1
|
Csikos C, Barna S, Kovács Á, Czina P, Budai Á, Szoliková M, Nagy IG, Husztik B, Kiszler G, Garai I. AI-Based Noise-Reduction Filter for Whole-Body Planar Bone Scintigraphy Reliably Improves Low-Count Images. Diagnostics (Basel) 2024; 14:2686. [PMID: 39682594 DOI: 10.3390/diagnostics14232686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Artificial intelligence (AI) is a promising tool for the enhancement of physician workflow and serves to further improve the efficiency of their diagnostic evaluations. This study aimed to assess the performance of an AI-based bone scan noise-reduction filter on noisy, low-count images in a routine clinical environment. Methods: The performance of the AI bone-scan filter (BS-AI filter) in question was retrospectively evaluated on 47 different patients' 99mTc-MDP bone scintigraphy image pairs (anterior- and posterior-view images), which were obtained in such a manner as to represent the diverse characteristics of the general patient population. The BS-AI filter was tested on artificially degraded noisy images-75, 50, and 25% of total counts-which were generated by binominal sampling. The AI-filtered and unfiltered images were concurrently appraised for image quality and contrast by three nuclear medicine physicians. It was also determined whether there was any difference between the lesions seen on the unfiltered and filtered images. For quantitative analysis, an automatic lesion detector (BS-AI annotator) was utilized as a segmentation algorithm. The total number of lesions and their locations as detected by the BS-AI annotator in the BS-AI-filtered low-count images was compared to the total-count filtered images. The total number of pixels labeled as lesions in the filtered low-count images in relation to the number of pixels in the total-count filtered images was also compared to ensure the filtering process did not change lesion sizes significantly. The comparison of pixel numbers was performed using the reduced-count filtered images that contained only those lesions that were detected in the total-count images. Results: Based on visual assessment, observers agreed that image contrast and quality were better in the BS-AI-filtered images, increasing their diagnostic confidence. Similarities in lesion numbers and sites detected by the BS-AI annotator compared to filtered total-count images were 89%, 83%, and 75% for images degraded to counts of 75%, 50%, and 25%, respectively. No significant difference was found in the number of annotated pixels between filtered images with different counts (p > 0.05). Conclusions: Our findings indicate that the BS-AI noise-reduction filter enhances image quality and contrast without loss of vital information. The implementation of this filter in routine diagnostic procedures reliably improves diagnostic confidence in low-count images and elicits a reduction in the administered dose or acquisition time by a minimum of 50% relative to the original dose or acquisition time.
Collapse
Affiliation(s)
- Csaba Csikos
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sándor Barna
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Scanomed Ltd., H-4032 Debrecen, Hungary
| | | | - Péter Czina
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | | | | | - Iván Gábor Nagy
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | | | | | - Ildikó Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Scanomed Ltd., H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Lee KK, Chakraborty M, Hu A, Kanagasundaram T, Thorek DLJ, Wilson JJ. Chelation of [ 111In]In 3+ with the dual-size-selective macrocycles py-macrodipa and py 2-macrodipa. Dalton Trans 2024; 53:14634-14647. [PMID: 39163366 PMCID: PMC11663299 DOI: 10.1039/d4dt02146k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Indium-111 (111In) is a diagnostic radiometal that is important in nuclear medicine for single-photon emission computed tomography (SPECT). In order to apply this radiometal, it needs to be stably chelated and conjugated to a targeting vector that delivers it to diseased tissue. Identifying effective chelators that are capable of binding and retaining [111In]In3+in vivo is an important research area. In this study, two 18-membered macrocyclic chelators, py-macrodipa and py2-macrodipa, were investigated for their ability to form stable coordination complexes with In3+ and to be effectively radiolabeled with [111In]In3+. The In3+ complexes of these two chelators were characterized by NMR spectroscopy, X-ray crystallography, and density functional theory calculations. These studies show that both py-macrodipa and py2-macrodipa form 8-coordinate In3+ complexes and attain an asymmetric conformation, consistent with prior studies on this ligand class with small rare earth metal ions. Spectrophotometric titrations were carried out to determine the thermodynamic stability constants (log KML) of [In(py-macrodipa)]+ and [In(py2-macrodipa)]+, which were found to be 18.96(6) and 19.53(5), respectively, where the values in parentheses are the errors of the last significant figures obtained from the standard deviation from three independent replicates. Radiolabeling studies showed that py-macrodipa and py2-macrodipa can quantitatively be radiolabeled with [111In]In3+ at 25 °C within 5 min, even at ligand concentrations as low as 1 μM. The in vitro stability of the radiolabeled complexes was investigated in human serum at 37 °C, revealing that ∼90% of [111In][In(py-macrodipa)]+ and [111In][In(py2-macrodipa)]+ remained intact after 7 days. The biodistribution of these radiolabeled complexes in mice was investigated, showing lower uptake in the kidneys, liver, and blood at the 24 h mark compared to [111In]InCl3. These results demonstrate the potential of py-macrodipa and py2-macrodipa as chelators for [111In]In3+, suggesting their value for SPECT radiopharmaceuticals.
Collapse
Affiliation(s)
- Kevin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Mou Chakraborty
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Thines Kanagasundaram
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| | - Daniel L J Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, 63110, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
3
|
Giammarile F, Knoll P, Kunikowska J, Paez D, Estrada Lobato E, Mikhail-Lette M, Wahl R, Holmberg O, Abdel-Wahab M, Scott AM, Delgado Bolton RC. Guardians of precision: advancing radiation protection, safety, and quality systems in nuclear medicine. Eur J Nucl Med Mol Imaging 2024; 51:1498-1505. [PMID: 38319322 PMCID: PMC11043166 DOI: 10.1007/s00259-024-06633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND In the rapidly evolving field of nuclear medicine, the paramount importance of radiation protection, safety, and quality systems cannot be overstated. This document provides a comprehensive analysis of the intricate regulatory frameworks and guidelines, meticulously crafted and updated by national and international regulatory bodies to ensure the utmost safety and efficiency in the practice of nuclear medicine. METHODS We explore the dynamic nature of these regulations, emphasizing their adaptability in accommodating technological advancements and the integration of nuclear medicine with other medical and scientific disciplines. RESULTS Audits, both internal and external, are spotlighted for their pivotal role in assessing and ensuring compliance with established standards, promoting a culture of continuous improvement and excellence. We delve into the significant contributions of entities like the International Atomic Energy Agency (IAEA) and relevant professional societies in offering universally applicable guidelines that amalgamate the latest in scientific research, ethical considerations, and practical applicability. CONCLUSIONS The document underscores the essence of international collaborations in pooling expertise, resources, and insights, fostering a global community of practice where knowledge and innovations are shared. Readers will gain an in-depth understanding of the practical applications, challenges, and opportunities presented by these regulatory frameworks and audit processes. The ultimate goal is to inspire and inform ongoing efforts to enhance safety, quality, and effectiveness in nuclear medicine globally.
