1
|
Wakabayashi H, Mori H, Hiromasa T, Akatani N, Inaki A, Kozaka T, Kitamura Y, Ogawa K, Kinuya S, Taki J. 125I-labeled 2-[4-(2-iodophenyl)piperidino]cyclopentanol ( 125I-OI5V) imaging visualized augmented sigma-1 receptor expression according to the severity of myocardial ischemia. J Nucl Cardiol 2023; 30:653-661. [PMID: 35915325 DOI: 10.1007/s12350-022-03064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND We aimed to explore how the severity of myocardial ischemia affects myocardial sigma-1 receptor (Sig-1R) expression using 125I-labeled 2-[4-(2-iodophenyl)piperidino]cyclopentanol (125I-OI5V) imaging. METHODS AND RESULTS The left coronary artery was occluded for 30, 20, and 10 minute, to vary the severity of myocardial ischemia, followed by reperfusion. Dual-tracer autoradiography of the left ventricular short-axis slices was performed 3 and 7 days after reperfusion. 125I-OI5V was injected 30 minute before sacrifice and the area at risk (AAR) was evaluated by 99mTc-MIBI. Intense 125I-OI5V uptake was observed in the AAR and was significantly increased with increasing ischemia duration. To evaluate salvaged and nonsalvaged areas (preserved and decreased perfusion areas), triple-tracer autoradiography was performed 3 days after reperfusion. After dual-tracer autoradiography, 201Tl was injected 20 minute post 125I-OI5V injection. On triple-tracer autoradiography, the AAR/normally perfused area 125I-OI5V uptake ratio was positively correlated with the nonsalvaged area/whole left ventricular (LV) area ratio (P < .05). The AAR/normally perfused area 125I-OI5V uptake ratio was negatively correlated with the 201Tl uptake ratio of the AAR to normally perfused areas (P < .05). The comparison of the immunostaining distribution of 125I-OI5V and the macrophage marker CD68 revealed that 125I-OI5V was present mainly in, and immediately adjacent to the macrophage infiltration area. CONCLUSIONS Significant 125I-OI5V uptake in the AAR depends on the duration of ischemia and reduced 201Tl uptake; furthermore, 125I-OI5V was found in and around the macrophage infiltrate area. These results indicate that iodine-labeled OI5V is a promising tool for visualizing Sig-1R expression according to the ischemic burden.
Collapse
Affiliation(s)
- Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Hiroshi Mori
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Norihito Akatani
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takashi Kozaka
- Division of Probe Chemistry for Disease Analysis, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoji Kitamura
- Division of Probe Chemistry for Disease Analysis, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
- Kanazawa Advanced Medical Center, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan
| |
Collapse
|
2
|
Tian T, Zhang J, Xiong L, Yu H, Deng K, Liao X, Zhang F, Huang P, Zhang J, Chen Y. Evaluating Subtle Pathological Changes in Early Myocardial Ischemia Using Spectral Histopathology. Anal Chem 2022; 94:17112-17120. [PMID: 36442494 DOI: 10.1021/acs.analchem.2c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early myocardial ischemia (EMI) is morphologically challenging, and the results from conventional histological staining may be subjective, imprecise, or even silent. The size of myocardial necrosis determines the acute and long-term mortality of EMI. The precise diagnosis of myocardial ischemia is critical for both clinical management and forensic investigation. Fourier transform infrared (FTIR) spectroscopic imaging is a highly sensitive tool for detecting protein conformations and imaging protein profiles. The aim of this study was to evaluate the application of FTIR imaging with multivariate analysis to detect biochemical changes in the protein conformation in the early phase of myocardial ischemia and to visually classify different disease states. The spectra and curve fitting results revealed that the total protein content decreased significantly in the EMI group and that the α-helix content of the secondary protein structure continuously decreased as ischemia progressed, while the β-sheet content increased. Differences in the control and EMI groups and perfused and ischemic myocardium were confirmed using principal component analysis and partial least squares discriminant analysis. Next, two support vector machine classifiers were effectively created. The accuracy, recall, and precision were 99.98, 99.96, and 100.00%, respectively, to differentiate the EMI group from the control group and 99.25, 98.95, and 99.54%, respectively, to differentiate perfused and ischemic myocardium. Ultimately, high EMI diagnostic accuracy was achieved with 100.00% recall and 100.00% precision, and ischemic myocardium diagnostic accuracy was achieved with 99.30% recall and 99.53% precision for the test set. This pilot study demonstrated that FTIR imaging is a powerful automated quantitative analysis tool to detect EMI without morphological changes and will improve diagnostic accuracy and patient prognosis.
