1
|
Thirunavukkarasu C, Sharma Y, Tchaikovskaya T, Maslov AY, Gupta S. Transcriptional profiling reveals ataxia telangiectasia mutated pathways regulate joint copper and arsenic toxicity for hepatic metalloplasia and anti-cancer therapies. Life Sci 2022; 305:120787. [PMID: 35809665 DOI: 10.1016/j.lfs.2022.120787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
AIMS Exposures to toxic metals, including arsenic (As), pose health risks but joint effects of physiologically needed metals, e.g., copper (Cu), are ill-defined for regulated metal-dependent cell proliferation (or metalloplasia). This study elucidated hepatic toxicities of As and Cu. MAIN METHODS Human HuH-7 cells were exposed to As and Cu and mRNA profiling obtained for molecular networks, regulators and signaling pathways. This followed biological testing of ATM signaling-related DNA damage response, mitochondrial dysfunction and lysosome activity using HuH-7 cells and primary hepatocytes. Free Cu ions were bound to 3-indole propionic acid for finding their contribution in toxicity. KEY FINDINGS The As or As plus Cu toxicities in HuH-7 cells produced dimorphic down- or up-regulation patterns in mRNA profiles. Significant differences extended for ontologies in protein synthesis, intermediary metabolism, mitochondrial function, autophagy, or cell survival and growth. Bioassays revealed ATM signaling regulated As and Cu toxicity for oxidative phosphorylation, mitochondrial membrane potential, lysosomal activity, DNA damage response, and cell growth-arrest. Removal of reactive Cu ions decreased As and Cu toxicity. Primary hepatocytes withstood Cu and As toxicity better. SIGNIFICANCE This joint As and Cu toxicity offers further mechanisms for metalloplasia, carcinogenesis and tissue damage in other settings, e.g., during excess Cu accumulation in Wilson disease. Moreover, joint As and Cu toxicities are relevant for anti-cancer therapies, potentially including manipulations to increase intracellular Cu through altered uptake or efflux processes and incorporating ATM-related checkpoint inhibitors. Superior tolerance of healthy hepatocytes to Cu and As toxicity should improve safety margins for anti-cancer therapies.
Collapse
Affiliation(s)
- Chinnasamy Thirunavukkarasu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - Yogeshwar Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tatyana Tchaikovskaya
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Laboratory of Applied Genomic Technologies, Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
2
|
Murillo O, Collantes M, Gazquez C, Moreno D, Hernandez-Alcoceba R, Barberia M, Ecay M, Tamarit B, Douar A, Ferrer V, Combal JP, Peñuelas I, Bénichou B, Gonzalez-Aseguinolaza G. High value of 64Cu as a tool to evaluate the restoration of physiological copper excretion after gene therapy in Wilson's disease. Mol Ther Methods Clin Dev 2022; 26:98-106. [PMID: 35795774 PMCID: PMC9234538 DOI: 10.1016/j.omtm.2022.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Wilson’s disease (WD) is an inherited disorder of copper metabolism associated with mutations in ATP7B gene. We have shown that the administration of an adeno-associated vector (AAV) encoding a mini version of human ATP7B (VTX-801) provides long-term correction of copper metabolism in a murine WD model. In preparation of a future clinical trial, we have evaluated by positron emission tomography (PET) the value of 64Cu biodistribution, excretion pattern, and blood kinetics as pharmacodynamic biomarkers of VTX-801 effects. Six-week-old WD mice were injected intravenously with increasing doses of VTX-801 and 3 weeks or 3 months later with [64Cu]CuCl2. Untreated WD and wild-type (WT) mice were included as controls. Control WD mice showed increased hepatic 64Cu retention, reduced fecal excretion of the radiotracer, and altered 64Cu blood kinetics (BK) compared with WT mice. VTX-801 treatment in WD mice resulted in a significant reduction of hepatic 64Cu accumulation, the restoration of fecal 64Cu excretion, and the correction of 64Cu BK. This study showed that VTX-801 restores physiological copper metabolism in WD mice, confirming the mechanism of action of VTX-801, and demonstrated the translational potential of [64Cu]CuCl2-PET to explore VTX-801 pharmacodynamics in a minimally invasive and sensitive manner in WD patients.