Collapse
Affiliation(s)
- Francesco Giammarile
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria.
| | - Peter Knoll
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Diana Paez
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Enrique Estrada Lobato
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Miriam Mikhail-Lette
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Richard Wahl
- Washington University in St Louis School of Medicine, St. Louis, USA
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ola Holmberg
- Department of Nuclear Safety and Security, Radiation Safety and Monitoring Section, International Atomic Energy Agency, Vienna, Austria
| | - May Abdel-Wahab
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), La Rioja, Logroño, Spain
- Servicio Cántabro de Salud, Santander, Spain
| |
Collapse
|
4
|
Molcho L, Maimon NB, Hezi N, Zeimer T, Intrator N, Gurevich T. Evaluation of Parkinson's disease early diagnosis using single-channel EEG features and auditory cognitive assessment. Front Neurol 2023; 14:1273458. [PMID: 38174098 PMCID: PMC10762798 DOI: 10.3389/fneur.2023.1273458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Background Parkinson's disease (PD) often presents with subtle early signs, making diagnosis difficult. F-DOPA PET imaging provides a reliable measure of dopaminergic function and is a primary tool for early PD diagnosis. This study aims to evaluate the ability of machine-learning (ML) extracted EEG features to predict F-DOPA results and distinguish between PD and non-PD patients. These features, extracted using a single-channel EEG during an auditory cognitive assessment, include EEG feature A0 associated with cognitive load in healthy subjects, and EEG feature L1 associated with cognitive task differentiation. Methods Participants in this study are comprised of cognitively healthy patients who had undergone an F-DOPA PET scan as a part of their standard care (n = 32), and cognitively healthy controls (n = 20). EEG data collected using the Neurosteer system during an auditory cognitive task, was decomposed using wavelet-packet analysis and machine learning methods for feature extraction. These features were used in a connectivity analysis that was applied in a similar manner to fMRI connectivity. A preliminary model that relies on the features and their connectivity was used to predict initially unrevealed F-DOPA test results. Then, generalized linear mixed models (LMM) were used to discern between PD and non-PD subjects based on EEG variables. Results The prediction model correctly classified patients with unrevealed scores as positive F-DOPA. EEG feature A0 and the Delta band revealed distinct activity patterns separating between study groups, with controls displaying higher activity than PD patients. In controls, EEG feature L1 showed variations between resting state and high-cognitive load, an effect lacking in PD patients. Conclusion Our findings exhibit the potential of single-channel EEG technology in combination with an auditory cognitive assessment to distinguish positive from negative F-DOPA PET scores. This approach shows promise for early PD diagnosis. Additional studies are needed to further verify the utility of this tool as a potential biomarker for PD.
Collapse
Affiliation(s)
- Lior Molcho
- Neurosteer Inc., New York, NY, United States
| | - Neta B. Maimon
- Neurosteer Inc., New York, NY, United States
- Department of Musicology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Neomi Hezi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Nathan Intrator
- Neurosteer Inc., New York, NY, United States
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Alberts I, Sari H, Mingels C, Afshar-Oromieh A, Pyka T, Shi K, Rominger A. Long-axial field-of-view PET/CT: perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients. Cancer Imaging 2023; 23:28. [PMID: 36934273 PMCID: PMC10024603 DOI: 10.1186/s40644-023-00540-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/25/2023] [Indexed: 03/20/2023] Open
Abstract
Recently introduced long-axial field-of-view (LAFOV) PET/CT systems represent one of the most significant advancements in nuclear medicine since the advent of multi-modality PET/CT imaging. The higher sensitivity exhibited by such systems allow for reductions in applied activity and short duration scans. However, we consider this to be just one small part of the story: Instead, the ability to image the body in its entirety in a single FOV affords insights which standard FOV systems cannot provide. For example, we now have the ability to capture a wider dynamic range of a tracer by imaging it over multiple half-lives without detrimental image noise, to leverage lower radiopharmaceutical doses by using dual-tracer techniques and with improved quantification. The potential for quantitative dynamic whole-body imaging using abbreviated protocols potentially makes these techniques viable for routine clinical use, transforming PET-reporting from a subjective analysis of semi-quantitative maps of radiopharmaceutical uptake at a single time-point to an accurate and quantitative, non-invasive tool to determine human function and physiology and to explore organ interactions and to perform whole-body systems analysis. This article will share the insights obtained from 2 years' of clinical operation of the first Biograph Vision Quadra (Siemens Healthineers) LAFOV system. It will also survey the current state-of-the-art in PET technology. Several technologies are poised to furnish systems with even greater sensitivity and resolution than current systems, potentially with orders of magnitude higher sensitivity. Current barriers which remain to be surmounted, such as data pipelines, patient throughput and the hindrances to implementing kinetic analysis for routine patient care will also be discussed.