Collapse
Affiliation(s)
- Tian Tian
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Ling Xiong
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China.,Department of Forensic Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China
| | - Haixing Yu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China.,College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P. R. China
| | - Kaifei Deng
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Xinbiao Liao
- Key Laboratory of Forensic Pathology, Ministry of Public Security, P. R. China, Guangzhou 510050, Guangdong, China
| | - Fu Zhang
- Key Laboratory of Forensic Pathology, Ministry of Public Security, P. R. China, Guangzhou 510050, Guangdong, China
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Ji Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| | - Yijiu Chen
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, P. R. China, Shanghai 200063, China
| |
Collapse
|
3
|
Ceauşu Z, Popa M, Socea B, Gorecki G, Costache M, Ceauşu M. Influence of the microenvironment dynamics on extracellular matrix evolution under hypoxic ischemic conditions in the myocardium. Exp Ther Med 2022; 23:199. [DOI: 10.3892/etm.2022.11122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zenaida Ceauşu
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Manuela Popa
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Socea
- Department of Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Gabriel Gorecki
- Department of Anesthesiology, ‘Sf. Pantelimon’ Emergency Hospital, 021659 Bucharest, Romania
| | - Mariana Costache
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihai Ceauşu
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
4
|
Imanaka-Yoshida K. Tenascin-C in Heart Diseases-The Role of Inflammation. Int J Mol Sci 2021; 22:ijms22115828. [PMID: 34072423 PMCID: PMC8198581 DOI: 10.3390/ijms22115828] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Mie University Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
5
|
Wiemann S, Yousf A, Joachim SC, Peters C, Mueller-Buehl AM, Wagner N, Reinhard J. Knock-Out of Tenascin-C Ameliorates Ischemia-Induced Rod-Photoreceptor Degeneration and Retinal Dysfunction. Front Neurosci 2021; 15:642176. [PMID: 34093110 PMCID: PMC8172977 DOI: 10.3389/fnins.2021.642176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Retinal ischemia is a common pathomechanism in various eye diseases. Recently, evidence accumulated suggesting that the extracellular matrix (ECM) glycoprotein tenascin-C (Tnc) plays a key role in ischemic degeneration. However, the possible functional role of Tnc in retinal ischemia is not yet known. The aim of our study was to explore retinal function and rod-bipolar/photoreceptor cell degeneration in wild type (WT) and Tnc knock-out (KO) mice after ischemia/reperfusion (I/R) injury. Therefore, I/R was induced by increasing intraocular pressure in the right eye of wild type (WT I/R) and Tnc KO (KO I/R) mice. The left eye served as untreated control (WT CO and KO CO). Scotopic electroretinogram (ERG) recordings were performed to examine rod-bipolar and rod-photoreceptor cell function. Changes of Tnc, rod-bipolar cells, photoreceptors, retinal structure and apoptotic and synaptic alterations were analyzed by immunohistochemistry, Hematoxylin and Eosin staining, Western blot, and quantitative real time PCR. We found increased Tnc protein levels 3 days after ischemia, while Tnc immunoreactivity decreased after 7 days. Tnc mRNA expression was comparable in the ischemic retina. ERG measurements after 7 days showed lower a-/b-wave amplitudes in both ischemic groups. Nevertheless, the amplitudes in the KO I/R group were higher than in the WT I/R group. We observed retinal thinning in WT I/R mice after 3 and 7 days. Although compared to the KO CO group, retinal thinning was not observed in the KO I/R group until 7 days. The number of PKCα+ rod-bipolar cells, recoverin+ photoreceptor staining and Prkca and Rcvrn expression were comparable in all groups. However, reduced rhodopsin protein as well as Rho and Gnat1 mRNA expression levels of rod-photoreceptors were found in the WT I/R, but not in the KO I/R retina. Additionally, a lower number of activated caspase 3+ cells was observed in the KO I/R group. Finally, both ischemic groups displayed enhanced vesicular glutamate transporter 1 (vGlut1) levels. Collectively, KO mice showed diminished rod-photoreceptor degeneration and retinal dysfunction after I/R. Elevated vGlut1 levels after ischemia could be related to an impaired glutamatergic photoreceptor-bipolar cell signaling and excitotoxicity. Our study provides novel evidence that Tnc reinforces ischemic retinal degeneration, possibly by synaptic remodeling.
Collapse
Affiliation(s)
- Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Aisha Yousf
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carolin Peters
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Ana M Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Natalie Wagner
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Imanaka-Yoshida K, Tawara I, Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol 2020; 319:C781-C796. [PMID: 32845719 DOI: 10.1152/ajpcell.00353.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tenascin-C (TNC) is a large extracellular matrix glycoprotein classified as a matricellular protein that is generally upregulated at high levels during physiological and pathological tissue remodeling and is involved in important biological signaling pathways. In the heart, TNC is transiently expressed at several important steps during embryonic development and is sparsely detected in normal adult heart but is re-expressed in a spatiotemporally restricted manner under pathological conditions associated with inflammation, such as myocardial infarction, hypertensive cardiac fibrosis, myocarditis, dilated cardiomyopathy, and Kawasaki disease. Despite its characteristic and spatiotemporally restricted expression, TNC knockout mice develop a grossly normal phenotype. However, various disease models using TNC null mice combined with in vitro experiments have revealed many important functions for TNC and multiple molecular cascades that control cellular responses in inflammation, tissue repair, and even myocardial regeneration. TNC has context-dependent diverse functions and, thus, may exert both harmful and beneficial effects in damaged hearts. However, TNC appears to deteriorate adverse ventricular remodeling by proinflammatory and profibrotic effects in most cases. Its specific expression also makes TNC a feasible diagnostic biomarker and target for molecular imaging to assess inflammation in the heart. Several preclinical studies have shown the utility of TNC as a biomarker for assessing the prognosis of patients and selecting appropriate therapy, particularly for inflammatory heart diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| |
Collapse
|
7
|
Kubo Y, Ishikawa K, Mori K, Kobayashi Y, Nakama T, Arima M, Nakao S, Hisatomi T, Haruta M, Sonoda KH, Yoshida S. Periostin and tenascin-C interaction promotes angiogenesis in ischemic proliferative retinopathy. Sci Rep 2020; 10:9299. [PMID: 32518264 PMCID: PMC7283227 DOI: 10.1038/s41598-020-66278-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemic proliferative retinopathy (IPR), such as proliferative diabetic retinopathy (PDR), retinal vein occlusion and retinopathy of prematurity is a major cause of vision loss. Our previous studies demonstrated that periostin (PN) and tenascin-C (TNC) are involved in the pathogenesis of IPR. However, the interactive role of PN and TNC in angiogenesis associated with IPR remain unknown. We found significant correlation between concentrations of PN and TNC in PDR vitreous humor. mRNA and protein expression of PN and TNC were found in pre-retinal fibrovascular membranes excised from PDR patients. Interleukin-13 (IL-13) promoted mRNA and protein expression of PN and TNC, and co-immunoprecipitation assay revealed binding between PN and TNC in human microvascular endothelial cells (HRECs). IL-13 promoted angiogenic functions of HRECs. Single inhibition of PN or TNC and their dual inhibition by siRNA suppressed the up-regulated angiogenic functions. Pathological pre-retinal neovessels of oxygen-induced retinopathy (OIR) mice were attenuated in PN knock-out, TNC knock-out and dual knock-out mice compared to wild-type mice. Both in vitro and in vivo, PN inhibition had a stronger inhibitory effect on angiogenesis compared to TNC inhibition, and had a similar effect to dual inhibition of PN and TNC. Furthermore, PN knock-out mice showed scant TNC expression in pre-retinal neovessels of OIR retinas. Our findings suggest that interaction of PN and TNC facilitates pre-retinal angiogenesis, and PN is an effective therapeutic target for IPR such as PDR.
