1
|
Dahdal J, Jukema RA, Harms HJ, Cramer MJ, Raijmakers PG, Knaapen P, Danad I. PET myocardial perfusion imaging: Trends, challenges, and opportunities. J Nucl Cardiol 2024; 40:102011. [PMID: 39067504 DOI: 10.1016/j.nuclcard.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Various non-invasive images are used in clinical practice for the diagnosis and prognostication of chronic coronary syndromes. Notably, quantitative myocardial perfusion imaging (MPI) through positron emission tomography (PET) has seen significant technical advancements and a substantial increase in its use over the past two decades. This progress has generated an unprecedented wealth of clinical information, which, when properly applied, can diagnose and fine-tune the management of patients with different types of ischemic syndromes. This state-of-art review focuses on quantitative PET MPI, its integration into clinical practice, and how it holds up at the eyes of modern cardiac imaging and revascularization clinical trials, along with future perspectives.
Collapse
Affiliation(s)
- Jorge Dahdal
- Departments of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Cardiology, Hospital Del Salvador, Santiago, Chile
| | - Ruurt A Jukema
- Departments of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Maarten J Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pieter G Raijmakers
- Radiology, Nuclear Medicine & PET Research, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul Knaapen
- Departments of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ibrahim Danad
- Departments of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Jia Y, Hu Y, Yang L, Diao X, Li Y, Wang Y, Wang R, Cao J, Li S. Prognostic value of transient ischemic dilatation by 13N-ammonia PET MPI for short-term outcomes in patients with non-obstructive CAD. Ann Nucl Med 2024:10.1007/s12149-024-01976-8. [PMID: 39251470 DOI: 10.1007/s12149-024-01976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVE Transient ischaemic dilatation (TID) had incremental diagnostic and prognostic value in obstructive coronary artery disease (CAD), but its clinical significance in patients with non-obstructive CAD remains unknown. We aimed to explore the prognostic value of TID in patients with non-obstructive CAD by 13N-ammonia PET imaging. METHODS We retrospectively studied 131 consecutive patients with non-obstructive CAD undergoing one-day rest-stress 13N-ammonia PET myocardial perfusion imaging (MPI). TID was automatically generated using CardIQ Physio software. The receiver operative characteristic (ROC) curve was used to determine the optimal threshold of TID. The follow-up outcome was major adverse cardiac events (MACE), a composite of re-hospitalization for heart failure or unstable angina, late revascularization, non-fatal myocardial infarction, and cardiac death. Cardiac event-free survivals for normal and abnormal TID were compared using Kaplan-Meier plots and log-rank tests. RESULTS During a median follow-up of 42.08 ± 17.67 months, 22 (16.7%) patients occurred MACE. The optimal cut-off value of TID was 1.03 based on MACE. Our preliminary outcome analysis suggests that TID-abnormal subjects had a lower overall survival probability. Furthermore, our multivariate analysis reveals abnormal TID was the only independent predictor for MACE in non-obstructive CAD. In the subgroup analysis, an abnormal TID was an independent predictor for MACE in patients with abnormal perfusion patterns. CONCLUSION Among patients with non-obstructive CAD, PET-derived TID ≥ 1.03 may identify those with a high risk of subsequent MACE independently. It was also an independent risk factor for poor prognosis in patients with abnormal perfusion.
