may be a promising nanoplatform for early detection of ischemic myocardium and targeted treatment under visualization for the future.
Collapse
Affiliation(s)
- Xiajing Chen
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yanan Zhang
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Hui Zhang
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Lingjuan Liu
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jie Tian
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
3
|
Campos-Delgado DU, Gutierrez-Navarro O, Salinas-Martinez R, Duran E, Mejia-Rodriguez AR, Velazquez-Duran MJ, Jo JA. Blind deconvolution estimation by multi-exponential models and alternated least squares approximations: Free-form and sparse approach. PLoS One 2021; 16:e0248301. [PMID: 33735228 PMCID: PMC7971520 DOI: 10.1371/journal.pone.0248301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
The deconvolution process is a key step for quantitative evaluation of fluorescence lifetime imaging microscopy (FLIM) samples. By this process, the fluorescence impulse responses (FluoIRs) of the sample are decoupled from the instrument response (InstR). In blind deconvolution estimation (BDE), the FluoIRs and InstR are jointly extracted from a dataset with minimal a priori information. In this work, two BDE algorithms are introduced based on linear combinations of multi-exponential functions to model each FluoIR in the sample. For both schemes, the InstR is assumed with a free-form and a sparse structure. The local perspective of the BDE methodology assumes that the characteristic parameters of the exponential functions (time constants and scaling coefficients) are estimated based on a single spatial point of the dataset. On the other hand, the same exponential functions are used in the whole dataset in the global perspective, and just the scaling coefficients are updated for each spatial point. A least squares formulation is considered for both BDE algorithms. To overcome the nonlinear interaction in the decision variables, an alternating least squares (ALS) methodology iteratively solves both estimation problems based on non-negative and constrained optimizations. The validation stage considered first synthetic datasets at different noise types and levels, and a comparison with the standard deconvolution techniques with a multi-exponential model for FLIM measurements, as well as, with two BDE methodologies in the state of the art: Laguerre basis, and exponentials library. For the experimental evaluation, fluorescent dyes and oral tissue samples were considered. Our results show that local and global perspectives are consistent with the standard deconvolution techniques, and they reached the fastest convergence responses among the BDE algorithms with the best compromise in FluoIRs and InstR estimation errors.
Collapse
Affiliation(s)
- Daniel U. Campos-Delgado
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- * E-mail:
| | - Omar Gutierrez-Navarro
- Department of Biomedical Engineering, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | | | - Elvis Duran
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, United States of America
| | | | | | - Javier A. Jo
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|
4
|
Nunes A, Pansare VJ, Beziere N, Ntoukas AK, Reber J, Bruzek M, Anthony J, Prud’homme RK, Ntziachristos V. Quenched hexacene optoacoustic nanoparticles. J Mater Chem B 2018; 6:44-55. [DOI: 10.1039/c7tb02633a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flash NanoPrecipitation allows for the creation of optoacoustic imaging agents with tunable size and strong signal for biomedical imaging and therapy.
Collapse
Affiliation(s)
- Antonio Nunes
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Vikram J. Pansare
- Department of Chemical and Biological Engineering
- Princeton University
- Princeton
- USA
| | - Nicolas Beziere
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Argiris Kolokithas Ntoukas
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Josefine Reber
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| | - Matthew Bruzek
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - John Anthony
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering
- Princeton University
- Princeton
- USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging
- Helmholtz Zentrum München and Technische Universität München
- D-85764 Neuherberg
- Germany
| |
Collapse
|
5
|
Sharei H, Stoute R, van den Dobbelsteen JJ, Siebes M, Dankelman J. Data Communication Pathway for Sensing Guidewire at Proximal Side: A Review. J Med Device 2017. [DOI: 10.1115/1.4035545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
As the connection at the proximal tip plays an important role for sensing guidewires, we compared various sensing guidewires with regard to their proximal connectors. The strengths and weaknesses of each are discussed and recommendations for future development are provided. A literature search limited to the English language for the time period from the 1960s to the 2010s has been performed on the USPTO database, Espacenet, and Web of Science. The results have been categorized on the basis of the connector design. A comprehensive overview and classification of proximal connectors for sensing guidewires used for cardiovascular interventions is presented. The classification is based on both the type of connector (fixed or removable) and the type of connection (physical, wireless, or a combination). Considering the complexity of the currently prototyped and tested connectors, future connector development will necessitate an easy and cost-effective manufacturing process that can ensure safe and robust connections.