Collapse
Affiliation(s)
- Oihana Murillo
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Maria Collantes
- Department of Nuclear Medicine, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain.,Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Cristina Gazquez
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Daniel Moreno
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Miren Barberia
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Margarita Ecay
- Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | | | | | - Ivan Peñuelas
- Department of Nuclear Medicine, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain.,Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain.,Vivet Therapeutics S.L., Pamplona, Spain
| |
Collapse
|
3
|
Firth G, Blower JE, Bartnicka JJ, Mishra A, Michaels AM, Rigby A, Darwesh A, Al-Salemee F, Blower PJ. Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics". RSC Chem Biol 2022; 3:495-518. [PMID: 35656481 PMCID: PMC9092424 DOI: 10.1039/d2cb00033d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Several specific metallic elements must be present in the human body to maintain health and function. Maintaining the correct quantity (from trace to bulk) and location at the cell and tissue level is essential. The study of the biological role of metals has become known as metallomics. While quantities of metals in cells and tissues can be readily measured in biopsy and autopsy samples by destructive analytical techniques, their trafficking and its role in health and disease are poorly understood. Molecular imaging with radionuclides - positron emission tomography (PET) and single photon emission computed tomography (SPECT) - is emerging as a means to non-invasively study the acute trafficking of essential metals between organs, non-invasively and in real time, in health and disease. PET scanners are increasingly widely available in hospitals, and methods for producing radionuclides of some of the key essential metals are developing fast. This review summarises recent developments in radionuclide imaging technology that permit such investigations, describes the radiological and physicochemical properties of key radioisotopes of essential trace metals and useful analogues, and introduces current and potential future applications in preclinical and clinical investigations to study the biology of essential trace metals in health and disease.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aishwarya Mishra
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aidan M Michaels
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Alex Rigby
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Afnan Darwesh
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| |
Collapse
|
4
|
Gutfilen B, Souza SA, Valentini G. Copper-64: a real theranostic agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3235-3245. [PMID: 30323557 PMCID: PMC6173185 DOI: 10.2147/dddt.s170879] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ongoing studies of physiological and pathological processes have led to a corresponding need for new radiopharmaceuticals, especially when studies are limited by the absence of a particular radiolabeled target. Thus, the development of new radioactive tracers is highly relevant and can represent a significant contribution to efforts to elucidate important phenomena in biology. Currently, theranostics represents a new frontier in the fields of medicine and nuclear medicine, with the same compound being used for both diagnosis and treatment. In the human body, copper (Cu) is the third most abundant metal and it plays a crucial role in many biological functions. Correspondingly, in various acquired and inherited pathological conditions, such as cancer and Alzheimer’s disease, alterations in Cu levels have been found. Moreover, a wide spectrum of neurodegenerative disorders are associated with higher or lower levels of Cu, as well as inappropriately bound or distributed levels of Cu in the brain. In human cells, the membrane protein, hCtr1, binds Cu in its Cu(I) oxidation state in an energy-dependent manner. Copper-64 (64Cu) is a cyclotron-produced radionuclide that has exhibited physical properties that are complementary for diagnosis and/or therapeutic purposes. To date, very few reports have described the clinical development of 64Cu as a radiotracer for cancer imaging. In this review, we highlight recent insights in our understanding and use of 64CuCl2 as a theranostic agent for various types of tumors. To the best of our knowledge, no adverse effects or clinically observable pharmacological effects have been described for 64CuCl2 in the literature. Thus, 64Cu represents a revolutionary radiopharmaceutical for positron emission tomography imaging and opens a new era in the theranostic field.