Collapse
Affiliation(s)
- Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| |
Collapse
|
6
|
Hu A, Simms ME, Kertesz V, Wilson JJ, Thiele NA. Chelating Rare-Earth Metals (Ln 3+) and 225Ac 3+ with the Dual-Size-Selective Macrocyclic Ligand Py 2-Macrodipa. Inorg Chem 2022; 61:12847-12855. [PMID: 35914099 DOI: 10.1021/acs.inorgchem.2c01998] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radioisotopes of metallic elements, or radiometals, are widely employed in both therapeutic and diagnostic nuclear medicine. For this application, chelators that efficiently bind the radiometal of interest and form a stable metal-ligand complex with it are required. Toward the development of new chelators for nuclear medicine, we recently reported a novel class of 18-membered macrocyclic chelators that is characterized by their ability to form stable complexes with both large and small rare-earth metals (Ln3+), a property referred to as dual size selectivity. A specific chelator in this class called py-macrodipa, which contains one pyridyl group within its macrocyclic core, was established as a promising candidate for 135La3+, 213Bi3+, and 44Sc3+ chelation. Building upon this prior work, here we report the synthesis and characterization of a new chelator called py2-macrodipa with two pyridyl units fused into the macrocyclic backbone. Its coordination chemistry with the Ln3+ series was investigated by NMR spectroscopy, X-ray crystallography, density functional theory (DFT) calculations, analytical titrations, and transchelation assays. These studies reveal that py2-macrodipa retains the expected dual size selectivity and possesses an enhanced thermodynamic affinity for all Ln3+ compared to py-macrodipa. By contrast, the kinetic stability of Ln3+ complexes with py2-macrodipa is only improved for the light, large Ln3+ ions. Based upon these observations, we further assessed the suitability of py2-macrodipa for use with 225Ac3+, a large radiometal with valuable properties for targeted α therapy. Radiolabeling and stability studies revealed py2-macrodipa to efficiently incorporate 225Ac3+ and to form a complex that is inert in human serum over 3 weeks. Although py2-macrodipa does not surpass the state-of-the-art chelator macropa for 225Ac3+ chelation, it does provide another effective 225Ac3+ chelator. These studies shed light on the fundamental coordination chemistry of the Ln3+ series and may inspire future chelator design efforts.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
7
|
Mkhize N, Tiwari R, Chikte U, Pitcher R. Temporal Trends in the South African Diagnostic Radiology Workforce (2002-2019). Cureus 2022; 14:e27148. [PMID: 36004036 PMCID: PMC9392860 DOI: 10.7759/cureus.27148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/05/2022] Open
Abstract
Background To facilitate imaging resource planning and address key health targets of the United Nations (UN) 2030 Sustainable Development Goals, accurate data are required on imaging personnel at the country level. Such data are currently limited. Objectives This study aims to analyze trends in the number, geographical distribution, and demographics of South African (SA) diagnostic imaging personnel between 2002 and 2019. Method A retrospective analysis of the Health Professions Council of South Africa (HPCSA) database of imaging personnel from 2002 to 2019 was done. The total number of personnel and personnel per million people were calculated for the country and for each professional group (radiologist, diagnostic radiographer, and sonographer) by calendar year, province, and demographic profile. Population data were provided by Statistics SA. Results The total imaging personnel, number per million people, and national population increased by 283% (3,095 versus 8,753), 119% (68 versus 149/106), and 29% (45.45 versus 58.77/106), respectively. Diagnostic radiographers constituted more than 80% of the workforce throughout the review period, increasing by 185% (2,540 versus 7,242). Sonographers, the smallest cohort, recorded the highest (49 versus 503; 906%) and radiologists (506 versus 1,007; 99%) the lowest proportional growth. Although radiologists showed persistent male predominance, the male proportion decreased from 82% to 69%, while that of females increased from 18% to 31%. The average annual percentage increase in female radiologists (14%) was more than three times that of males (4%). Diagnostic radiographers showed female predominance, but the proportion decreased from 90% to 83%, while that of males increased from 10% to 17%. Sonographers showed overwhelming female predominance (94% versus 92%). The average annual percentage increase in male diagnostic radiographers (21%) was more than double that of females (9%). In 2002, 48% (n = 1,475) of imaging personnel identified as White, and 15% (n = 467) identified as Black African. By 2019, those identifying as White and Black African were 36% (n = 3,122) and 35% (n = 3,045), respectively. The Western Cape Province (WCP) maintained the highest overall number of imaging personnel per million people (165 versus 233/106) and Limpopo the lowest (12 versus 54/106). However, Limpopo recorded the highest proportional growth in imaging personnel/106 people (368%) and the WCP the lowest (41%). The differential between the best- and least-resourced provinces thus decreased from 14:1 in 2002 to 4:1 in 2019. Conclusion In the review period, the SA imaging workforce has shown substantial expansion and transformation and has assumed a more equitable distribution.
Collapse
|
8
|
Hu A, Wilson JJ. Advancing Chelation Strategies for Large Metal Ions for Nuclear Medicine Applications. Acc Chem Res 2022; 55:904-915. [PMID: 35230803 DOI: 10.1021/acs.accounts.2c00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nuclear medicine leverages radioisotopes of a wide range of elements, a significant portion of which are metals, for the diagnosis and treatment of disease. To optimally use radioisotopes of the metal ions, or radiometals, for these applications, a chelator that efficiently forms thermodynamically and kinetically stable complexes with them is required. The chelator also needs to attach to a biological targeting vector that locates pathological tissues. Numerous chelators suitable for small radiometals have been established to date, but chelators that work well for large radiometals are significantly less common. In this Account, we describe recent progress by us and others in the advancement of ligands for large radiometal chelation with emerging applications in nuclear medicine.First, we discuss and analyze the coordination chemistry of the chelator macropa, a macrocyclic ligand that contains the 18-crown-6 backbone and two picolinate pendent arms, with large metal ions in the context of nuclear medicine. This ligand is known for its unusual reverse size selectivity, the preference for binding large over small metal ions. The radiolabeling properties of macropa with large radiometals 225Ac3+, 132/135La3+, 131Ba2+, 223Ra2+, 213Bi3+, and related in vivo investigations are described. The development of macropa derivatives containing different pendent donors or rigidifying groups in the macrocyclic core is also briefly reviewed.Next, efforts to transform macropa into a radiopharmaceutical agent via covalent conjugation to biological targeting vectors are summarized. In this discussion, two types of bifunctional analogues of macropa reported in the literature, macropa-NCS and mcp-click, are presented. Their implementation in different radiopharmaceutical agents is discussed. Bioconjugates containing macropa attached to small-molecule targeting vectors or macromolecular antibodies are presented. The in vitro and in vivo evaluations of these constructs are also discussed.Lastly, chelators with dual size selectivity are described. This class of ligands exhibits good affinities for both large and small metal ions. This property is valuable for nuclear medicine applications that require the simultaneous chelation of both large and small radiometals with complementary therapeutic and diagnostic properties. Recently, we reported an 18-membered macrocyclic ligand called macrodipa that attains this selectivity pattern. This chelator, its second-generation analogue py-macrodipa, and their applications for chelating the medicinally relevant large 135La3+, 225Ac3+, 213Bi3+, and small 44Sc3+ ions are also presented. Studies with these radiometals show that py-macrodipa can effectively radiolabel and stably retain both large and small radiometals. Overall, this Account makes the case for innovative ligand design approaches for novel emerging radiometal ions with unusual coordination chemistry properties.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Neira-Castro S, Guiu-Souto J, Pardo-Montero J. Dosimetry in positron emission tomography. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Laipply K, Gerson M. Is faster always better? What is the implication of a shorter time to imaging with tetrofosmin compared to sestamibi? J Nucl Cardiol 2021; 28:2629-2632. [PMID: 32405990 DOI: 10.1007/s12350-020-02143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Kelly Laipply
- Division of Cardiovascular Health and Disease, University of Cincinnati Medical Center, 234 Goodman Ave., Cincinnati, OH, 45219, USA.