Collapse
Affiliation(s)
- Hoda Sharei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands e-mail:
| | - Ronald Stoute
- Department of Microelectronics, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - John J. van den Dobbelsteen
- Faculty of Mechanical, Maritime and Materials Engineering, Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| | - Maria Siebes
- Department of Biomedical Engineering and Physics, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Jenny Dankelman
- Faculty of Mechanical, Maritime and Materials Engineering, Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| |
Collapse
|
6
|
Campos-Delgado DU, Navarro OG, Arce-Santana ER, Walsh AJ, Skala MC, Jo JA. Deconvolution of fluorescence lifetime imaging microscopy by a library of exponentials. OPTICS EXPRESS 2015; 23:23748-67. [PMID: 26368470 PMCID: PMC4646519 DOI: 10.1364/oe.23.023748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/08/2015] [Accepted: 08/22/2015] [Indexed: 05/18/2023]
Abstract
Fluorescence lifetime microscopy imaging (FLIM) is an optic technique that allows a quantitative characterization of the fluorescent components of a sample. However, for an accurate interpretation of FLIM, an initial processing step is required to deconvolve the instrument response of the system from the measured fluorescence decays. In this paper, we present a novel strategy for the deconvolution of FLIM data based on a library of exponentials. Our approach searches for the scaling coefficients of the library by non-negative least squares approximations plus Thikonov/l2 or l1 regularization terms. The parameters of the library are given by the lower and upper bounds in the characteristic lifetimes of the exponential functions and the size of the library, where we observe that this last variable is not a limiting factor in the resulting fitting accuracy. We compare our proposal to nonlinear least squares and global non-linear least squares estimations with a multi-exponential model, and also to constrained Laguerre-base expansions, where we visualize an advantage of our proposal based on Thikonov/l2 regularization in terms of estimation accuracy, computational time, and tuning strategy. Our validation strategy considers synthetic datasets subject to both shot and Gaussian noise and samples with different lifetime maps, and experimental FLIM data of ex-vivo atherosclerotic plaques and human breast cancer cells.
Collapse
Affiliation(s)
| | | | - E. R. Arce-Santana
- Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, SLP, Mexico
| | - Alex J. Walsh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee,
USA
| | - Melissa C. Skala
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee,
USA
| | - Javier A. Jo
- Department of Biomedical Engineering, Texas A& M University, College Station, Texas,
USA
| |
Collapse
|
7
|
Campos-Delgado DU, Gutierrez-Navarro O, Arce-Santana ER, Skala MC, Walsh AJ, Jo JA. Blind deconvolution estimation of fluorescence measurements through quadratic programming. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:075010. [PMID: 26222960 PMCID: PMC5998001 DOI: 10.1117/1.jbo.20.7.075010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/29/2015] [Indexed: 05/22/2023]
Abstract
Time-deconvolution of the instrument response from fluorescence lifetime imaging microscopy (FLIM) data is usually necessary for accurate fluorescence lifetime estimation. In many applications, however, the instrument response is not available. In such cases, a blind deconvolution approach is required. An iterative methodology is proposed to address the blind deconvolution problem departing from a dataset of FLIM measurements. A linear combination of a base conformed by Laguerre functions models the fluorescence impulse response of the sample at each spatial point in our formulation. Our blind deconvolution estimation (BDE) algorithm is formulated as a quadratic approximation problem, where the decision variables are the samples of the instrument response and the scaling coefficients of the basis functions. In the approximation cost function, there is a bilinear dependence on the decision variables. Hence, due to the nonlinear nature of the estimation process, an alternating least-squares scheme iteratively solves the approximation problem. Our proposal searches for the samples of the instrument response with a global perspective, and the scaling coefficients of the basis functions locally at each spatial point. First, the iterative methodology relies on a least-squares solution for the instrument response, and quadratic programming for the scaling coefficients applied just to a subset of the measured fluorescence decays to initially estimate the instrument response to speed up the convergence. After convergence, the final stage computes the fluorescence impulse response at all spatial points. A comprehensive validation stage considers synthetic and experimental FLIM datasets of ex vivo atherosclerotic plaques and human breast cancer cell samples that highlight the advantages of the proposed BDE algorithm under different noise and initial conditions in the iterative scheme and parameters of the proposal.
