1
|
Pourbaghi M, Haghani L, Zhao K, Karimi A, Marinelli B, Erinjeri JP, Geschwind JFH, Yarmohammadi H. Anti-Glycolytic Drugs in the Treatment of Hepatocellular Carcinoma: Systemic and Locoregional Options. Curr Oncol 2023; 30:6609-6622. [PMID: 37504345 PMCID: PMC10377758 DOI: 10.3390/curroncol30070485] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Hepatocellular cancer (HCC) is the most common primary liver cancer and the third leading cause of cancer-related death. Locoregional therapies, including transarterial embolization (TAE: bland embolization), chemoembolization (TACE), and radioembolization, have demonstrated survival benefits when treating patients with unresectable HCC. TAE and TACE occlude the tumor's arterial supply, causing hypoxia and nutritional deprivation and ultimately resulting in tumor necrosis. Embolization blocks the aerobic metabolic pathway. However, tumors, including HCC, use the "Warburg effect" and survive hypoxia from embolization. An adaptation to hypoxia through the Warburg effect, which was first described in 1956, is when the cancer cells switch to glycolysis even in the presence of oxygen. Hence, this is also known as aerobic glycolysis. In this article, the adaptation mechanisms of HCC, including glycolysis, are discussed, and anti-glycolytic treatments, including systemic and locoregional options that have been previously reported or have the potential to be utilized in the treatment of HCC, are reviewed.
Collapse
Affiliation(s)
- Miles Pourbaghi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Leila Haghani
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Ken Zhao
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Anita Karimi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Brett Marinelli
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | - Joseph P. Erinjeri
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| | | | - Hooman Yarmohammadi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (M.P.); (K.Z.); (A.K.); (B.M.); (J.P.E.)
| |
Collapse
|
2
|
Lei P, Wang W, Sheldon M, Sun Y, Yao F, Ma L. Role of Glucose Metabolic Reprogramming in Breast Cancer Progression and Drug Resistance. Cancers (Basel) 2023; 15:3390. [PMID: 37444501 PMCID: PMC10341343 DOI: 10.3390/cancers15133390] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The involvement of glucose metabolic reprogramming in breast cancer progression, metastasis, and therapy resistance has been increasingly appreciated. Studies in recent years have revealed molecular mechanisms by which glucose metabolic reprogramming regulates breast cancer. To date, despite a few metabolism-based drugs being tested in or en route to clinical trials, no drugs targeting glucose metabolism pathways have yet been approved to treat breast cancer. Here, we review the roles and mechanisms of action of glucose metabolic reprogramming in breast cancer progression and drug resistance. In addition, we summarize the currently available metabolic inhibitors targeting glucose metabolism and discuss the challenges and opportunities in targeting this pathway for breast cancer treatment.
Collapse
Affiliation(s)
- Pan Lei
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Wenzhou Wang
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (P.L.); (W.W.)
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston TX 77030, USA
| |
Collapse
|
3
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
4
|
Identification of a novel GLUT1 inhibitor with in vitro and in vivo anti-tumor activity. Int J Biol Macromol 2022; 216:768-778. [PMID: 35878663 DOI: 10.1016/j.ijbiomac.2022.07.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022]
Abstract
Glucose transporter (GLUT) is a group of membrane proteins which transport extracellular glucoses into cytoplasm, amongst GLUT1 is widely up-regulated in tumor cells. However, no FDA approved GLUT drug has been developed. In this study, we synthesized and identified a novel GLUT1 inhibitor (SMI277) based on in vitro assays and in vivo experiments. Compared with a known GLUT1 inhibitor, SMI277 showed stronger inhibitory activity to glucose uptake, and the inhibition was increased by 40 %. Lactate secretions were decreased by SMI277 in a dose dependent manner. SMI277 was able to inhibit cell proliferations and induce apoptosis of tumor cells. Compared to that of the control group, the tumor growth in mouse model with the administration of 10 mg/kg SMI277 was significantly alleviated and the tumor size was reduced by 58 % on day 21 after inoculation. Interestingly, SMI277 could negatively regulate the expression of GLUT1 protein. Ex vivo experiments showed that SMI277 was capable to enhance CD8+ T cell response. Residues Q283, F379 and E380 were identified as contact residues for GLUT1/SMI277 interactions by mutagenesis based binding affinity measurement. In conclusion, SMI277 appeared to be a good lead compound for drug development with specific GLUT1+ cancer treatment.