Collapse
Affiliation(s)
- Yuki Kubo
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Kenichiro Mori
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshiyuki Kobayashi
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahito Nakama
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masatoshi Haruta
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
8
|
Taki J, Inaki A, Wakabayashi H, Matsunari I, Imanaka-Yoshida K, Ogawa K, Hiroe M, Shiba K, Kinuya S. Postconditioning Accelerates Myocardial Inflammatory Resolution Demonstrated by 14C-Methionine Imaging and Attenuates Ventricular Remodeling After Ischemia and Reperfusion. Circ J 2019; 83:2520-2526. [PMID: 31619593 DOI: 10.1253/circj.cj-19-0462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Methionine uptake after myocardial infarction has been proven to reflect myocardial inflammation. The effect of postconditioning on the post-infarction inflammatory process, however, remains to be elucidated.Methods and Results:In control (n=22) and postconditioning rats (n=23), the left coronary artery was occluded for 30 min, followed by reperfusion for 1, 3, 7, and 14 days. Postconditioning was performed immediately following the reperfusion. 14C-methinine (0.74 MBq) and 201Tl (14.8 MBq) were injected 20 and 10 min prior to sacrifice, respectively. One minute before sacrifice, 150-180 MBq of 99 mTc-MIBI was injected immediately following the re-occlusion of the left coronary artery to verify the area at risk, and left ventricular triple-tracer autoradiography was performed. To examine the ventricular remodeling, echocardiography was performed 2 months after reperfusion in both groups (n=6 each). In the control rats, the methionine uptake ratios on days 1, 3, 7, and 14 were 0.74±0.12, 1.85±0.16, 1.48±0.10, 1.25±0.04, respectively. With postconditioning, methionine uptake was similar on day 3 (1.90±0.21), but was lower on day 7 (1.23±0.22, P<0.05) and day 14 (1.08±0.09, P<0.005). Echocardiography revealed that postconditioning reduced the ventricular end-diastolic (0.97±0.16 to 0.78±0.12 cm, P<0.05) and systolic (0.85±0.21 to 0.55±0.23 cm, P<0.05) dimensions and improved ventricular percentage fractional shortening (12±6.2 to 29±12 %, P=0.01). CONCLUSIONS 14C-methinine imaging revealed that postconditioning accelerated resolution of inflammation and attenuated ventricular remodeling.
Collapse
Affiliation(s)
- Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital
| | | | - Ichiro Matsunari
- The Division of Nuclear Medicine, Department of Radiology, Saitama Medical University Hospital
| | | | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University
| | - Michiaki Hiroe
- Department of Nephrology and Cardiology, National Center for Global Health and Medicine
| | - Kazuhiro Shiba
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital
| |
Collapse
|
9
|
Imanaka-Yoshida K. Inflammation in myocardial disease: From myocarditis to dilated cardiomyopathy. Pathol Int 2019; 70:1-11. [PMID: 31691489 DOI: 10.1111/pin.12868] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
Dilated cardiomyopathy (DCM) is a heterogeneous group of myocardial diseases clinically defined by the presence of left ventricular dilatation and contractile dysfunction. Among various causes of DCM, a progression from viral myocarditis to DCM has long been hypothesized. Supporting this possibility, studies by endomyocardial biopsy, the only method to obtain a definite diagnosis of myocarditis at present, have provided evidence of inflammation in the myocardium in DCM patients. A number of experimental studies have elucidated a cell-mediated autoimmune mechanism triggered by viral infection in the progression of myocarditis to DCM. In addition, the important role of inflammation in the pathogenesis of heart failure has been recognized, and many terms including myocarditis, inflammatory cardiomyopathy, and inflammatory DCM have been used for myocardial diseases associated with inflammation. This review discusses the pathophysiology of inflammation in the myocardium, and refers to diagnosis and treatment based on these concepts.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Mie, Japan.,Mie University Research Center for Matrix Biology, Mie, Japan
| |
Collapse
|
10
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Ogawa K. Development of Diagnostic and Therapeutic Probes with Controlled Pharmacokinetics for Use in Radiotheranostics. Chem Pharm Bull (Tokyo) 2019; 67:897-903. [PMID: 31474726 DOI: 10.1248/cpb.c19-00274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The word "theranostics," a portmanteau word made by combining "therapeutics" and "diagnostics," refers to a personalized medicine concept. Recently, the word, "radiotheranostics," has also been used in nuclear medicine as a term that refer to the use of radioisotopes for combined imaging and therapy. For radiotheranostics, a diagnostic probe and a corresponding therapeutic probe can be prepared by introducing diagnostic and therapeutic radioisotopes into the same precursor. These diagnostic and therapeutic probes can be designed to show equivalent pharmacokinetics, which is important for radiotheranostics. As imaging can predict the absorbed radiation dose and thus the therapeutic and side effects, radiotheranostics can help achieve the goal of personalized medicine. In this review, I discuss the use of radiolabeled probes targeting bone metastases, sigma-1 receptor, and αVβ3 integrin for radiotheranostics.