Collapse
Affiliation(s)
- Daniel U. Campos-Delgado
- Universidad Autonoma de San Luis Potosi, Facultad de Ciencias, San Luis Potosi C.P 78290, Mexico
- Address all correspondence to: Daniel U. Campos-Delgado, E-mail:
| | - Omar Gutierrez-Navarro
- Universidad Autonoma de San Luis Potosi, Facultad de Ciencias, San Luis Potosi C.P 78290, Mexico
| | - Edgar R. Arce-Santana
- Universidad Autonoma de San Luis Potosi, Facultad de Ciencias, San Luis Potosi C.P 78290, Mexico
| | - Melissa C. Skala
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Alex J. Walsh
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Javier A. Jo
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|
8
|
Jo JA, Park J, Pande P, Shrestha S, Serafino MJ, Rico Jimenez JDJ, Clubb F, Walton B, Buja LM, Phipps JE, Feldman MD, Adame J, Applegate BE. Simultaneous morphological and biochemical endogenous optical imaging of atherosclerosis. Eur Heart J Cardiovasc Imaging 2015; 16:910-8. [PMID: 25722204 DOI: 10.1093/ehjci/jev018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/26/2015] [Indexed: 11/14/2022] Open
Abstract
AIMS The aim of this study was to validate novel imaging technology for simultaneous morphological and biochemical endogenous optical imaging of coronary atherosclerotic plaque. METHODS AND RESULTS Optical coherence tomography (OCT) generates high-resolution 3D images of plaque morphology and endogenous fluorescence lifetime imaging microscopy (FLIM) characterizes biochemical composition. Both imaging modalities rely on plaque's intrinsic optical characteristics, making contrast agents unnecessary. A multimodal OCT/FLIM system was utilized to generate luminal biochemical maps superimposed on high-resolution (7 µm axial and 13 µm lateral) structural volumetric images. Forty-seven fresh postmortem human coronary segments were imaged: pathological intimal thickening (PIT, n = 26), fibroatheroma (FA, n = 12), thin-cap FA (TCFA, n = 2), and fibrocalcific plaque (CA, n = 7), determined by histopathology. Multimodal images were evaluated, and each plaque identified as PIT, FA, TCFA, or CA based on expert OCT readers, and as having high-lipid (HL), high-collagen (HC), or low-collagen/low-lipid (LCL) luminal composition based on linear discriminant analysis of FLIM. Of 47 plaques, 89.4% (42/47) of the plaques were correctly identified based on OCT/FLIM evaluation using tissue histopathology and immunohistochemistry as the gold standard. Four of the misclassifications corresponded to confusing PIT with HL luminal composition for FA with HL cap. The other corresponded to confusing FA with a HC cap for FA with an LCL cap. CONCLUSION We have demonstrated the feasibility of accurate simultaneous OCT/FLIM morphological and biochemical characterization of coronary plaques at spatial resolutions and acquisition speeds compatible with catheter-based intravascular imaging. The success of this pilot study sets up future development of a multimodal intravascular imaging system that will enable studies that could help improve our understanding of plaque pathogenesis.
Collapse
Affiliation(s)
- Javier A Jo
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - Jesung Park
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - Paritosh Pande
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - Sebina Shrestha
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - Michael J Serafino
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - J de Jesus Rico Jimenez
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - Fred Clubb
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Brian Walton
- Department of Cardiology, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA
| | - L Maximilian Buja
- Department of Cardiovascular Pathology Research, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA
| | - Jennifer E Phipps
- University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Marc D Feldman
- University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Jessie Adame
- Autopsy and Pathology Services, Houston, TX, USA
| | - Brian E Applegate
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| |
Collapse
|
9
|
Abstract
The field of regenerative medicine has experienced considerable growth in recent years as the translation of pre-clinical biomaterials and cell- and gene-based therapies begin to reach clinical application. Until recently, the ability to monitor the serial responses to therapeutic treatments has been limited to post-mortem tissue analyses. With improvements in existing imaging modalities and the emergence of hybrid imaging systems, it is now possible to combine information related to structural remodeling with associated molecular events using non-invasive imaging. This review summarizes the established and emerging imaging modalities that are available for in vivo monitoring of clinical regenerative medicine therapies and discusses the strengths and limitations of each imaging modality.
Collapse
Affiliation(s)
- Mitchel R. Stacy
- Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208017, Dana-3, New Haven, CT 06520 USA
| | - Albert J. Sinusas
- Departments of Internal Medicine & Diagnostic Radiology, Yale University School of Medicine, P.O. Box 208017, Dana-3, New Haven, CT 06520 USA
| |
Collapse
|
10
|
Abstract
Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy.