Collapse
Affiliation(s)
- Bianca Gutfilen
- Department of Radiology, School of Medicine, Laboratório de Marcação de Células e Moléculas (LMCM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
| | - Sergio Al Souza
- Department of Radiology, School of Medicine, Laboratório de Marcação de Células e Moléculas (LMCM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
| | | |
Collapse
|
5
|
Członkowska A, Rodo M, Wierzchowska-Ciok A, Smolinski L, Litwin T. Accuracy of the radioactive copper incorporation test in the diagnosis of Wilson disease. Liver Int 2018; 38:1860-1866. [PMID: 29418065 DOI: 10.1111/liv.13715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In Wilson disease (WD), copper accumulates in the liver and other tissues because of mutations in the ATP7B copper transporter gene. Early and effective anticopper treatment is crucial. However, routine diagnostic methods based on clinical findings, copper metabolism tests, liver biopsies and DNA analyses do not always provide a conclusive diagnosis. The aim was to evaluate radioactive copper incorporation as a diagnostic test. METHODS We included cases with a diagnosis of WD supported by radiocopper testing and later, when available, confirmed by DNA analysis. Incorporation of 64 Cu was measured at 2, 24 and 48 hours following intravenous injection. Diagnostic accuracy (area under the receiver operating characteristic curve [AUC]), sensitivity, specificity and predictive value were assessed for 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios and compared with serum measurements of ceruloplasmin, copper, non-ceruloplasmin-bound copper and urinary 24-hours copper excretion. RESULTS Patients having two pathogenic ATP7B mutations (homozygotes/compound heterozygotes) (n = 74) had significantly lower 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios than heterozygote controls (n = 21) (mean 0.14 and 0.12 vs 0.49 and 0.63, respectively; both P < .001). Of note, 24 hours/2 hours and 48 hours/2 hours 64 Cu ratios had excellent diagnostic accuracy, with AUCs approaching 1, and only 24-hours urinary copper excretion displayed similar positive features. Other copper metabolism tests studied had lower accuracy, specificity and sensitivity. CONCLUSIONS The radioactive copper test had excellent diagnostic accuracy and may be useful in the evaluation of new therapies aimed at restoring ATP7B function.
Collapse
Affiliation(s)
- Anna Członkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.,Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
| | - Maria Rodo
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Lukasz Smolinski
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
6
|
Bartnicka JJ, Blower PJ. Insights into Trace Metal Metabolism in Health and Disease from PET: "PET Metallomics". J Nucl Med 2018; 59:1355-1359. [PMID: 29976696 PMCID: PMC6126445 DOI: 10.2967/jnumed.118.212803] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/11/2018] [Indexed: 01/12/2023] Open
Abstract
Essential trace metals such as copper, zinc, iron, and manganese perform critical functions in cellular and physiologic processes including catalytic, regulatory, and signaling roles. Disturbed metal homeostasis is associated with the pathogenesis of diseases such as dementia, cancer, and inherited metabolic abnormalities. Intracellular pathways involving essential metals have been extensively studied but whole-body fluxes and transport between different compartments remain poorly understood. The growing availability of PET scanners and positron-emitting isotopes of key essential metals, particularly 64Cu, 63Zn, and 52Mn, provide new tools with which to study these processes in vivo. This review highlights opportunities that now present themselves, exemplified by studies of copper metabolism that are in the vanguard of a new research front in molecular imaging: "PET metallomics."
Collapse
Affiliation(s)
- Joanna J Bartnicka
- King's College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, London, United Kingdom
| | - Philip J Blower
- King's College London, School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
7
|
Reed E, Lutsenko S, Bandmann O. Animal models of Wilson disease. J Neurochem 2018; 146:356-373. [PMID: 29473169 PMCID: PMC6107386 DOI: 10.1111/jnc.14323] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/04/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism manifesting with hepatic, neurological and psychiatric symptoms. The limitations of the currently available therapy for WD (particularly in the management of neuropsychiatric disease), together with our limited understanding of key aspects of this illness (e.g. neurological vs. hepatic presentation) justify the ongoing need to study WD in suitable animal models. Four animal models of WD have been established: the Long-Evans Cinnamon rat, the toxic-milk mouse, the Atp7b knockout mouse and the Labrador retriever. The existing models of WD all show good similarity to human hepatic WD and have been helpful in developing an improved understanding of the human disease. As mammals, the mouse, rat and canine models also benefit from high homology to the human genome. However, important differences exist between these mammalian models and human disease, particularly the absence of a convincing neurological phenotype. This review will first provide an overview of our current knowledge of the orthologous genes encoding ATP7B and the closely related ATP7A protein in C. elegans, Drosophila and zebrafish (Danio rerio) and then summarise key characteristics of rodent and larger mammalian models of ATP7B-deficiency.