Collapse
Affiliation(s)
- Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University
- Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
12
|
Imanaka-Yoshida K, Matsumoto KI. Multiple Roles of Tenascins in Homeostasis and Pathophysiology of Aorta. Ann Vasc Dis 2018; 11:169-180. [PMID: 30116408 PMCID: PMC6094038 DOI: 10.3400/avd.ra.17-00118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tenascins are a family of large extracellular matrix (ECM) glycoproteins. Four family members (tenascin-C, -R, -X, and -W) have been identified to date. Each member consists of the same types of structural domains and exhibits time- and tissue-specific expression patterns, suggesting their specific roles in embryonic development and tissue remodeling. Among them, the significant involvement of tenascin-C (TNC) and tenascin-X (TNX) in the progression of vascular diseases has been examined in detail. TNC is strongly up-regulated under pathological conditions, induced by a number of inflammatory mediators and mechanical stress. TNC has diverse functions, particularly in the regulation of inflammatory responses. Recent studies suggest that TNC is involved in the pathophysiology of aneurysmal and dissecting lesions, in part by protecting the vascular wall from destructive mechanical stress. TNX is strongly expressed in vascular walls, and its distribution is often reciprocal to that of TNC. TNX is involved in the stability and maintenance of the collagen network and elastin fibers. A deficiency in TNX results in a form of Ehlers–Danlos syndrome (EDS). Although their exact roles in vascular diseases have not yet been elucidated, TNC and TNX are now being recognized as promising biomarkers for diagnosis and risk stratification of vascular diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Mie University Research Center for Matrix Biology, Tsu, Mie, Japan
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|
13
|
Wakabayashi H, Taki J, Inaki A, Hiromasa T, Okuda K, Shibutani T, Shiba K, Kinuya S. Quantification of Myocardial Perfusion Defect Size in Rats: Comparison between Quantitative Perfusion SPECT and Autoradiography. Mol Imaging Biol 2018; 20:544-550. [PMID: 29340889 DOI: 10.1007/s11307-018-1159-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Ultra-high resolution single-photon emission computed tomography (SPECT) system, using multiple pinhole collimators, has been applied to the imaging of small rodents. We aimed to compare the myocardial infarction (MI) area on quantitative perfusion single-photon emission computed tomography (QPS; Cedars-Sinai Medical Center, USA) with that on high-resolution autoradiography in rat model to determine the accuracy of perfusion defect measurement by QPS. PROCEDURES After thoracotomy, rats (n = 9) had their left coronary arteries occluded and reperfused before injection with 185 MBq [99mTc] methoxyisobutylisonitrile ([99mTc]MIBI) for SPECT and autoradiography. Healthy rats (n = 28) were similarly scanned to create a normal database on which to base QPS. The MI area on SPECT images was analysed automatically by QPS software. For the autoradiography images, regions of interest for MI were set at 1 mm intervals. RESULTS In normal rats, [99mTc]MIBI accumulated throughout the left ventricles, and a polar map of ventricular perfusion showed the lowest and highest uptakes in the inferior (68 % ± 4 %) and anterior (92 % ± 5 %) walls, respectively. In the rat MI model, the percentage of polar map with reduced [99mTc]MIBI uptake correlated strongly with the percentage of left ventricle with MI on autoradiography (r2 = 0.90). CONCLUSIONS QPS can quantitatively evaluate MI severity on myocardial perfusion images in rats, with comparable results to autoradiography. This widely available software could promote the development of new techniques for analysing cardiac images in small animals.
Collapse
Affiliation(s)
- Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Koichi Okuda
- Department of Physics, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Takayuki Shibutani
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| | - Kazuhiro Shiba
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
14
|
Reinhard J, Roll L, Faissner A. Tenascins in Retinal and Optic Nerve Neurodegeneration. Front Integr Neurosci 2017; 11:30. [PMID: 29109681 PMCID: PMC5660115 DOI: 10.3389/fnint.2017.00030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/03/2017] [Indexed: 02/04/2023] Open
Abstract
Tenascins represent key constituents of the extracellular matrix (ECM) with major impact on central nervous system (CNS) development. In this regard, several studies indicate that they play a crucial role in axonal growth and guidance, synaptogenesis and boundary formation. These functions are not only important during development, but also for regeneration under several pathological conditions. Additionally, tenascin-C (Tnc) represents a key modulator of the immune system and inflammatory processes. In the present review article, we focus on the function of Tnc and tenascin-R (Tnr) in the diseased CNS, specifically after retinal and optic nerve damage and degeneration. We summarize the current view on both tenascins in diseases such as glaucoma, retinal ischemia, age-related macular degeneration (AMD) or diabetic retinopathy. In this context, we discuss their expression profile, possible functional relevance, remodeling of the interacting matrisome and tenascin receptors, especially under pathological conditions.
Collapse
Affiliation(s)
- Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Labrousse-Arias D, Martínez-Ruiz A, Calzada MJ. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications. Antioxid Redox Signal 2017; 27:802-822. [PMID: 28715969 DOI: 10.1089/ars.2017.7275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. CRITICAL ISSUES Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. FUTURE DIRECTIONS Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.