Collapse
|
5
|
Du Y, Cortez A, Josefsson A, Zarisfi M, Krimins R, Liapi E, Nedrow JR. Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma. PLoS One 2022; 17:e0261982. [PMID: 35061763 PMCID: PMC8782514 DOI: 10.1371/journal.pone.0261982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Hepatocellular carcinoma is the most common primary liver cancer and the fifth most frequently diagnosed cancer worldwide. Most patients with advanced disease are offered non-surgical palliative treatment options. This work explores the first alpha-particle emitting radioembolization for the treatment and monitoring of hepatic tumors. Furthermore, this works demonstrates the first in vivo simultaneous multiple-radionuclide SPECT-images of the complex decay chain of an [225Ac]Ac-labeled agent using a clinical SPECT system to monitor the temporal distribution. A DOTA chelator was modified with a lipophilic moiety and radiolabeled with the α-particle emitter Actinium-225. The resulting agent, [225Ac]Ac-DOTA-TDA, was emulsified in ethiodized oil and evaluated in vivo in mouse model and the VX2 rabbit technical model of liver cancer. SPECT imaging was performed to monitor distribution of the TAT agent and the free daughters. The [225Ac]Ac-DOTA-TDA emulsion was shown to retain within the HEP2G tumors and VX2 tumor, with minimal uptake within normal tissue. In the mouse model, significant improvements in overall survival were observed. SPECT-imaging was able to distinguish between the Actinium-225 agent (Francium-221) and the loss of the longer lived daughter, Bismuth-213. An α-particle emitting TARE agent is capable of targeting liver tumors with minimal accumulation in normal tissue, providing a potential therapeutic agent for the treatment of hepatocellular carcinoma as well as a variety of hepatic tumors. In addition, SPECT-imaging presented here supports the further development of imaging methodology and protocols that can be incorporated into the clinic to monitor Actinium-225-labeled agents.
Collapse
Affiliation(s)
- Yong Du
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Angel Cortez
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Anders Josefsson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Mohammadreza Zarisfi
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Rebecca Krimins
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Eleni Liapi
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jessie R. Nedrow
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
6
|
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res 2019; 150:104511. [DOI: 10.1016/j.phrs.2019.104511] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
|
7
|
Coman D, Peters DC, Walsh JJ, Savic LJ, Huber S, Sinusas AJ, Lin M, Chapiro J, Constable RT, Rothman DL, Duncan JS, Hyder F. Extracellular pH mapping of liver cancer on a clinical 3T MRI scanner. Magn Reson Med 2019; 83:1553-1564. [PMID: 31691371 DOI: 10.1002/mrm.28035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To demonstrate feasibility of developing a noninvasive extracellular pH (pHe ) mapping method on a clinical MRI scanner for molecular imaging of liver cancer. METHODS In vivo pHe mapping has been demonstrated on preclinical scanners (e.g., 9.4T, 11.7T) with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), where the pHe readout by 3D chemical shift imaging (CSI) depends on hyperfine shifts emanating from paramagnetic macrocyclic chelates like TmDOTP5- which upon extravasation from blood resides in the extracellular space. We implemented BIRDS-based pHe mapping on a clinical 3T Siemens scanner, where typically diamagnetic 1 H signals are detected using millisecond-long radiofrequency (RF) pulses, and 1 H shifts span over ±10 ppm with long transverse (T2 , 102 ms) and longitudinal (T1 , 103 ms) relaxation times. We modified this 3D-CSI method for ultra-fast acquisition with microsecond-long RF pulses, because even at 3T the paramagnetic 1 H shifts of TmDOTP5- have millisecond-long T2 and T1 and ultra-wide chemical shifts (±200 ppm) as previously observed in ultra-high magnetic fields. RESULTS We validated BIRDS-based pH in vitro with a pH electrode. We measured pHe in a rabbit model for liver cancer using VX2 tumors, which are highly vascularized and hyperglycolytic. Compared to intratumoral pHe (6.8 ± 0.1; P < 10-9 ) and tumor's edge pHe (6.9 ± 0.1; P < 10-7 ), liver parenchyma pHe was significantly higher (7.2 ± 0.1). Tumor localization was confirmed with histopathological markers of necrosis (hematoxylin and eosin), glucose uptake (glucose transporter 1), and tissue acidosis (lysosome-associated membrane protein 2). CONCLUSION This work demonstrates feasibility and potential clinical translatability of high-resolution pHe mapping to monitor tumor aggressiveness and therapeutic outcome, all to improve personalized cancer treatment planning.