Collapse
Affiliation(s)
- Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging & Nanomedicine (LOMIN), National Institute of Biomedical Imaging & Bioengineering (NIBIB), NIH, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Gutierrez-Navarro O, Campos-Delgado DU, Arce-Santana ER, Mendez MO, Jo JA. Blind end-member and abundance extraction for multispectral fluorescence lifetime imaging microscopy data. IEEE J Biomed Health Inform 2014; 18:606-17. [PMID: 24608060 DOI: 10.1109/jbhi.2013.2279335] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper proposes a new blind end-member and abundance extraction (BEAE) method for multispectral fluorescence lifetime imaging microscopy (m-FLIM) data. The chemometrical analysis relies on an iterative estimation of the fluorescence decay end-members and their abundances. The proposed method is based on a linear mixture model with positivity and sum-to-one restrictions on the abundances and end-members to compensate for signature variability. The synthesis procedure depends on a quadratic optimization problem, which is solved by an alternating least-squares structure over convex sets. The BEAE strategy only assumes that the number of components in the analyzed sample is known a spriori. The proposed method is first validated by using synthetic m-FLIM datasets at 15, 20, and 25 dB signal-to-noise ratios. The samples simulate the mixed response of tissue containing multiple fluorescent intensity decays. Furthermore, the results were also validated with six m-FLIM datasets from fresh postmortem human coronary atherosclerotic plaques. A quantitative evaluation of the BEAE was made against two popular techniques: minimum volume constrained nonnegative matrix factorization (MVC-NMF) and multivariate curve resolution-alternating least-squares (MCR-ALS). Our proposed method (BEAE) was able to provide more accurate estimations of the end-members: 0.32% minimum relative error and 13.82% worst-case scenario, despite different initial conditions in the iterative optimization procedure and noise effect. Meanwhile, MVC-NMF and MCR-ALS presented more variability in estimating the end-members: 0.35% and 0.34% for minimum errors and 15.31% and 13.25% in the worst-case scenarios, respectively. This tendency was also maintained for the abundances, where BEAE obtained 0.05 as the minimum absolute error and 0.12 in the worst-case scenario; MCR-ALS and MVC-NMF achieved 0.04 and 0.06 for the minimum absolute errors, and 0.15 and 0.17 under the worst-case conditions, respectively. In addition, the average computation time was evaluated for the synthetic datasets, where MVC-NMF achieved the fastest time, followed by BEAE and finally MCR-ALS. Consequently, BEAE improved MVC-NMF in convergence to a local optimal solution and robustness against signal variability, and it is roughly 3.6 time faster than MCR-ALS.
Collapse
|
12
|
Bai X, Gong X, Hau W, Lin R, Zheng J, Liu C, Zeng C, Zou X, Zheng H, Song L. Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter. PLoS One 2014; 9:e92463. [PMID: 24651256 PMCID: PMC3961364 DOI: 10.1371/journal.pone.0092463] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/21/2014] [Indexed: 11/19/2022] Open
Abstract
Photoacoustic imaging is an emerging technology that can provide anatomic, functional, and molecular information about biological tissue. Intravascular spectroscopic and molecular photoacoustic imaging can potentially improve the identification of atherosclerotic plaque composition, the detection of inflammation, and ultimately the risk stratification of atherosclerosis. In this study, a first-of-its-kind intravascular optical-resolution photoacoustic tomography (OR-PAT) system with a 1.1 mm diameter catheter is developed, offering optical-diffraction limited transverse resolution as fine as 19.6 μm, ∼ 10-fold finer than that of conventional intravascular photoacoustic and ultrasonic imaging. To offer complementary imaging information and depth, the system also acquires co-registered intravascular ultrasound images in parallel. Imaging of an iliac stent and a lipid phantom shows that the high resolution and contrast of OR-PAT can enable improved stent implantation guidance and lipid identification. In the future, these capabilities may ultimately improve the diagnosis and interventional treatment of vulnerable atherosclerotic plaques, which are prone to cause thrombotic complications such as myocardial infarction and stroke.