Collapse
Affiliation(s)
- David Labrousse-Arias
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Antonio Martínez-Ruiz
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Madrid, Spain
| | - María J Calzada
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Departmento de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| |
Collapse
|
16
|
Ischemic injury leads to extracellular matrix alterations in retina and optic nerve. Sci Rep 2017; 7:43470. [PMID: 28262779 PMCID: PMC5338032 DOI: 10.1038/srep43470] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/25/2017] [Indexed: 01/10/2023] Open
Abstract
Retinal ischemia occurs in a variety of eye diseases. Restrained blood flow induces retinal damage, which leads to progressive optic nerve degeneration and vision loss. Previous studies indicate that extracellular matrix (ECM) constituents play an important role in complex tissues, such as retina and optic nerve. They have great impact on de- and regeneration processes and represent major candidates of central nervous system glial scar formation. Nevertheless, the importance of the ECM during ischemic retina and optic nerve neurodegeneration is not fully understood yet. In this study, we analyzed remodeling of the extracellular glycoproteins fibronectin, laminin, tenascin-C and tenascin-R and the chondroitin sulfate proteoglycans (CSPGs) aggrecan, brevican and phosphacan/RPTPβ/ζ in retinae and optic nerves of an ischemia/reperfusion rat model via quantitative real-time PCR, immunohistochemistry and Western blot. A variety of ECM constituents were dysregulated in the retina and optic nerve after ischemia. Regarding fibronectin, significantly elevated mRNA and protein levels were observed in the retina following ischemia, while laminin and tenascin-C showed enhanced immunoreactivity in the optic nerve after ischemia. Interestingly, CSPGs displayed significantly increased expression levels in the optic nerve. Our study demonstrates a dynamic expression of ECM molecules following retinal ischemia, which strengthens their regulatory role during neurodegeneration.
Collapse
|
17
|
Santana ET, Feliciano RDS, Serra AJ, Brigidio E, Antonio EL, Tucci PJF, Nathanson L, Morris M, Silva JA. Comparative mRNA and MicroRNA Profiling during Acute Myocardial Infarction Induced by Coronary Occlusion and Ablation Radio-Frequency Currents. Front Physiol 2016; 7:565. [PMID: 27932994 PMCID: PMC5123550 DOI: 10.3389/fphys.2016.00565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
The ligation of the left anterior descending coronary artery is the most commonly used experimental model to induce myocardial infarction (MI) in rodents. A high mortality in the acute phase and the heterogeneity of the size of the MI obtained are drawbacks recognized in this model. In an attempt to solve the problem, our group recently developed a new MI experimental model which is based on application of myocardial ablation radio-frequency currents (AB-RF) that yielded MI with homogeneous sizes and significantly reduce acute mortality. In addition, cardiac structural, and functional changes aroused by AB-RF were similar to those seen in animals with MI induced by coronary artery ligation. Herein, we compared mRNA expression of genes that govern post-MI milieu in occlusion and ablation models. We analyzed 48 mRNAs expressions of nine different signal transduction pathways (cell survival and metabolism signs, matrix extracellular, cell cycle, oxidative stress, apoptosis, calcium signaling, hypertrophy markers, angiogenesis, and inflammation) in rat left ventricle 1 week after MI generated by both coronary occlusion and AB-RF. Furthermore, high-throughput miRNA analysis was also assessed in both MI procedures. Interestingly, mRNA expression levels and miRNA expressions showed strong similarities between both models after MI, with few specificities in each model, activating similar signal transduction pathways. To our knowledge, this is the first comparison of genomic alterations of mRNA and miRNA contents after two different MI procedures and identifies key signaling regulators modulating the pathophysiology of these two models that might culminate in heart failure. Furthermore, these analyses may contribute with the current knowledge concerning transcriptional and post-transcriptional changes of AB-RF protocol, arising as an alternative and effective MI method that reproduces most changes seem in coronary occlusion.
Collapse
Affiliation(s)
- Eduardo T Santana
- Rehabilitation Department, Universidade Nove de Julho São Paulo, Brazil
| | - Regiane Dos Santos Feliciano
- Biophotonics Department, Universidade Nove de JulhoSão Paulo, Brazil; Medicine Department, Universidade Nove de JulhoSão Paulo, Brazil
| | - Andrey J Serra
- Biophotonics Department, Universidade Nove de Julho São Paulo, Brazil
| | - Eduardo Brigidio
- Medicine Department, Universidade Nove de Julho São Paulo, Brazil
| | - Ednei L Antonio
- Cardiac Physiology Department, Universidade Federal de São Paulo São Paulo, Brazil
| | - Paulo J F Tucci
- Cardiac Physiology Department, Universidade Federal de São Paulo São Paulo, Brazil
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Nova Southeastern University Fort Lauderdale, FL, USA
| | - Mariana Morris
- Institute for Neuro-Immune Medicine, Nova Southeastern University Fort Lauderdale, FL, USA
| | - José A Silva
- Medicine Department, Universidade Nove de Julho São Paulo, Brazil
| |
Collapse
|
18
|
Song J, Yu J, Li Y, Lu S, Ma Z, Shi H. MR targeted imaging for the expression of tenascin-C in myocardial infarction in vivo. J Magn Reson Imaging 2016; 45:1668-1674. [PMID: 27865025 DOI: 10.1002/jmri.25543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/21/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jiacheng Song
- Department of Radiology; the First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Jing Yu
- Department of Radiology; the First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Yan Li
- Department of Radiology; the First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Shanshan Lu
- Department of Radiology; the First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Zhanlong Ma
- Department of Radiology; the First Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - Haibin Shi
- Department of Radiology; the First Affiliated Hospital of Nanjing Medical University; Nanjing China
| |
Collapse
|
19
|
Kobayashi Y, Yoshida S, Zhou Y, Nakama T, Ishikawa K, Kubo Y, Arima M, Nakao S, Hisatomi T, Ikeda Y, Matsuda A, Sonoda KH, Ishibashi T. Tenascin-C secreted by transdifferentiated retinal pigment epithelial cells promotes choroidal neovascularization via integrin αV. J Transl Med 2016; 96:1178-1188. [PMID: 27668890 DOI: 10.1038/labinvest.2016.99] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 02/01/2023] Open
Abstract
Tenascin-C is expressed in choroidal neovascular (CNV) membranes in eyes with age-related macular degeneration (AMD). However, its role in the pathogenesis of CNV remains to be elucidated. Here we investigated the role of tenascin-C in CNV formation. In immunofluorescence analyses, tenascin-C co-stained with α-SMA, pan-cytokeratin, CD31, CD34, and integrin αV in the CNV membranes of patients with AMD and a mouse model of laser-induced CNV. A marked increase in the expression of tenascin-C mRNA and protein was observed 3 days after laser photocoagulation in the mouse CNV model. Tenascin-C was also shown to promote proliferation and inhibit adhesion of human retinal pigment epithelial (hRPE) cells in vitro. Moreover, tenascin-C promoted proliferation, adhesion, migration, and tube formation in human microvascular endothelial cells (HMVECs); these functions were, however, blocked by cilengitide, an integrin αV inhibitor. Exposure to TGF-β2 increased tenascin-C expression in hRPE cells. Conditioned media harvested from TGF-β2-treated hRPE cell cultures enhanced HMVEC proliferation and tube formation, which were inhibited by pretreatment with tenascin-C siRNA. The CNV volume was significantly reduced in tenascin-C knockout mice and tenascin-C siRNA-injected mice. These findings suggest that tenascin-C is secreted by transdifferentiated RPE cells and promotes the development of CNV via integrin αV in a paracrine manner. Therefore, tenascin-C could be a potential therapeutic target for the inhibition of CNV development associated with AMD.