Collapse
Affiliation(s)
- Yanni Jia
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingqi Hu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lihong Yang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xin Diao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuanyuan Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhui Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruonan Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianbo Cao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Renaud JM, Al-Mallah MH, Soman P, deKemp RA, Beanlands RSB, Arumugam P, Armstrong IS, Prior JO, Madamanchi C, Goonewardena S, Poitrasson-Rivière A, Moody JB, Ficaro EP, Murthy VL. How to differentiate obstructive from non-obstructive CAD: Developments in High-Resolution Regional Quantification of MBF and MFR. J Nucl Cardiol 2024:102023. [PMID: 39179097 DOI: 10.1016/j.nuclcard.2024.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Affiliation(s)
| | | | - Prem Soman
- Division of Cardiology and the Heart and Vascular Institute, University of Pittsburgh Medical Center
| | - Robert A deKemp
- National Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa Ontario, Canada
| | - Rob S B Beanlands
- National Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa Ontario, Canada
| | - Parthiban Arumugam
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Ian S Armstrong
- Nuclear Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - John O Prior
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland; University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Chaitanya Madamanchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Sascha Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; VA Ann Arbor Health System, Ann Arbor, MI
| | | | | | | | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
4
|
Yamamoto A, Nagao M, Kawakubo M, Nakao R, Matsuo Y, Sakai A, Kaneko K, Fukushima K, Momose M, Sakai S, Yamaguchi J. Risk Stratification Using Right Ventricular Longitudinal Strain Ratio Derived from 13N-Ammonia PET in Patients with Ischemic Heart Disease. Radiol Cardiothorac Imaging 2024; 6:e230298. [PMID: 38814185 PMCID: PMC11211937 DOI: 10.1148/ryct.230298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Purpose To investigate whether right ventricular (RV) myocardial strain ratio (RVMSR) assessed using nitrogen 13 ammonia (13N-NH3) PET can predict cardiovascular events in patients with ischemic heart disease (IHD). Materials and Methods This retrospective study included 480 consecutive patients (mean age, 66 years ± 12 [SD]; 334 males and 146 females) with IHD who underwent 13N-NH3 PET. RVMSR was defined as the ratio of RV strain during stress to that at rest. The primary end point was major adverse cardiac events (MACEs), defined as cardiac death or heart failure hospitalization. The ability of RVMSR to predict MACE was assessed using receiver operating characteristic (ROC) curve and Kaplan-Meier analyses. Cox proportional hazards regression analysis was used to calculate hazard ratios (HRs) with 95% CIs. Results ROC curve analysis identified a sensitivity and specificity of 84% and 82%, respectively, for predicting MACE from RVMSR. Patients with reduced RVMSR (<110.2) displayed a significantly higher rate of MACE than those with a preserved RVMSR (34 of 240 vs four of 240; P < .001). Cox proportional hazards regression analysis of imaging parameters, including myocardial flow reserve, indicated that RVMSR was an independent predictor of MACE (HR, 0.94 [95% CI: 0.92, 0.97]; P < .001). Conclusion RVMSR was an independent predictor of MACE and has potential to aid in the risk stratification of patients with IHD. Keywords: Right Ventricular Myocardial Strain Ratio, Myocardial Flow Reserve, Ischemic Heart Disease, 13N-Ammonia Positron Emission Tomography Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Atsushi Yamamoto
- From the Department of Cardiology (A.Y., R.N., A.S., J.Y.) and
Department of Diagnostic Imaging and Nuclear Medicine (A.Y., M.N., Y.M., K.K.,
M.M., S.S.), Tokyo Women's Medical University, 8-1 Kawada-cho,
Shinjuku-ku, Tokyo, Japan 162-8666; Department of Health Sciences, Faculty of
Medical Sciences, Kyushu University, Fukuoka, Japan (M.K.); and Department of
Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
(K.F.)
| | - Michinobu Nagao
- From the Department of Cardiology (A.Y., R.N., A.S., J.Y.) and
Department of Diagnostic Imaging and Nuclear Medicine (A.Y., M.N., Y.M., K.K.,
M.M., S.S.), Tokyo Women's Medical University, 8-1 Kawada-cho,
Shinjuku-ku, Tokyo, Japan 162-8666; Department of Health Sciences, Faculty of
Medical Sciences, Kyushu University, Fukuoka, Japan (M.K.); and Department of
Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
(K.F.)