Collapse
Affiliation(s)
- Daniel Coman
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Dana C Peters
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut
| | - John J Walsh
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Lynn J Savic
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Institute of Radiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Huber
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Albert J Sinusas
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, Connecticut
| | - MingDe Lin
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Visage Imaging, Inc., San Diego, California
| | - Julius Chapiro
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut
| | - R Todd Constable
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Douglas L Rothman
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - James S Duncan
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Fahmeed Hyder
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| |
Collapse
|
8
|
Savic LJ, Chapiro J, Duwe G, Geschwind JF. Targeting glucose metabolism in cancer: new class of agents for loco-regional and systemic therapy of liver cancer and beyond? Hepat Oncol 2016; 3:19-28. [PMID: 26989470 DOI: 10.2217/hep.15.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and the third leading cause of cancer-related deaths worldwide. In patients with unresectable disease, loco-regional catheter-based intra-arterial therapies (IAT) can achieve selective tumor control while minimizing systemic toxicity. As molecular features of tumor growth and microenvironment are better understood, new targets arise for selective anticancer therapy. Particularly, antiglycolytic drugs that exploit the hyperglycolytic cancer cell metabolism - also known as the 'Warburg effect' - have emerged as promising therapeutic options. Thus, future developments will combine the selective character of loco-regional drug delivery platforms with highly specific molecular targeted antiglycolytic agents. This review will exemplify literature on antiglycolytic approaches and particularly focus on intra-arterial delivery methods.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, US; Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | - Julius Chapiro
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, US; Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | - Gregor Duwe
- Department of Diagnostic & Interventional Radiology, Universitätsmedizin Charité Berlin, Berlin, Germany
| | | |
Collapse
|
9
|
Dynamical observation on biological progression of VX2 liver tumors to identify the optimal time for intervention in animal models. PLoS One 2013; 8:e74327. [PMID: 23977399 PMCID: PMC3745374 DOI: 10.1371/journal.pone.0074327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/31/2013] [Indexed: 01/27/2023] Open
Abstract
Purpose Based on practice guideline of “management of hepatocellular carcinoma (HCC): update” published by American Association for the Study of Liver Diseases (AASLD) and “Barcelona Clinic Liver Cancer staging system (BCLC),” this study investigated how to enroll the optimal VX2 liver tumor model for HCC researches by dynamically observing the biological progression of the tumor. Materials Thirty-two healthy New Zealand white rabbits were implanted VX2 liver tumor by cell suspension method (n=24) and tissue fragment method (n=8). All the rabbits underwent CT scans on day 7, 14, 21 and 28 after implantation to observe the size of the tumors, the time when metastases and ascites occurred and the survival time. Appropriate intervention times were estimated corresponding to different clinical HCC stages by using tumor diameter-time curve. Results The VX2 liver tumors grew rapidly within 28 days after implantation. And the tumors in the cell suspension group grew faster than those of the tissue fragment group. The appropriate intervention time corresponding to very early stage, early stage and intermediate stage were <11 days, 11–16.9 days and >16.9 days, respectively in the cell suspension group, and <19.9 days, 19.9–25.5 days and >25.5 days, respectively in the tissue fragment group. Conclusion Preclinical animal research needs to improve on different levels to yield best predictions for human patients. Researchers should seek for an individualized proposal to select optimal VX2 liver tumor models for their experiments. This approach may lead to a more accurate determination of therapeutic outcomes.