| | - Myron Gerson
- Division of Cardiovascular Health and Disease, University of Cincinnati Medical Center, 234 Goodman Ave., Cincinnati, OH, 45219, USA
| |
Collapse
|
11
|
Grigoryan A, Bouyoucef S, Sathekge M, Vorster M, Orellana P, Estrada E, Mikhail Lette M, Morozova O, Pellet O, Paez D, Delgado Bolton RC, Giammarile F. Development of nuclear medicine in Africa. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00468-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Ma Q, Sridhar G, Power T, Agiro A. Assessing the downstream value of first-line cardiac positron emission tomography (PET) imaging using real world Medicare fee-for-service claims data. J Nucl Cardiol 2021; 28:2126-2137. [PMID: 31820411 DOI: 10.1007/s12350-019-01974-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Higher imaging quality makes cardiac positron emission tomography (PET) desirable for evaluation of suspected coronary artery disease (CAD). High cost of PET imaging may be offset by reduced utilization and/or improved outcomes. METHODS This retrospective observational study utilized Medicare fee-for-service dataset. Study participants had no CAD diagnosis within 1 year prior to initial imaging. The PET group (PET imaging) and propensity score matched comparison group (single photon emission computed tomography or stress echocardiography) underwent index imaging between January 2014 and December 2016. Outcomes were analyzed using generalized linear models. RESULTS Among 144,503 study subjects, 4619 (3.2%) had PET and 139,884 (96.8%) had conventional imaging. After matching, each group had 4619 patients (mean age 74 years, 59% female). The PET group had lower radiation exposure (3.8 milliSievert less per year, 95% CI - 3.96 to - 3.64, P < .0001) and unstable coronary syndrome (incidence rate ratio (IRR) 0.77, 95% CI 0.64-0.94, P = .008). The PET group experienced more hospital admissions (IRR 1.10, 95% CI 1.06-1.15, P < .0001), more use of percutaneous coronary intervention (IRR 1.24, 95% CI 1.02-1.50, P = 0.03), while similar mortality rate (hazard ratio 0.95, 95% CI 0.78-1.14, P = 0.55). The PET group had higher medical spending ($2358.2 vs $1774.3, difference = $583.9 per patient per month, P < .0001). CONCLUSIONS First-line PET imaging was not associated with reduced levels of utilization and spending. Clinical outcomes were mostly similar.
Collapse
Affiliation(s)
- Qinli Ma
- HealthCore Inc., 123 Justison Street, Suite 200, Wilmington, DE, 19801-5134, USA.
| | - Gayathri Sridhar
- HealthCore Inc., 123 Justison Street, Suite 200, Wilmington, DE, 19801-5134, USA
| | | | - Abiy Agiro
- HealthCore Inc., 123 Justison Street, Suite 200, Wilmington, DE, 19801-5134, USA
| |
Collapse
|
13
|
Ng TS, An BP, Cho SY, Hyun H. US Trainee and Faculty Perspectives on Exposure to Nuclear Medicine/Molecular Imaging During Medical School. Curr Probl Diagn Radiol 2021; 50:585-591. [DOI: 10.1067/j.cpradiol.2020.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
|
14
|
Hu A, Aluicio-Sarduy E, Brown V, MacMillan SN, Becker KV, Barnhart TE, Radchenko V, Ramogida CF, Engle JW, Wilson JJ. Py-Macrodipa: A Janus Chelator Capable of Binding Medicinally Relevant Rare-Earth Radiometals of Disparate Sizes. J Am Chem Soc 2021; 143:10429-10440. [PMID: 34190542 DOI: 10.1021/jacs.1c05339] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nuclear medicine leverages different types of radiometals for disease diagnosis and treatment, but these applications usually require them to be stably chelated. Given the often-disparate chemical properties of these radionuclides, it is challenging to find a single chelator that binds all of them effectively. Toward addressing this problem, we recently reported a macrocyclic chelator macrodipa with an unprecedented "dual-size-selectivity" pattern for lanthanide (Ln3+) ions, characterized by its high affinity for both the large and the small Ln3+ ( J. Am. Chem. Soc, 2020, 142, 13500). Here, we describe a second-generation "macrodipa-type" ligand, py-macrodipa. Its coordination chemistry with Ln3+ was thoroughly investigated experimentally and computationally. These studies reveal that the Ln3+-py-macrodipa complexes exhibit enhanced thermodynamic and kinetic stabilities compared to Ln3+-macrodipa, while retaining the unusual dual-size selectivity. Nuclear medicine applications of py-macrodipa for chelating radiometals with disparate chemical properties were assessed using the therapeutic 135La3+ and diagnostic 44Sc3+ radiometals representing the two size extremes within the rare-earth series. Radiolabeling and stability studies demonstrate that the rapidly formed complexes of these radionuclides with py-macrodipa are highly stable in human serum. Thus, in contrast to gold standard chelators like DOTA and macropa, py-macrodipa can be harnessed for the simultaneous, efficient binding of radiometals with disparate ionic radii like La3+ and Sc3+, signifying a substantial achievement in nuclear medicine. This concept could enable the facile incorporation of a breadth of medicinally relevant radiometals into chemically identical radiopharmaceutical agents. The fundamental coordination chemistry learned from py-macrodipa provides valuable insight for future chelator development.
Collapse
Affiliation(s)
- Aohan Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Victoria Brown
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kaelyn V Becker
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Life Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Neira S, Guiu‐Souto J, Díaz‐Botana P, Pais P, Fernández C, Pubul V, Ruibal Á, Candela‐Juan C, Gago‐Arias A, Pombar M, Pardo‐Montero J. Quantification of internal dosimetry in PET patients: individualized Monte Carlo vs generic phantom-based calculations. Med Phys 2020; 47:4574-4588. [PMID: 32569389 PMCID: PMC7586975 DOI: 10.1002/mp.14344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The purpose of this work is to calculate individualized dose distributions in patients undergoing 18 F-FDG PET/CT studies through a methodology based on full Monte Carlo (MC) simulations and PET/CT patient images, and to compare such values with those obtained by employing nonindividualized phantom-based methods. METHODS We developed a MC-based methodology for individualized internal dose calculations, which relies on CT images (for organ segmentation and dose deposition), PET images (for organ segmentation and distributions of activities), and a biokinetic model (which works with information provided by PET and CT images) to obtain cumulated activities. The software vGATE version 8.1. was employed to carry out the Monte Carlo calculations. We also calculated deposited doses with nonindividualized phantom-based methods (Cristy-Eckerman, Stabin, and ICRP-133). RESULTS Median MC-calculated dose/activity values are within 0.01-0.03 mGy/MBq for most organs, with higher doses delivered especially to the bladder wall, major vessels, and brain (medians of 0.058, 0.060, 0.066 mGy/MBq, respectively). Comparison with values obtained with nonindividualized phantom-based methods has shown important differences in many cases (ranging from -80% to + 260%). These differences are significant (p < 0.05) for several organs/tissues, namely, remaining tissues, adrenals, bladder wall, bones, upper large intestine, heart, pancreas, skin, and stomach wall. CONCLUSIONS The methodology presented in this work is a viable and useful method to calculate internal dose distributions in patients undergoing medical procedures involving radiopharmaceuticals, individually, with higher accuracy than phantom-based methods, fulfilling the guidelines provided by the European Council directive 2013/59/Euratom.