| | - Masateru Kawakubo
- From the Department of Cardiology (A.Y., R.N., A.S., J.Y.) and
Department of Diagnostic Imaging and Nuclear Medicine (A.Y., M.N., Y.M., K.K.,
M.M., S.S.), Tokyo Women's Medical University, 8-1 Kawada-cho,
Shinjuku-ku, Tokyo, Japan 162-8666; Department of Health Sciences, Faculty of
Medical Sciences, Kyushu University, Fukuoka, Japan (M.K.); and Department of
Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
(K.F.)
| | - Risako Nakao
- From the Department of Cardiology (A.Y., R.N., A.S., J.Y.) and
Department of Diagnostic Imaging and Nuclear Medicine (A.Y., M.N., Y.M., K.K.,
M.M., S.S.), Tokyo Women's Medical University, 8-1 Kawada-cho,
Shinjuku-ku, Tokyo, Japan 162-8666; Department of Health Sciences, Faculty of
Medical Sciences, Kyushu University, Fukuoka, Japan (M.K.); and Department of
Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
(K.F.)
| | - Yuka Matsuo
- From the Department of Cardiology (A.Y., R.N., A.S., J.Y.) and
Department of Diagnostic Imaging and Nuclear Medicine (A.Y., M.N., Y.M., K.K.,
M.M., S.S.), Tokyo Women's Medical University, 8-1 Kawada-cho,
Shinjuku-ku, Tokyo, Japan 162-8666; Department of Health Sciences, Faculty of
Medical Sciences, Kyushu University, Fukuoka, Japan (M.K.); and Department of
Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
(K.F.)
| | - Akiko Sakai
- From the Department of Cardiology (A.Y., R.N., A.S., J.Y.) and
Department of Diagnostic Imaging and Nuclear Medicine (A.Y., M.N., Y.M., K.K.,
M.M., S.S.), Tokyo Women's Medical University, 8-1 Kawada-cho,
Shinjuku-ku, Tokyo, Japan 162-8666; Department of Health Sciences, Faculty of
Medical Sciences, Kyushu University, Fukuoka, Japan (M.K.); and Department of
Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
(K.F.)
| | - Koichiro Kaneko
- From the Department of Cardiology (A.Y., R.N., A.S., J.Y.) and
Department of Diagnostic Imaging and Nuclear Medicine (A.Y., M.N., Y.M., K.K.,
M.M., S.S.), Tokyo Women's Medical University, 8-1 Kawada-cho,
Shinjuku-ku, Tokyo, Japan 162-8666; Department of Health Sciences, Faculty of
Medical Sciences, Kyushu University, Fukuoka, Japan (M.K.); and Department of
Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
(K.F.)
| | - Kenji Fukushima
- From the Department of Cardiology (A.Y., R.N., A.S., J.Y.) and
Department of Diagnostic Imaging and Nuclear Medicine (A.Y., M.N., Y.M., K.K.,
M.M., S.S.), Tokyo Women's Medical University, 8-1 Kawada-cho,
Shinjuku-ku, Tokyo, Japan 162-8666; Department of Health Sciences, Faculty of
Medical Sciences, Kyushu University, Fukuoka, Japan (M.K.); and Department of
Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
(K.F.)
| | - Mitsuru Momose
- From the Department of Cardiology (A.Y., R.N., A.S., J.Y.) and
Department of Diagnostic Imaging and Nuclear Medicine (A.Y., M.N., Y.M., K.K.,
M.M., S.S.), Tokyo Women's Medical University, 8-1 Kawada-cho,
Shinjuku-ku, Tokyo, Japan 162-8666; Department of Health Sciences, Faculty of
Medical Sciences, Kyushu University, Fukuoka, Japan (M.K.); and Department of
Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
(K.F.)
| | - Shuji Sakai
- From the Department of Cardiology (A.Y., R.N., A.S., J.Y.) and
Department of Diagnostic Imaging and Nuclear Medicine (A.Y., M.N., Y.M., K.K.,
M.M., S.S.), Tokyo Women's Medical University, 8-1 Kawada-cho,
Shinjuku-ku, Tokyo, Japan 162-8666; Department of Health Sciences, Faculty of
Medical Sciences, Kyushu University, Fukuoka, Japan (M.K.); and Department of
Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
(K.F.)