Collapse
Affiliation(s)
- Emily Reed
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| | | | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Baltimore, USA
| |
Collapse
|
8
|
Andreozzi EM, Torres JB, Sunassee K, Dunn J, Walker-Samuel S, Szanda I, Blower PJ. Studies of copper trafficking in a mouse model of Alzheimer's disease by positron emission tomography: comparison of 64Cu acetate and 64CuGTSM. Metallomics 2017; 9:1622-1633. [PMID: 29063080 PMCID: PMC6205627 DOI: 10.1039/c7mt00227k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease can involve brain copper dyshomeostasis. We aimed to determine the effect of AD-like pathology on 64Cu trafficking in mice, using positron emission tomography (PET imaging), during 24 hours after intravenous administration of ionic 64Cu (Cu(ii) acetate) and 64Cu-GTSM (GTSMH2 = glyoxalbis(thiosemicarbazone)). Copper trafficking was evaluated in 6-8-month-old and 13-15 month-old TASTPM transgenic and wild-type mice, by imaging 0-30 min and 24-25 h after intravenous administration of 64Cu tracer. Regional 64Cu distribution in brains was compared by ex vivo autoradiography to that of amyloid-β plaque. 64Cu-acetate showed uptake in, and excretion through, liver and kidneys. There was minimal uptake in other tissues by 30 minutes, and little further change after 24 h. Radioactivity within brain was focussed in and around the ventricles and was significantly greater in younger mice. 64CuGTSM was taken up in all tissues by 30 min, remaining high in brain but clearing substantially from other tissues by 24 h. Distribution in brain was not localised to specific regions. TASTPM mice showed no major changes in global or regional 64Cu brain uptake compared to wildtype after administration of 64Cu acetate (unlike 64Cu-GTSM) but efflux of 64Cu from brain by 24 h was slightly greater in 6-8 month-old TASTPM mice than in wildtype controls. Changes in copper trafficking associated with Alzheimer's-like pathology after administration of ionic 64Cu are minor compared to those observed after administration of 64Cu-GTSM. PET imaging with 64Cu could help understand changes in brain copper dynamics in AD and underpin new clinical diagnostic imaging methods.
Collapse
Affiliation(s)
- Erica M Andreozzi
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| | - Julia Baguña Torres
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| | - Kavitha Sunassee
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| | - Joel Dunn
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| | - Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, UK
| | - Istvan Szanda
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| | - Philip J Blower
- Division of Imaging Sciences, Kings College London, St. Thomas Hospital, London, UK.
| |
Collapse
|
9
|
Jaber FL, Sharma Y, Gupta S. Demonstrating Potential of Cell Therapy for Wilson's Disease with the Long-Evans Cinnamon Rat Model. Methods Mol Biol 2017; 1506:161-178. [PMID: 27830552 DOI: 10.1007/978-1-4939-6506-9_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wilson's disease (WD) is characterized by the inability to excrete copper (Cu) from the body with progressive tissue injury, especially in liver and brain. The molecular defect in WD concerns mutations in ATP7B gene leading to loss of Cu transport from the hepatocyte to the bile canaliculus. While drugs, e.g., Cu chelators, have been available for several decades, these must be taken lifelong, which can be difficult due to issues of compliance or side effects. Many individuals may require liver transplantation, which can also be difficult due to donor organ shortages. Therefore, achieving permanent cures via cell or gene therapy are of great interest for WD. Cell therapy is feasible because transplanted hepatocytes can integrate in liver parenchyma and restore deficient functions, including transport of Cu into bile. The availability of authentic animal models that recapitulate hepatic WD, especially the Long-Evans Cinnamon (LEC) rat, has advanced cell transplantation research in WD. We describe requirements for cell therapy in animal models with several standardized methods for studies to test or refine cell therapy strategies in WD.