Collapse
|
10
|
Mahnken AH, Pereira PL, de Baère T. Interventional oncologic approaches to liver metastases. Radiology 2013; 266:407-30. [PMID: 23362094 DOI: 10.1148/radiol.12112544] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metastatic liver disease is the most common cause of death in cancer patients. Complete surgical resection is currently considered the only curative treatment, with only about 25% of patients being amenable to surgery. Therefore, a variety of interventional oncologic techniques have been developed for treating secondary liver malignancies. The aim of these therapies is either to allow patients with unresectable tumors to become surgical candidates, provide curative treatment options in nonsurgical candidates, or improve survival in a palliative or even curative approach. Among these interventional therapies are transcatheter therapies such as portal vein embolization, hepatic artery infusion chemotherapy, transarterial chemoembolization, and radioembolization, as well as interstitial techniques, particularly radiofrequency ablation as the most commonly applied technique. The rationale, application and clinical results of each of these techniques are reviewed on the basis of the current literature. Future prospects such as gene therapy and immunotherapy are introduced.
Collapse
Affiliation(s)
- Andreas H Mahnken
- Department of Diagnostic and Interventional Radiology, University Hospital, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
11
|
Liapi E, Geschwind JH. Novel local therapies in hepatocellular carcinoma. Clin Liver Dis (Hoboken) 2013; 1:209-211. [PMID: 31186889 PMCID: PMC6499304 DOI: 10.1002/cld.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Eleni Liapi
- Division of Vascular and Interventional Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
12
|
Abstract
The pyruvate mimetic 3-bromopyruvate (3-BP) is generally presented as an inhibitor of glycolysis and has shown remarkable efficacy in not only preventing tumor growth, but even eradicating existant tumors in animal studies. We here review reported molecular targets of 3-BP and suggest that the very range of possible targets, which pertain to the altered energy metabolism of tumor cells, contributes both to the efficacy and the tumor specificity of the drug. Its in vivo efficacy is suggested to be due to a combination of glycolytic and mitochondrial targets, as well as to secondary effects affecting the tumor microenvironment. The cytotoxicity of 3-BP is less due to pyruvate mimicry than to alkylation of, e.g., key thiols. Alkylation of DNA/RNA has not been reported. More research is warranted to better understand the pharmacokinetics of 3-BP, and its potential toxic effects to normal cells, in particular those that are highly ATP-/mitochondrion-dependent.
Collapse
|
13
|
Huang B, Khong PL, Kwong DLW, Hung B, Wong CS, Wong CYO. Dynamic PET-CT studies for characterizing nasopharyngeal carcinoma metabolism: comparison of analytical methods. Nucl Med Commun 2012; 33:191-197. [PMID: 22107997 DOI: 10.1097/mnm.0b013e32834dfa0c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the optimal PET protocol and analytical method to characterize the glucose metabolism in nasopharyngeal carcinoma (NPC). METHODS Newly diagnosed NPC patients were recruited and a dynamic PET-CT scan was performed. The optimized threshold to derive the arterial input function (AIF) was studied. Two-tissue compartmental kinetic modeling using three, four, and five parameters, Patlak graphical analysis, and time sensitivity (S-factor) analysis were performed. The best compartmental model was determined in terms of goodness of fit, and correlated with Ki from Patlak graphical analysis and the S-factor. The methods with R>0.9 and P<0.05 were considered acceptable. The protocols using two static scans with its retention index (RI=(SUV(2)/SUV(1)-1)×100%, where SUV is the standardized uptake value) were also studied and compared with S-factor analysis. RESULTS The best threshold of 0.6 was determined and used to derive AIF. The kinetic model with five parameters yields the best statistical results, but the model with k4=0 was used as the gold standard. All Ki values and some S-factors from data between various intervals (10-30, 10-45, 15-30, 15-45, 20-30, and 20-45 min) fulfilled the criteria. The RIs calculated from the S-factor were highly correlated to RI derived from simple two-point static scans at 10 and 30 min (R=0.9, P<0.0001). CONCLUSION The Patlak graphical analyses and even a 20-min-interval S-factor analysis or simple two-point static scans were shown to be sufficient to characterize NPC metabolism, confirming the clinical feasibility of applying a short dynamic with image-derived AIF or simple two-point static PET scans for studying NPC.