Collapse
Affiliation(s)
- Sara Neira
- Group of Medical Physics and BiomathematicsInstituto de Investigación Sanitaria de SantiagoTravesía Choupana s/nSantiago de Compostela15706Spain
| | - Jacobo Guiu‐Souto
- Department of Medical PhysicsCentro Oncolóxico de GaliciaC/ Doctor Camilo Beiras 1Coruña15009 ASpain
| | - Pablo Díaz‐Botana
- Group of Medical Physics and BiomathematicsInstituto de Investigación Sanitaria de SantiagoTravesía Choupana s/nSantiago de Compostela15706Spain
- Galician Supercomputation Center (CESGA)Avenida de Vigo s/nSantiago de Compostela15705Spain
| | - Paulino Pais
- Department of Nuclear MedicineCentro Oncolóxico de GaliciaC/ Doctor Camilo Beiras 1Coruña15009 ASpain
| | - Carlos Fernández
- Department of Medical PhysicsCentro Oncolóxico de GaliciaC/ Doctor Camilo Beiras 1Coruña15009 ASpain
| | - Virginia Pubul
- Department of Nuclear MedicineComplexo Hospitalario Universitario de Santiago de CompostelaTravesía Choupana s/nSantiago de Compostela15706Spain
| | - Álvaro Ruibal
- Department of Nuclear MedicineComplexo Hospitalario Universitario de Santiago de CompostelaTravesía Choupana s/nSantiago de Compostela15706Spain
- Group of Molecular Imaging and OncologyInstituto de Investigación Sanitaria de Santiago, Travesía Choupana s/nSantiago de Compostela15706Spain
- Molecular Imaging GroupDepartment of RadiologyFaculty of MedicineUniversidade de Santiago de CompostelaCampus VidaSantiago de Compostela15782Spain
- Fundación TejerinaC/ José Abascal 40Madrid28003Spain
| | - Cristian Candela‐Juan
- Centro Nacional de DosimetríaInstituto Nacional de Gestión SanitariaAv. Campanar 21Valencia46009Spain
| | - Araceli Gago‐Arias
- Group of Medical Physics and BiomathematicsInstituto de Investigación Sanitaria de SantiagoTravesía Choupana s/nSantiago de Compostela15706Spain
- Instituto de FísicaPontificia Universidad Católica de ChileSantiagoChile
| | - Miguel Pombar
- Group of Molecular Imaging and OncologyInstituto de Investigación Sanitaria de Santiago, Travesía Choupana s/nSantiago de Compostela15706Spain
- Department of Medical PhysicsComplexo Hospitalario Universitario de Santiago de CompostelaTravesía da Choupana s/nSantiago de Compostela15706Spain
| | - Juan Pardo‐Montero
- Group of Medical Physics and BiomathematicsInstituto de Investigación Sanitaria de SantiagoTravesía Choupana s/nSantiago de Compostela15706Spain
- Department of Medical PhysicsComplexo Hospitalario Universitario de Santiago de CompostelaTravesía da Choupana s/nSantiago de Compostela15706Spain
| |
Collapse
|
16
|
Czernin J, Sonni I, Razmaria A, Calais J. The Future of Nuclear Medicine as an Independent Specialty. J Nucl Med 2020; 60:3S-12S. [PMID: 31481589 DOI: 10.2967/jnumed.118.220558] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/06/2019] [Indexed: 02/07/2023] Open
Abstract
In this article, we provide an overview of established and emerging conventional nuclear medicine and PET imaging biomarkers, as the diagnostic nuclear medicine portfolio is rapidly expanding. Next, we review briefly nuclear theranostic approaches that have already entered or are about to enter clinical routine. Using some approximations and taking into account emerging applications, we also provide some simplified business forecasts for nuclear theranostics. We argue that an optimistic outlook by the nuclear medicine community is crucial to the growth of the specialty and emphasize the urgent need for training adaptations.
Collapse
Affiliation(s)
- Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Ida Sonni
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Aria Razmaria
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
17
|
Machado JDMF, Doshi S, Smith R, Evans M, Graham RNJ, Redman S, Little D. The Effect of an Asymmetric Energy Window on Bone Scintigraphy Image Quality. J Nucl Med Technol 2019; 48:46-50. [PMID: 31604899 DOI: 10.2967/jnmt.119.233577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/30/2019] [Indexed: 11/16/2022] Open
Abstract
Bone scintigraphy is one of the most common nuclear medicine tests. Previous work investigated the effectiveness of an asymmetric window (ASW) for planar bone scintigraphy using simulation and phantom data. Phantom studies concluded that the ASW improved both the resolution and the contrast-to-noise ratio when imaging objects with high scatter. The aim of this study was to confirm this improvement increased image quality in patients. This study also investigated whether the differences between a symmetric window (SW) and an ASW depended on body mass index. Methods: Fifty-eight patients had 2 scans: a standard scan using an SW of 140 keV ± 10% and a scan using an ASW of 140 keV + 10% and - 7.5%. Three readers independently compared the 2 image sets and scored them using a 5-score scale (ranging from 1 = ASW better [clinically important] to 5 = SW better [clinically important]). Scores from all radiologists were pooled and analyzed statistically. A P value of less than 0.05 was considered statistically significant. Results: In 93 cases (53%), the readers scored the ASW images better than the SW images. In 5 cases (3%), the ASW images were preferred, with the difference considered clinically important; there were no cases in which the SW was similarly preferred. For the sign test, we determined whether the total of 93 scores of 1 or 2 (ASW preferred) was significantly different from the 15 scores of 4 or 5 (SW preferred). The P value was less than 0.00001, demonstrating that the difference was significant. Conclusion: In patients undergoing bone scintigraphy, ASW provided an improvement in image quality that in some cases was judged clinically important.