Collapse
Affiliation(s)
- Fadi Luc Jaber
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yogeshwar Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanjeev Gupta
- Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Ullmann Building, Room 625, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
10
|
Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: From liver transplantation to cell factory. J Hepatol 2015; 62:S157-69. [PMID: 25920085 DOI: 10.1016/j.jhep.2015.02.040] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023]
Abstract
Work over several decades has laid solid foundations for the advancement of liver cell therapy. To date liver cell therapy in people has taken the form of hepatocyte transplantation for metabolic disorders with a hepatic basis, and for acute or chronic liver failure. Although clinical trials using various types of autologous cells have been implemented to promote liver regeneration or reduce liver fibrosis, clear evidence of therapeutic benefits have so far been lacking. Cell types that have shown efficacy in preclinical models include hepatocytes, liver sinusoidal endothelial cells, mesenchymal stem cells, endothelial progenitor cells, and macrophages. However, positive results in animal models have not always translated through to successful clinical therapies and more realistic preclinical models need to be developed. Studies defining the optimal repopulation by transplanted cells, including routes of cell transplantation, superior engraftment and proliferation of transplanted cells, as well as optimal immunosuppression regimens are required. Tissue engineering approaches to transplant cells in extrahepatic locations have also been proposed. The derivation of hepatocytes from pluripotent or reprogrammed cells raises hope that donor organ and cell shortages could be overcome in the future. Critical hurdles to be overcome include the production of hepatocytes from pluripotent cells with equal functional capacity to primary hepatocytes and long-term phenotypic stability in vivo.
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh EH16 4UU, United Kingdom.
| | - Sanjeev Gupta
- Departments of Medicine and Pathology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Ullmann Building, Room 625, Bronx, NY 10461, United States
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Center and NIHR/Wellcome Cell Therapy Unit, King's College Hospital at King's College, London SE59RS, United Kingdom
| |
Collapse
|
11
|
Bahde R, Kapoor S, Bhargava KK, Palestro CJ, Gupta S. Diagnosis of abnormal biliary copper excretion by positron emission tomography with targeting of (64)Copper-asialofetuin complex in LEC rat model of Wilson's disease. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2014; 4:537-547. [PMID: 25250203 PMCID: PMC4171840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/02/2014] [Indexed: 06/03/2023]
Abstract
Identification by molecular imaging of key processes in handling of transition state metals, such as copper (Cu), will be of considerable clinical value. For instance, the ability to diagnose Wilson's disease with molecular imaging by identifying copper excretion in an ATP7B-dependent manner will be very significant. To develop highly effective diagnostic approaches, we hypothesized that targeting of radiocopper via the asialoglycoprotein receptor will be appropriate for positron emission tomography, and examined this approach in a rat model of Wilson's disease. After complexing (64)Cu to asialofetuin we studied handling of this complex compared with (64)Cu in healthy LEA rats and diseased homozygous LEC rats lacking ATP7B and exhibiting hepatic copper toxicosis. We analyzed radiotracer clearance from blood, organ uptake, and biliary excretion, including sixty minute dynamic positron emission tomography recordings. In LEA rats, (64)Cu-asialofetuin was better cleared from blood followed by liver uptake and greater biliary excretion than (64)Cu. In LEC rats, (64)Cu-asialofetuin activity cleared even more rapidly from blood followed by greater uptake in liver, but neither (64)Cu-asialofetuin nor (64)Cu appeared in bile. Image analysis demonstrated rapid visualization of liver after (64)Cu-asialofetuin administration followed by decreased liver activity in LEA rats while liver activity progressively increased in LEC rats. Image analysis resolved this difference in hepatic activity within one hour. We concluded that (64)Cu-asialofetuin complex was successfully targeted to the liver and radiocopper was then excreted into bile in an ATP7B-dependent manner. Therefore, hepatic targeting of radiocopper will be appropriate for improving molecular diagnosis and for developing drug/cell/gene therapies in Wilson's disease.