Collapse
Affiliation(s)
- Yoshiyuki Kobayashi
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yedi Zhou
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahito Nakama
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuki Kubo
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University, Tokyo, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
20
|
Maqbool A, Spary EJ, Manfield IW, Ruhmann M, Zuliani-Alvarez L, Gamboa-Esteves FO, Porter KE, Drinkhill MJ, Midwood KS, Turner NA. Tenascin C upregulates interleukin-6 expression in human cardiac myofibroblasts via toll-like receptor 4. World J Cardiol 2016; 8:340-350. [PMID: 27231521 PMCID: PMC4877363 DOI: 10.4330/wjc.v8.i5.340] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/04/2016] [Accepted: 04/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of Tenascin C (TNC) on the expression of pro-inflammatory cytokines and matrix metalloproteinases in human cardiac myofibroblasts (CMF).
METHODS: CMF were isolated and cultured from patients undergoing coronary artery bypass grafting. Cultured cells were treated with either TNC (0.1 μmol/L, 24 h) or a recombinant protein corresponding to different domains of the TNC protein; fibrinogen-like globe (FBG) and fibronectin type III-like repeats (TNIII 5-7) (both 1 μmol/L, 24 h). The expression of the pro-inflammatory cytokines; interleukin (IL)-6, IL-1β, TNFα and the matrix metalloproteinases; MMPs (MMP1, 2, 3, 9, 10, MT1-MMP) was assessed using real time RT-PCR and western blot analysis.
RESULTS: TNC increased both IL-6 and MMP3 (P < 0.01) mRNA levels in cultured human CMF but had no significant effect on the other markers studied. The increase in IL-6 mRNA expression was mirrored by an increase in protein secretion as assessed by enzyme-linked immunosorbant assay (P < 0.01). Treating CMF with the recombinant protein FBG increased IL-6 mRNA and protein (P < 0.01) whereas the recombinant protein TNIII 5-7 had no effect. Neither FBG nor TNIII 5-7 had any significant effect on MMP3 expression. The expression of toll-like receptor 4 (TLR4) in human CMF was confirmed by real time RT-PCR, western blot and immunohistochemistry. Pre-incubation of cells with TLR4 neutralising antisera attenuated the effect of both TNC and FBG on IL-6 mRNA and protein expression.
CONCLUSION: TNC up-regulates IL-6 expression in human CMF, an effect mediated through the FBG domain of TNC and via the TLR4 receptor.
Collapse
|
21
|
Wakabayashi H, Taki J, Inaki A, Shiba K, Matsunari I, Kinuya S. Correlation between apoptosis and left ventricular remodeling in subacute phase of myocardial ischemia and reperfusion. EJNMMI Res 2015; 5:72. [PMID: 26660543 PMCID: PMC4674630 DOI: 10.1186/s13550-015-0152-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022] Open
Abstract
Background To investigate whether an apoptotic process demonstrated by 99mTc-annexin-V (99mTc-AV) uptake correlates with left ventricular remodeling (LVR) after myocardial infarction, we assessed 99mTc-AV uptake in rat model of myocardial ischemia and reperfusion. Methods The left coronary artery (LCA) of 15 rats was occluded for 20 to 30 min, followed by reperfusion. After 2 weeks, 99mTc-AV was injected, and then 1 h later, 201Tl was injected after reocclusion of the LCA. Dual-tracer autoradiography was performed to assess 99mTc-AV uptake and the area at risk (AAR) by 201Tl defect. 99mTc-AV uptake ratio was calculated by dividing the count density of the AAR by that of the normally perfused area. In short-axis LV slices, LV cavity dilation index (DI) was calculated by dividing the area of LV cavity by that of the whole LV area. LV wall-thinning ratio (WTR) was calculated by dividing the LV wall thickness in the AAR by that of the normally perfused area. Results Significant 99mTc-AV uptake in the AAR was observed in 10 rats. DI was significantly higher in rats with positive 99mTc-AV uptake than in rats without uptake. WTR was smaller in rats with positive 99mTc-AV uptake than in rats without uptake. Conclusions The data suggest 99mTc-AV uptake in injured myocardium might correlate with LVR at 2 weeks after myocardial ischemia and reperfusion.