Collapse
Affiliation(s)
- Joana do Mar F Machado
- Nuclear Medicine Department, Royal United Hospitals Bath, Combe Park, Avon, United Kingdom; and
| | - Susan Doshi
- Nuclear Medicine Department, Royal United Hospitals Bath, Combe Park, Avon, United Kingdom; and
| | - Ruth Smith
- Auckland District Health Board, Auckland City Hospital, Grafton, Auckland, New Zealand
| | - Martyn Evans
- Nuclear Medicine Department, Royal United Hospitals Bath, Combe Park, Avon, United Kingdom; and
| | - Richard N J Graham
- Nuclear Medicine Department, Royal United Hospitals Bath, Combe Park, Avon, United Kingdom; and
| | - Stewart Redman
- Nuclear Medicine Department, Royal United Hospitals Bath, Combe Park, Avon, United Kingdom; and
| | - David Little
- Nuclear Medicine Department, Royal United Hospitals Bath, Combe Park, Avon, United Kingdom; and
| |
Collapse
|
18
|
Hong JU, Kim JH, Lee KH, Lee M, Hyun IY, Cho SG, Kim YJ, Lee HY, Kim GR. Characteristics, trend, and methodological quality of systematic reviews and meta-analyses in nuclear medicine: A bibliometric analysis of studies published between 2005 and 2016. Medicine (Baltimore) 2019; 98:e15785. [PMID: 31124972 PMCID: PMC6571355 DOI: 10.1097/md.0000000000015785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To evaluate the characteristics, trend, and quality of systematic reviews and meta-analyses in nuclear medicine.We performed a PubMed search to identify systematic reviews and meta-analyses published between 2005 and 2016 in the field of nuclear medicine. The following data were extracted: journal name, impact factor, type of study, topics with cancer type, imaging modalities, authors (number, country, affiliation, presence of nuclear medicine specialists and statisticians, discordance between the first and corresponding authors), funding, methodological quality, methods used for quality assessment, and statistical methods.We included 185 nuclear medicine articles. Meta-analyses (n = 164; 88.6%) were published about 7 times more frequently than systematic reviews. Oncology was the most commonly studied topic (n = 125, 67.6%). The first authors were most frequently located in China (n = 73; 39.5%). PET was the most commonly used modality (n = 150; 81.1%). Both the number of authors and the ratio of discordance between the first and corresponding authors tended to progressively increase over time.The mean AMSTAR score increased over time (5.77 in 2005-2008, 6.71 in 2009-2012, and 7.44 in 2013-2016). The proportion of articles with quality assessment increased significantly (20/26 in 2005-2008, 54/65 in 2009-2012, and 79/94 in 2013-2016). The most commonly used assessment tool was quality assessment of diagnostic accuracy studies (n = 85; 54.9%).The number and quality of systematic reviews and meta-analyses in nuclear medicine have significantly increased over the review period; however, the quality of these articles varies. Efforts to overcome specific weaknesses of the methodologies can provide opportunities for quality improvement.
Collapse
Affiliation(s)
| | | | | | - Minkyung Lee
- Department of Nuclear Medicine, Inha University Hospital, Inha University School of Medicine, Jung-gu, Incheon, Korea
| | - In Young Hyun
- Department of Nuclear Medicine, Inha University Hospital, Inha University School of Medicine, Jung-gu, Incheon, Korea
| | | | | | | | | |
Collapse
|
19
|
Onoue K, Nishio M, Yakami M, Aoyama G, Nakagomi K, Iizuka Y, Kubo T, Emoto Y, Akasaka T, Satoh K, Yamamoto H, Isoda H, Togashi K. CT temporal subtraction improves early detection of bone metastases compared to SPECT. Eur Radiol 2019; 29:5673-5681. [PMID: 30888486 DOI: 10.1007/s00330-019-06107-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To compare observer performance of detecting bone metastases between bone scintigraphy, including planar scan and single-photon emission computed tomography, and computed tomography (CT) temporal subtraction (TS). METHODS Data on 60 patients with cancer who had undergone CT (previous and current) and bone scintigraphy were collected. Previous CT images were registered to the current ones by large deformation diffeomorphic metric mapping; the registered previous images were subtracted from the current ones to produce TS. Definitive diagnosis of bone metastases was determined by consensus between two radiologists. Twelve readers independently interpreted the following pairs of examinations: NM-pair, previous and current CTs and bone scintigraphy, and TS-pair, previous and current CTs and TS. The readers assigned likelihood levels to suspected bone metastases for diagnosis. Sensitivity, number of false positives per patient (FPP), and reading time for each pair of examinations were analysed for evaluating observer performance by performing the Wilcoxon signed-rank test. Figure-of-merit (FOM) was calculated using jackknife alternative free-response receiver operating characteristic analysis. RESULTS The sensitivity of TS was significantly higher than that of bone scintigraphy (54.3% vs. 41.3%, p = 0.006). FPP with TS was significantly higher than that with bone scintigraphy (0.189 vs. 0.0722, p = 0.003). FOM of TS tended to be better than that of bone scintigraphy (0.742 vs. 0.691, p = 0.070). CONCLUSION Sensitivity of TS in detecting bone metastasis was significantly higher than that of bone scintigraphy, but still limited to 54%. TS might be superior to bone scintigraphy for early detection of bone metastasis. KEY POINTS • Computed tomography temporal subtraction was helpful in early detection of bone metastases. • Sensitivity for bone metastasis was higher for computed tomography temporal subtraction than for bone scintigraphy. • Figure-of-merit of computed tomography temporal subtraction was better than that of bone scintigraphy.
Collapse
Affiliation(s)
- Koji Onoue
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mizuho Nishio
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. .,Preemptive Medicine and Lifestyle-related Disease Research Center, Kyoto University Hospital, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Masahiro Yakami
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Preemptive Medicine and Lifestyle-related Disease Research Center, Kyoto University Hospital, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Gakuto Aoyama
- Medical Imaging System Development Center, R&D Headquarters, Canon Inc., 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo, 146-8501, Japan
| | - Keita Nakagomi
- Medical Imaging System Development Center, R&D Headquarters, Canon Inc., 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo, 146-8501, Japan
| | - Yoshio Iizuka
- Medical Imaging System Development Center, R&D Headquarters, Canon Inc., 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo, 146-8501, Japan
| | - Takeshi Kubo
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yutaka Emoto
- Kyoto College of Medical Science, 1-3 Imakita, Koyamahigashi-cho, Sonobe-cho, Nantan, Kyoto, 622-0041, Japan
| | - Thai Akasaka
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kiyohide Satoh
- Medical Imaging System Development Center, R&D Headquarters, Canon Inc., 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo, 146-8501, Japan
| | - Hiroyuki Yamamoto
- Medical Imaging System Development Center, R&D Headquarters, Canon Inc., 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo, 146-8501, Japan
| | - Hiroyoshi Isoda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Preemptive Medicine and Lifestyle-related Disease Research Center, Kyoto University Hospital, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
20
|
Current Clinical Practice Patterns of Self-Identified Nuclear Medicine Specialists. AJR Am J Roentgenol 2018; 211:978-985. [PMID: 30085843 DOI: 10.2214/ajr.18.20005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The objective of our study was to study patterns of services rendered by U.S. physicians who self-identify as nuclear medicine (NM) specialists. MATERIALS AND METHODS Recent Medicare physician claims and demographic files were obtained and linked. NM specialists were defined as physicians self-identifying NM as their primary specialty on claims or as any of their specialties during enrollment. Using other self-identified specialties, we classified physicians as nuclear radiologists, nuclear cardiologists, exclusively NM physicians, or Others. Our primary outcome measure was the percentage of NM effort (in work relative value units [WRVUs]) per physician per specialty group. Secondary outcome measures included physician sociodemographic parameters and most common uniquely rendered services. RESULTS Nationally, 1583 physicians self-identified as NM specialists during the calendar years 2012 through 2015. The distribution of WRVUs attributed to NM varied widely by specialty group; most nuclear radiologists and nuclear cardiologists devoted 10% or less of their effort to NM services whereas most NM physicians devoted 90% or more of their effort to NM services. NM specialists were most commonly nuclear radiologists (52.2%) and men (80.3%) and practiced in urban (98.4%) and nonacademic settings (62.9%). NM physicians interpreted more general NM studies, nuclear radiologists interpreted more cross-sectional imaging studies, and nuclear cardiologists interpreted mostly nuclear cardiology studies, with a majority of their overall work attributed to clinical evaluation and management (E/M). E/M services accounted for less than 2% of WRVUs for both nuclear radiologists and NM physicians. CONCLUSION The work patterns of U.S. NM specialists is highly variable. Most NM physicians practice 90% or more NM, whereas most nuclear radiologists and nuclear cardiologists practice 10% or less NM. Commonly performed services vary considerably by specialty group.