Collapse
Affiliation(s)
- Ralf Bahde
- Marion Bessin Liver Research Center, Diabetes Center, Cancer Research Center, Departments of Medicine and Pathology, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, and Institute for Clinical and Translational Research, Albert Einstein College of MedicineBronx, NY, USA
- Department of Surgery, Hospital of The University of MuensterMuenster, Germany
| | - Sorabh Kapoor
- Marion Bessin Liver Research Center, Diabetes Center, Cancer Research Center, Departments of Medicine and Pathology, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, and Institute for Clinical and Translational Research, Albert Einstein College of MedicineBronx, NY, USA
| | - Kuldeep K Bhargava
- Division of Nuclear Medicine and Molecular Imaging, North Shore-Long Island Jewish Health SystemNew Hyde Park, NY, USA
- Hofstra North Shore-LIJ School of MedicineHempstead, NY, USA
| | - Christopher J Palestro
- Division of Nuclear Medicine and Molecular Imaging, North Shore-Long Island Jewish Health SystemNew Hyde Park, NY, USA
- Hofstra North Shore-LIJ School of MedicineHempstead, NY, USA
| | - Sanjeev Gupta
- Marion Bessin Liver Research Center, Diabetes Center, Cancer Research Center, Departments of Medicine and Pathology, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, and Institute for Clinical and Translational Research, Albert Einstein College of MedicineBronx, NY, USA
| |
Collapse
|
12
|
Abstract
To achieve permanent correction of Wilson's disease by a cell therapy approach, replacement of diseased hepatocytes with healthy hepatocytes is desirable. There is a physiological requirement for hepatic ATP7B-dependent copper (Cu) transport in bile, which is deficient in Wilson's disease, producing progressive Cu accumulation in the liver or brain with organ damage. The ability to repopulate the liver with healthy hepatocytes raises the possibility of cell therapy in Wilson's disease. Therapeutic principles included reconstitution of bile canalicular network as well as proliferation in transplanted hepatocytes, despite toxic amounts of Cu in the liver. Nonetheless, cell therapy studies in animal models elicited major differences in the mechanisms driving liver repopulation with transplanted hepatocytes in Wilson's disease versus nondiseased settings. Recently, noninvasive imaging was developed to demonstrate Cu removal from the liver, including after cell therapy in Wilson's disease. Such developments will help advance cell/gene therapy approaches, particularly by offering roadmaps for clinical trials in people with Wilson's disease.
Collapse
Affiliation(s)
- Sanjeev Gupta
- Marion Bessin Liver Research Center, Cancer Research Center, Diabetes Center, Departments of Medicine and Pathology, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
13
|
Peng F. Positron emission tomography for measurement of copper fluxes in live organisms. Ann N Y Acad Sci 2014; 1314:24-31. [PMID: 24628290 DOI: 10.1111/nyas.12383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Copper is an essential nutrient for the physiology of live organisms, but excessive copper can be harmful. Copper radioisotopes are used for measurement of copper fluxes in live organisms using a radioactivity assay of body fluids or whole-body positron emission tomography (PET). Hybrid positron emission tomography-computed tomography (PET/CT) is a versatile tool for real-time measurement of copper fluxes combining the high sensitivity and quantification capability of PET and the superior spatial resolution of CT for anatomic localization of radioactive tracer activity. Kinetic analysis of copper metabolism in the liver and extrahepatic tissues of Atp7b(-/-) knockout mice, a mouse model of Wilson's disease, demonstrated the feasibility of measuring copper fluxes in live organisms with PET/CT using copper-64 chloride ((64) CuCl2 ) as a radioactive tracer ((64) CuCl2 -PET/CT). (64) CuCl2 -PET/CT holds potential as a useful tool for the diagnosis of inherited and acquired human copper metabolism disorders and for monitoring the effects of copper-modulating therapy.