Collapse
Affiliation(s)
- Xiaosong Bai
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Key Lab for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojing Gong
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Key Lab for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - William Hau
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Riqiang Lin
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Key Lab for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaxiang Zheng
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Key Lab for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chengbo Liu
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Key Lab for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Beijing Center for Mathematics and Information Interdisciplinary Sciences (BCMIIS), Beijing, China
| | - Chengzhi Zeng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Zou
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Key Lab for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Song
- Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Key Lab for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Beijing Center for Mathematics and Information Interdisciplinary Sciences (BCMIIS), Beijing, China
| |
Collapse
|
13
|
Zhang YT, Zheng YL, Lin WH, Zhang HY, Zhou XL. Challenges and opportunities in cardiovascular health informatics. IEEE Trans Biomed Eng 2013; 60:633-42. [PMID: 23380853 DOI: 10.1109/tbme.2013.2244892] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cardiovascular health informatics is a rapidly evolving interdisciplinary field concerning the processing, integration/interpretation, storage, transmission, acquisition, and retrieval of information from cardiovascular systems for the early detection, early prediction, early prevention, early diagnosis, and early treatment of cardiovascular diseases (CVDs). Based on the first author's presentation at the first IEEE Life Sciences Grand Challenges Conference, held on October 4-5, 2012, at the National Academy of Sciences, Washington, DC, USA, this paper, focusing on coronary arteriosclerotic disease, will discuss three significant challenges of cardiovascular health informatics, including: 1) to invent unobtrusive and wearable multiparameter sensors with higher sensitivity for the real-time monitoring of physiological states; 2) to develop fast multimodal imaging technologies with higher resolution for the quantification and better understanding of structure, function, metabolism of cardiovascular systems at the different levels; and 3) to develop novel multiscale information fusion models and strategies with higher accuracy for the personalized predication of the CVDs. At the end of this paper, a summary is given to suggest open discussions on these three and more challenges that face the scientific community in this field in the future.
Collapse
Affiliation(s)
- Yuan-Ting Zhang
- Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong.
| | | | | | | | | |
Collapse
|
14
|
Park J, Pande P, Shrestha S, Clubb F, Applegate BE, Jo JA. Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy. Atherosclerosis 2011; 220:394-401. [PMID: 22138141 DOI: 10.1016/j.atherosclerosis.2011.10.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/30/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
Abstract
OBJECTIVE To investigate the potential of endogenous multispectral fluorescence lifetime imaging microscopy (FLIM) for biochemical characterization of human coronary atherosclerotic plaques. METHODS Endogenous multispectral FLIM imaging was performed on the lumen of 58 segments of postmortem human coronary artery. The fluorescence was separated into three emission bands targeting the three main arterial endogenous fluorophores (390±20 nm for collagen, 452±22.5 nm for elastin, and 550±20 for lipids). The fluorescence normalized intensity and average lifetime from each emission band was used to classify each pixel of an image as either "High-Collagen", "High-Lipids" or "Low-Collagen/Lipids" via multiclass Fisher's linear discriminant analysis. RESULTS Classification of plaques as either "High-Collagen", "High-Lipids" or "Low-Collagen/Lipids" based on the endogenous multispectral FLIM was achieved with a sensitivity/specificity of 96/98%, 89/99%, and 99/99%, respectively, where histopathology served as the gold standard. CONCLUSION The endogenous multispectral FLIM approach we have taken, which can readily be adapted for in vivo intravascular catheter based imaging, is capable of reliably identifying plaques with high content of either collagen or lipids.
Collapse
Affiliation(s)
- Jesung Park
- Department of Biomedical Engineering, Texas A&M University, 5045 emerging Technology Building, College Station, TX 77843, United States
| | | | | | | | | | | |
Collapse
|
15
|
Luke GP, Yeager D, Emelianov SY. Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann Biomed Eng 2011; 40:422-37. [PMID: 22048668 DOI: 10.1007/s10439-011-0449-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/19/2011] [Indexed: 02/07/2023]
Abstract
Photoacoustic imaging is a biomedical imaging modality that provides functional information, and, with the help of exogenous contrast agents, cellular and molecular signatures of tissue. In this article, we review the biomedical applications of photoacoustic imaging assisted with exogenous contrast agents. Dyes, noble metal nanoparticles, and other constructs are contrast agents which absorb strongly in the near-infrared band of the optical spectrum and generate strong photoacoustic response. These contrast agents, which can be specifically targeted to molecules or cells, have been coupled with photoacoustic imaging for preclinical and clinical applications ranging from detection of cancer cells, sentinel lymph nodes, and micrometastasis to angiogenesis to characterization of atherosclerotic plaques. Multi-functional agents have also been developed, which can carry drugs or simultaneously provide contrast in multiple imaging modalities. Furthermore, contrast agents were used to guide and monitor the therapeutic procedures. Overall, photoacoustic imaging shows significant promise in its ability to assist in diagnosis, therapy planning, and monitoring of treatment outcome for cancer, cardiovascular disease, and other pathologies.
Collapse
|