Collapse
|
21
|
Raji CA, Henderson TA. PET and Single-Photon Emission Computed Tomography in Brain Concussion. Neuroimaging Clin N Am 2018; 28:67-82. [PMID: 29157854 DOI: 10.1016/j.nic.2017.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article offers an overview of the application of PET and single photon emission computed tomography brain imaging to concussion, a type of mild traumatic brain injury and traumatic brain injury, in general. The article reviews the application of these neuronuclear imaging modalities in cross-sectional and longitudinal studies. Additionally, this article frames the current literature with an overview of the basic physics and radiation exposure risks of each modality.
Collapse
Affiliation(s)
- Cyrus A Raji
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, UCSF China Basin, 185 Berry Street, Suite 350, San Francisco, CA 94158, USA
| | - Theodore A Henderson
- The Synaptic Space Inc, Neuro-Laser Foundation, Neuro-Luminance Brain Health Centers Inc, Dr. Theodore Henderson Inc, 3979 East Arapahoe Road, Suite 200, Centennial, CO 80122, USA.
| |
Collapse
|
22
|
Abstract
This article is based on the New Horizons lecture delivered at the 2016 Radiological Society of North America Annual Meeting. It addresses looming changes for radiology, many of which stem from the disruptive effects of the Fourth Industrial Revolution. This is an emerging era of unprecedented rapid innovation marked by the integration of diverse disciplines and technologies, including data science, machine learning, and artificial intelligence-technologies that narrow the gap between man and machine. Technologic advances and the convergence of life sciences, physical sciences, and bioengineering are creating extraordinary opportunities in diagnostic radiology, image-guided therapy, targeted radionuclide therapy, and radiology informatics, including radiologic image analysis. This article uses the example of oncology to make the case that, if members in the field of radiology continue to be innovative and continuously reinvent themselves, radiology can play an ever-increasing role in both precision medicine and value-driven health care. © RSNA, 2018.
Collapse
Affiliation(s)
- Hedvig Hricak
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| |
Collapse
|
23
|
Prospective of 68Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation. CONTRAST MEDIA & MOLECULAR IMAGING 2018. [PMID: 29531507 PMCID: PMC5817300 DOI: 10.1155/2018/9713691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last decade, the utilization of 68Ga for the development of imaging agents has increased considerably with the leading position in the oncology. The imaging of infection and inflammation is lagging despite strong unmet medical needs. This review presents the potential routes for the development of 68Ga-based agents for the imaging and quantification of infection and inflammation in various diseases and connection of the diagnosis to the treatment for the individualized patient management.
Collapse
|
24
|
Werner RA, Wakabayashi H, Chen X, Hirano M, Shinaji T, Lapa C, Rowe SP, Javadi MS, Higuchi T. Functional Renal Imaging with 2-Deoxy-2-18F-Fluorosorbitol PET in Rat Models of Renal Disorders. J Nucl Med 2017; 59:828-832. [DOI: 10.2967/jnumed.117.203828] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/27/2017] [Indexed: 11/16/2022] Open
|
25
|
Xie JX, Winchester DE, Phillips LM, Hachamovitch R, Berman DS, Blankstein R, Di Carli MF, Miller TD, Al-Mallah MH, Shaw LJ. The elusive role of myocardial perfusion imaging in stable ischemic heart disease: Is ISCHEMIA the answer? J Nucl Cardiol 2017; 24:1610-1618. [PMID: 28752313 DOI: 10.1007/s12350-017-0963-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/11/2017] [Indexed: 01/17/2023]
Abstract
The assessment of ischemia through myocardial perfusion imaging (MPI) is widely accepted as an index step in the diagnostic evaluation of stable ischemic heart disease (SIHD). Numerous observational studies have characterized the prognostic significance of ischemia extent and severity. However, the role of ischemia in directing downstream SIHD care including coronary revascularization has remained elusive as reductions in ischemic burden have not translated to improved clinical outcomes in randomized trials. Importantly, selection bias leading to the inclusion of many low risk patients with minimal ischemia have narrowed the generalizability of prior studies along with other limitations. Accordingly, an ongoing randomized controlled trial entitled ISCHEMIA (International Study of Comparative Health Effectiveness with Medical and Invasive Approaches) will compare an invasive coronary revascularization strategy vs a conservative medical therapy approach among stable patients with moderate to severe ischemia. The results of ISCHEMIA may have a substantial impact on the management of SIHD and better define the role of MPI in current SIHD pathways of care.
Collapse
Affiliation(s)
- Joe X Xie
- Department of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 1462 Clifton Road NE, Room 529, Atlanta, Georgia.
| | - David E Winchester
- Department of Cardiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lawrence M Phillips
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | | | - Daniel S Berman
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ron Blankstein
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marcelo F Di Carli
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Todd D Miller
- Department of Cardiology, Mayo Clinic, Rochester, MN, USA
| | - Mouaz H Al-Mallah
- King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Leslee J Shaw
- Department of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 1462 Clifton Road NE, Room 529, Atlanta, Georgia
| |
Collapse
|
26
|
Abstract
This article summarizes recent advances in PET/MR imaging in gynecologic cancers and the emerging clinical value of PET/MR imaging in the management of the 3 most common gynecologic malignancies: cervical, endometrial, and ovarian cancers. PET/MR imaging offers superior soft tissue contrast, improved assessment of primary tumor involvement because of high-resolution multiplanar reformats, and functional MR techniques such as diffusion-weighted MR imaging and dynamic contrast-enhanced MR imaging. This article discusses the challenges, future directions, and technical advances of PET/MR imaging, and the emerging new multimodality, multiparametric imaging techniques for integrating morphologic, functional, and molecular imaging data.