Collapse
Affiliation(s)
- Fangyu Peng
- Department of Radiology and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Hueting R. Radiocopper for the imaging of copper metabolism. J Labelled Comp Radiopharm 2014; 57:231-8. [DOI: 10.1002/jlcr.3155] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Rebekka Hueting
- Division of Imaging Sciences & Biomedical Engineering; King's College London, St. Thomas' Hospital; London UK
- Chemistry Research Laboratory; University of Oxford; Oxford UK
| |
Collapse
|
15
|
Schmitt F, Podevin G, Poupon J, Roux J, Legras P, Trocello JM, Woimant F, Laprévote O, NGuyen TH, Balkhi SE. Evolution of exchangeable copper and relative exchangeable copper through the course of Wilson's disease in the Long Evans Cinnamon rat. PLoS One 2013; 8:e82323. [PMID: 24358170 PMCID: PMC3866119 DOI: 10.1371/journal.pone.0082323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/31/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Wilson's disease (WD) is an inherited disorder of copper metabolism leading to liver failure and/or neurological impairment. Its diagnosis often remains difficult even with genetic testing. Relative exchangeable copper (REC) has recently been described as a reliable serum diagnostic marker for WD. METHODOLOGY/PRINCIPAL FINDINGS The aim of this study was to validate the use of REC in the Long Evans Cinnamon (LEC) rat, an animal model for WD, and to study its relevance under different conditions in comparison with conventional markers. Two groups of LEC rats and one group of Long-Evans (LE) rats were clinically and biologically monitored from 6 to 28 weeks of age. One group of LEC rats was given copper-free food. The other groups had normal food. Blood samples were collected each month and different serum markers for WD (namely ceruloplasmin oxidase activity, exchangeable copper (CuEXC), total serum copper and REC) and acute liver failure (serum transaminases and bilirubinemia) were tested. Every LEC rat under normal food developed acute liver failure (ALF), with 40% global mortality. Serum transaminases and bilirubinemia along with total serum copper and exchangeable copper levels increased with the onset of acute liver failure. A correlation was observed between CuEXC values and the severity of ALF. Cut-off values were different between young and adult rats and evolved because of age and/or liver failure. Only REC, with values >19%, was able to discriminate LEC groups from the LE control group at every time point in the study. REC sensitivity and specificity reached 100% in adults rats. CONCLUSIONS/SIGNIFICANCE REC appears to be independent of demographic or clinical data in LEC rats. It is a very simple and reliable blood test for the diagnosis of copper toxicosis owing to a lack of ATP7B function. CuEXC can be used as an accurate biomarker of copper overload.
Collapse
Affiliation(s)
- Françoise Schmitt
- INSERM UMR1064, Jean Monnet Hospital, Nantes, France
- HIFIH - Pediatric Hepatogastroenterology Team, University Hospital of Angers, Angers, France
| | - Guillaume Podevin
- HIFIH - Pediatric Hepatogastroenterology Team, University Hospital of Angers, Angers, France
| | - Joël Poupon
- Laboratory of Biological Toxicology, Lariboisière Hospital, APHP, Paris, France
| | - Jérôme Roux
- SCAHU, Animal Facility, Medicine University of Angers, Angers, France
| | - Pierre Legras
- SCAHU, Animal Facility, Medicine University of Angers, Angers, France
| | - Jean-Marc Trocello
- Department of Neurology, Lariboisière Hospital, APHP, Paris, France
- Centre national de Maladie Rare Wilson, Lariboisière Hospital, APHP, Paris, France
| | - France Woimant
- Department of Neurology, Lariboisière Hospital, APHP, Paris, France
- Centre national de Maladie Rare Wilson, Lariboisière Hospital, APHP, Paris, France
| | - Olivier Laprévote
- Laboratory of Biological Toxicology, Lariboisière Hospital, APHP, Paris, France
- Analytical and Experimental Toxicology (C-TAC), Faculty of Pharmacy, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Souleiman El Balkhi
- Laboratory of Biological Toxicology, Lariboisière Hospital, APHP, Paris, France
- Centre national de Maladie Rare Wilson, Lariboisière Hospital, APHP, Paris, France
- INSERM U1144, Variability of the Response to Psychotropic Drugs, Paris Descartes University, Sorbonne Paris Cité, Faculty of Pharmacy, Paris, France
| |
Collapse
|