Collapse
Affiliation(s)
- Bingsheng Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
14
|
Schaefer NG, Geschwind JF, Engles J, Buchanan JW, Wahl RL. Systemic administration of 3-bromopyruvate in treating disseminated aggressive lymphoma. Transl Res 2012; 159:51-7. [PMID: 22153810 DOI: 10.1016/j.trsl.2011.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 01/06/2023]
Abstract
The Warburg hypothesis states that aggressive cancers obtain much of their adenosine triphosphate (ATP) by metabolizing glucose directly to lactic acid. As a result of its high tumor selectivity, 3-bromopyruvic acid (3-BrPA), a well-known inhibitor of energy metabolism, has been proposed as a specific anticancer agent. We investigated the effect of 3-BrPA in a mouse model of aggressive metastatic lymphoma. Epstein-Barr-virus-infected human Raji lymphoma cells with lentivirally transfected green fluorescent protein and luciferase were incubated with RPMI/fetal bovine serum, and various concentrations of 3-BrPA were used to determine the LD50 in vitro. In total, 18 severely combined immunodeficient mice were injected with 1 million human Raji lymphoma cells via the tail vein. Using bioluminescent imaging, tumor growth was measured daily for 12 days to determine the tumor burden. At day 0 (start of treatment), the mice were randomized. Six mice received 10 mg/kg 3-BrPA i.p. daily for 7 days, 6 mice received 1 treatment at day 0, and 6 mice received the control buffer. Tumor growth was assessed daily from day 0 until day 7 using bioluminescent imaging. All data were normalized to acquisition time (luminescence/second; L/s). Body weight was measured daily to determine the toxicity of 3-BrPA. The LD50 for Raji lymphoma cells exposed to 3-BrPA in vitro was 11 μM with an extremely steep dose response curve. At day 0, tumor activity medians in the group with daily treatment was 2131 L/s (244-12,725), with a 1-day dose of 3095 L/s (523-9650) and in the nontreated control group, 2997 L/s (1521-6911). In mice treated with a daily dose of 10 mg/kg 3-BrPa for 7 days, a significant reduction in tumor activity was found during the whole treatment period compared with the control mice (P = 0.0043 at day 7). In mice with a single treatment at day 0, growth delay was only evident at day 2 (P = 0.0152 at day 2) but not for the rest of the observation period. The only manifestation of toxicity of the daily administration of 10 mg/kg 3-BrPA was a reduction in body weight. Body weight at day 0 was 17.22 g ± 0.84 g in the treatment group and 17.58 g ± 0.86 g in the control group. Body weight at day +6 was 15.02 g ± 2.04 g in the treated group and 19.4 g ± 0.63 g in the control group. 3-BrPA demonstrated a significant positive tumor response both in vitro and in vivo. This, to our knowledge, is the first report of the use of 3-BrPA in a systemic tumor model. Based on these data, 3-BrPA holds promise for treatment of systemic metastatic cancers.
Collapse
Affiliation(s)
- Niklaus G Schaefer
- Division of Nuclear Medicine, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287-0817, USA
| | | | | | | | | |
Collapse
|