Collapse
|
27
|
Blaufox MD. PET Measurement of Renal Glomerular Filtration Rate: Is There a Role in Nuclear Medicine? J Nucl Med 2016; 57:1495-1496. [DOI: 10.2967/jnumed.116.174607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 11/16/2022] Open
|
28
|
Reduced acquisition times in whole body bone scintigraphy using a noise-reducing Pixon®-algorithm-a qualitative evaluation study. EJNMMI Res 2015; 5:48. [PMID: 26377427 PMCID: PMC4573178 DOI: 10.1186/s13550-015-0127-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reducing scan-time while maintaining sufficient image quality is a common issue in nuclear medicine diagnostics. This matter can be addressed by different post-processing methods such as Pixon® image processing. The aim of the present study was to evaluate if a commercially available noise-reducing Pixon-algorithm applied on whole body bone scintigraphy acquired with half the standard scan-time could provide the same clinical information as full scan-time non-processed images. METHODS Twenty patients were administered with 500 MBq (99m)Tc-diphosphonate and scanned on a Siemens Symbia T16 system. Each patient was first imaged using a standard clinical protocol and subsequently imaged using a protocol with half the standard scan-time. Half-time images were processed using a commercially available software package, Enhanced Planar Processing, from Siemens. All images were anonymized and visually evaluated with regard to clinically relevant lesion detectability by three experienced nuclear medicine physicians. The result of this evaluation was grouped into four BMI intervals to investigate the performance of the algorithm with regard to different patient size. Also, a comparison study was performed where the physicians compared the standard image and the processed half-time image corresponding to the same patient with regard to lesion detectability, image noise, and artifacts. RESULTS The results showed that 93 % of the processed half-time images and 98 % of the standard images were rated as sufficient or good with regard to lesion detectability. The processed half-time images were predominately considered sufficient (65 %), whereas the majority of the standard images were graded as good (83 %). The performance of the algorithm was unaffected by patient size as the average grading of all half-time processed images was constant independent of patient BMI. The comparison study showed that the standard images were rated superior with regard to lesion detectability, image noise, and artifacts, in 32, 65, and 23 % of the evaluations, respectively. CONCLUSIONS The results indicate that the Pixon Enhanced Planar Processing does not fully compensate for the loss of counts associated with reducing the scan-time in half for whole body bone scintigraphies. The findings showed that implementing the Pixon-algorithm on images acquired with half the acquisition time in overall provide sufficient clinical information regardless of patient size. The half-time processed images were predominantly graded lower in comparison to images acquired with full time protocols, and a less aggressive reduction in scan-time is therefore recommended.
Collapse
|
29
|
Hildebrandt MG, Kodahl AR, Teilmann-Jørgensen D, Mogensen O, Jensen PT. [18F]Fluorodeoxyglucose PET/Computed Tomography in Breast Cancer and Gynecologic Cancers. PET Clin 2015; 10:89-104. [DOI: 10.1016/j.cpet.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
|
31
|
Are Nuclear Medicine Residents Prepared for Employment? A Survey-Informed Perspective. J Am Coll Radiol 2014; 11:221-4. [DOI: 10.1016/j.jacr.2013.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/09/2013] [Indexed: 11/22/2022]
|
32
|
Fahey F, Zukotynski K, Capala J, Knight N. Targeted radionuclide therapy: proceedings of a joint workshop hosted by the National Cancer Institute and the Society of Nuclear Medicine and Molecular Imaging. J Nucl Med 2014; 55:337-48. [PMID: 24396032 DOI: 10.2967/jnumed.113.135178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Frederic Fahey
- Boston Children's Hospital, Boston, Massachusetts, and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
33
|
Velikyan I. Prospective of ⁶⁸Ga-radiopharmaceutical development. Theranostics 2013; 4:47-80. [PMID: 24396515 PMCID: PMC3881227 DOI: 10.7150/thno.7447] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/01/2013] [Indexed: 01/29/2023] Open
Abstract
Positron Emission Tomography (PET) experienced accelerated development and has become an established method for medical research and clinical routine diagnostics on patient individualized basis. Development and availability of new radiopharmaceuticals specific for particular diseases is one of the driving forces of the expansion of clinical PET. The future development of the ⁶⁸Ga-radiopharmaceuticals must be put in the context of several aspects such as role of PET in nuclear medicine, unmet medical needs, identification of new biomarkers, targets and corresponding ligands, production and availability of ⁶⁸Ga, automation of the radiopharmaceutical production, progress of positron emission tomography technologies and image analysis methodologies for improved quantitation accuracy, PET radiopharmaceutical regulations as well as advances in radiopharmaceutical chemistry. The review presents the prospects of the ⁶⁸Ga-based radiopharmaceutical development on the basis of the current status of these aspects as well as wide range and variety of imaging agents.
Collapse
Affiliation(s)
- Irina Velikyan
- 1. Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden
- 2. PET-Centre, Centre for Medical Imaging, Uppsala University Hospital, SE-75185, Uppsala, Sweden
- 3. Department of Radiology, Oncology, and Radiation Science, Uppsala University, SE-75285 Uppsala, Sweden
| |
Collapse
|
34
|
Harolds JA, Guiberteau MJ, Metter DF, Oates ME. Career Prospects for Graduating Nuclear Medicine Residents: Survey of Nuclear Medicine Program Directors. J Am Coll Radiol 2013; 10:593-8. [DOI: 10.1016/j.jacr.2013.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/15/2013] [Indexed: 10/26/2022]
|
35
|
Stochastic online appointment scheduling of multi-step sequential procedures in nuclear medicine. Health Care Manag Sci 2013; 16:281-99. [DOI: 10.1007/s10729-013-9224-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
|
36
|
Delbeke D, Royal HD, Frey KA, Graham MM, Segall GM. SNMMI/ABNM joint position statement on optimizing training in nuclear medicine in the era of hybrid imaging. J Nucl Med 2012; 53:1490-4. [PMID: 22836344 DOI: 10.2967/jnumed.112.110346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dominique Delbeke
- Vanderbilt University Medical Center, Nashville, Tennessee 37232-2675, USA.
| | | | | | | | | |
Collapse
|
37
|
|