Collapse
Affiliation(s)
- Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuhiro Shiba
- Division of Tracer Kinetics, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Ichiro Matsunari
- The Medical and Pharmacological Research Centre Foundation, Wo 32, Inoyama, Hakui, 925-0613, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
22
|
Taki J, Inaki A, Wakabayashi H, Matsunari I, Imanaka-Yoshida K, Ogawa K, Hiroe M, Shiba K, Yoshida T, Kinuya S. Effect of postconditioning on dynamic expression of tenascin-C and left ventricular remodeling after myocardial ischemia and reperfusion. EJNMMI Res 2015; 5:21. [PMID: 25883880 PMCID: PMC4393400 DOI: 10.1186/s13550-015-0100-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Tenascin-C (TNC), an extracellular matrix glycoprotein, is expressed transiently in distinct areas in association with active tissue remodeling. This study aimed to explore how ischemic postconditioning (PC) affects myocardial expression of TNC and ventricular remodeling using 125I-labeled anti-TNC antibody (125I-TNC-Ab) in a rat model of ischemia and reperfusion. Methods In control rats (n = 27), the left coronary artery (LCA) was occluded for 30 min followed by reperfusion for 1, 3, 7, and 14 days. PC (n = 27) was performed just after the reperfusion. At the time of the study, 125I-TNC-Ab (1.0 to 2.5 MBq) was injected. Six to 9 h later, to verify the area at risk, 99mTc-MIBI (100 to 200 MBq) was injected intravenously just after the LCA reocclusion, with the rats sacrificed 1 min later. Dual tracer autoradiography was performed to assess 125I-TNC-Ab uptake and area at risk. To examine the ventricular remodeling, echocardiography was performed 2 M after reperfusion in both groups. Results In control rats, 125I-TNC-Ab uptake ratio at 1 day after reperfusion was 3.73 ± 0.71 and increased at 3 days (4.65 ± 0.87), followed by a significant reduction at 7 days (2.91 ± 0.55, P < 0.005 vs 3 days) and14 days (2.01 ± 0.17, P < 0.005 vs 1 and 3 days). PC attenuated the 125I-TNC-Ab uptake throughout the reperfusion time from 1 to 14 days; 2.59 ± 0.59 at 1 day, P < 0.05: 3.10 ± 0.42 at 3 days, P < 0.005: 1.93 ± 0.37 at 7 days, P < 0.05: 1.40 ± 0.07 at 14 days, P < 0.001. In echocardiography, PC reduced the ventricular end-diastolic and systolic dimensions (1.00 ± 0.06 cm to 0.83 ± 0.14 cm (P < 0.05) and 0.90 ± 0.15 cm to 0.62 ± 0.19 cm (P < 0.05), respectively) and prevented a decline of ventricular percentage fractional shortening (10.5 ± 3.7 to 28.2 ± 10.7, P < 0.005). Conclusions These data indicate that 125I-TNC-Ab imaging may be a way to monitor myocardial injury, the subsequent repair process, and its response to novel therapeutic interventions like PC by visualizing TNC expression.
Collapse
Affiliation(s)
- Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| | - Ichiro Matsunari
- The Medical and Pharmacological Research Center Foundation, Wo 32, Inoyama, Hakui, 925-0613 Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University School of Medicine, 2-174 Edobashi, Tsu, 514-8507 Japan
| | - Kazuma Ogawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
| | - Michiaki Hiroe
- Department of Nephrology and Cardiology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655 Japan
| | - Kazuhiro Shiba
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640 Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University School of Medicine, 2-174 Edobashi, Tsu, 514-8507 Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| |
Collapse
|
23
|
Abstract
In almost all cardiac diseases, an increase in extracellular matrix (ECM) deposition or fibrosis occurs, mostly consisting of collagen I. Whereas replacement fibrosis follows cardiomyocyte loss in myocardial infarction, reactive fibrosis is triggered by myocardial stress or inflammatory mediators and often results in ventricular stiffening, functional deterioration, and development of heart failure. Given the importance of ECM deposition in cardiac disease, ECM imaging could be a valuable clinical tool. Molecular imaging of ECM may help understand pathology, evaluate impact of novel therapy, and may eventually find a role in predicting the extent of ECM expansion and development of personalized treatment. In the current review, we provide an overview of ECM imaging including the assessment of ECM volume and molecular targeting of key players involved in ECM deposition and degradation. The targets comprise myofibroblasts, intracardiac renin-angiotensin axis, matrix metalloproteinases, and matricellular proteins.
Collapse
Affiliation(s)
- Hans J de Haas
- From Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (H.J.d.H., V.F., J.N.); Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, the Netherlands (H.J.d.H.); Centre for Inherited Cardiovascular Diseases, IRCCS Policlinico San Matteo, Pavia, Italy (E.A.); Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (V.F.); and Departments of Medicine and Radiology, University of Virginia Health System, Charlottesville, VA (C.M.K.)
| | | | | | | | | |
Collapse
|
24
|
Kobayashi N, Odaka K, Uehara T, Imanaka-Yoshida K, Kato Y, Oyama H, Tadokoro H, Akizawa H, Tanada S, Hiroe M, Fukumura T, Komuro I, Arano Y, Yoshida T, Irie T. Toward in vivo imaging of heart disease using a radiolabeled single-chain Fv fragment targeting tenascin-C. Anal Chem 2011; 83:9123-30. [PMID: 22074352 DOI: 10.1021/ac202159p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibodies specific to a particular target molecule can be used as analytical reagents, not only for in vitro immunoassays but also for noninvasive in vivo imaging, e.g., immunoscintigraphies. In the latter case, it is important to reduce the size of antibody molecules in order to achieve suitable in vivo "diagnostic kinetics" and generate higher-resolution images. For these purposes, single-chain Fv fragments (scFvs; M(r) < 30 kDa) have greater potential than intact immunoglobulins (~150 kDa) or Fab (or Fab') fragments (~50 kDa). Our recent observation of enhanced tenascin-C (Tnc) expression at sites of cardiac repair after myocardial infarction prompted us to develop a radiolabeled scFv against Tnc for in vivo imaging of heart disease. We cloned the genes encoding the heavy and light chain variable domains of the mouse anti-Tnc monoclonal antibody 4F10, and combined them to create a single gene. The resulting scFv-4F10 gene was expressed in E. coli cells to produce soluble scFv proteins. scFv-4F10 has an affinity for Tnc (K(a) = 3.5 × 10(7) M(-1)), similar to the Fab fragment of antibody 4F10 (K(a) = 1.3 × 10(7) M(-1)) and high enough to be of practical use. A cysteine residue was then added to the C-terminus to achieve site-specific (111)In labeling via a chelating group. The resulting (111)In-labeled scFv was administered to a rat model of acute myocardial infarction. Biodistribution and quantitative autoradiographic studies indicated higher uptake of the radioactivity at the infarcted myocardium than the noninfarcted one. Single photon emission computed tomography (SPECT) provided in vivo cardiac images that coincided with the ex vivo observations. Our results will promote advances in diagnostic strategies for heart disease.
Collapse
Affiliation(s)
- Norihiro Kobayashi
- Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Advances in tenascin-C biology. Cell Mol Life Sci 2011; 68:3175-99. [PMID: 21818551 PMCID: PMC3173650 DOI: 10.1007/s00018-011-0783-6] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 12/11/2022]
Abstract
Tenascin-C is an extracellular matrix glycoprotein that is specifically and transiently expressed upon tissue injury. Upon tissue damage, tenascin-C plays a multitude of different roles that mediate both inflammatory and fibrotic processes to enable effective tissue repair. In the last decade, emerging evidence has demonstrated a vital role for tenascin-C in cardiac and arterial injury, tumor angiogenesis and metastasis, as well as in modulating stem cell behavior. Here we highlight the molecular mechanisms by which tenascin-C mediates these effects and discuss the implications of mis-regulated tenascin-C expression in driving disease pathology.
Collapse
|
26
|
Okamoto H, Imanaka-Yoshida K. Matricellular proteins: new molecular targets to prevent heart failure. Cardiovasc Ther 2011; 30:e198-209. [PMID: 21884011 DOI: 10.1111/j.1755-5922.2011.00276.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Matricellular proteins are highly expressed in reparative responses to pressure and volume overload, ischemia, oxidative stress after myocardial injury, and modulate the inflammatory and fibrotic process in ventricular remodeling, which leads to cardiac dysfunction and eventually overt heart failure. Generally, matricellular proteins loosen strong adhesion of cardiomyocytes to extracellular matrix, which would help cells to move for rearrangement and allow inflammatory cells and capillary vessels to spread during tissue remodeling. Among matricellular proteins, osteopontin (OPN) and tenascin-C (TN-C) are de-adhesion proteins and upregulate the expression and activity of matrix metalloproteinases. These matricellular proteins could be key molecules to diagnose cardiac remodeling and also might be targets for the prevention of adverse ventricular remodeling. This review provides an overview of the role of matricellular proteins such as OPN and TN-C in cardiac function and remodeling, as determined by both in basic and in clinical studies.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Department of Cardiovascular Medicine, Hokkaido Medical Center, Sapporo, Japan. okamotoh@ med.hokudai.ac.jp
| | | |
Collapse
|
27
|
The further study on radioiodinated peptide Arg-Arg-Leu targeted to neovascularization as well as tumor cells in molecular tumor imaging. J Radioanal Nucl Chem 2011. [DOI: 10.1007/s10967-011-1342-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Golledge J, Clancy P, Maguire J, Lincz L, Koblar S. The role of tenascin C in cardiovascular disease. Cardiovasc Res 2011; 92:19-28. [PMID: 21712412 DOI: 10.1093/cvr/cvr183] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The extracellular matrix protein tenascin C (TnC) is expressed in a variety of embryonic tissues, but its expression in adult arteries is co-incident with sites of vascular disease. TnC expression has been linked to the development and complications of intimal hyperplasia, pulmonary artery hypertension, atherosclerosis, myocardial infarction, and heart failure. This review identifies the growing collection of evidence linking TnC with cardiovascular disease development. The transient upregulation of this extracellular matrix protein at sites of vascular disease could provide a means to target TnC in the development of diagnostics and new therapies. Studies in TnC-deficient mice have implicated this protein in the development of intimal hyperplasia. Further animal and human studies are required to thoroughly assess the role of TnC in some of the other pathologies it has been linked with, such as atherosclerosis and pulmonary hypertension. Large population studies are also warranted to clarify the diagnostic value of this extracellular matrix protein in cardiovascular disease, for example by targeting its expression using radiolabelled antibodies or measuring circulating concentrations of TnC.
Collapse
Affiliation(s)
- Jonathan Golledge
- Vascular Biology Unit, Department of Surgery, School of Medicine and Dentistry, James Cook University, Townsville QLD 4811, Australia.
| | | | | | | | | |
Collapse
|
29
|
Abstract
The progression from acute myocardial infarction (MI) to heart failure continues to be a major cause of morbidity and mortality. Potential new therapies for improved infarct healing such as stem cells, gene therapy, and tissue engineering are being investigated. Noninvasive imaging plays a central role in the evaluation of MI and infarct healing, both clinically and in preclinical research. Traditionally, imaging has been used to assess cardiac structure, function, perfusion, and viability. However, new imaging methods can be used to assess biological processes at the cellular and molecular level. We review molecular imaging techniques for evaluating the biology of infarct healing and repair. Specifically, we cover recent advances in imaging the various phases of MI and infarct healing such as apoptosis, inflammation, angiogenesis, extracellular matrix deposition, and scar formation. Significant progress has been made in preclinical molecular imaging, and future challenges include translation of these methods to clinical practice.
Collapse
|