| | - Junichi Yamaguchi
- From the Department of Cardiology (A.Y., R.N., A.S., J.Y.) and
Department of Diagnostic Imaging and Nuclear Medicine (A.Y., M.N., Y.M., K.K.,
M.M., S.S.), Tokyo Women's Medical University, 8-1 Kawada-cho,
Shinjuku-ku, Tokyo, Japan 162-8666; Department of Health Sciences, Faculty of
Medical Sciences, Kyushu University, Fukuoka, Japan (M.K.); and Department of
Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
(K.F.)
| |
Collapse
|
5
|
Valenta I, Schindler TH. PET-determined myocardial perfusion and flow in coronary artery disease characterization. J Med Imaging Radiat Sci 2024; 55:S44-S50. [PMID: 38403519 DOI: 10.1016/j.jmir.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Positron emission tomography (PET) myocardial perfusion imaging in conjunction with tracer-kinetic modeling enables the concurrent assessment of myocardial perfusion and regional myocardial blood flow (MBF) of the left ventricle in absolute terms in milliliters per gram per minute (mL/g/min). The non-invasive quantification of MBF during pharmacologically induced hyperemia, at rest, and corresponding myocardial flow reserve (MFR) opens a new avenue for the identification and characterization of classical or endogen type of coronary microvascular dysfunction (CMD) as functional substrate for microvascular angina in patients with non-obstructive coronary artery disease (CAD) and/or no CAD at all. Further, PET-MBF quantification expands the scope of conventional myocardial perfusion imaging from the identification of advanced, and flow-limiting, epicardial CAD to early stages of atherosclerosis and/or CMD. Adding MBF assessment to myocardial perfusion may also reliably unravel diffuse ischemia owing to significant left main stenosis and/or multivessel CAD, commonly confirmed by peak stress transient ischemic cavity dilation of the left ventricle during maximal vasomotor stress compared to rest on gated PET images. Owing to high spatial and contrast resolution in conjunction with photon-attenuation free myocardial perfusion PET images, PET is preferentially used for CAD detection in advanced obesity and women with pronounced breast habitus. With increasing clinical use of cardiac PET perfusion and MBF assessment, individualized, and image-guided cardiovascular treatment decisions in CAD patients is likely to ensue, while its translation into improved cardiovascular outcome remains to be investigated.
Collapse
Affiliation(s)
- Ines Valenta
- Washington University in St. Louis School of Medicine, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, St. Louis, MO, USA
| | - Thomas H Schindler
- Washington University in St. Louis School of Medicine, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Kawakubo M, Nagao M, Kaimoto Y, Nakao R, Yamamoto A, Kawasaki H, Iwaguchi T, Matsuo Y, Kaneko K, Sakai A, Sakai S. Deep learning approach using SPECT-to-PET translation for attenuation correction in CT-less myocardial perfusion SPECT imaging. Ann Nucl Med 2024; 38:199-209. [PMID: 38151588 PMCID: PMC10884131 DOI: 10.1007/s12149-023-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Deep learning approaches have attracted attention for improving the scoring accuracy in computed tomography-less single photon emission computed tomography (SPECT). In this study, we proposed a novel deep learning approach referring to positron emission tomography (PET). The aims of this study were to analyze the agreement of representative voxel values and perfusion scores of SPECT-to-PET translation model-generated SPECT (SPECTSPT) against PET in 17 segments according to the American Heart Association (AHA). METHODS This retrospective study evaluated the patient-to-patient stress, resting SPECT, and PET datasets of 71 patients. The SPECTSPT generation model was trained (stress: 979 image pairs, rest: 987 image pairs) and validated (stress: 421 image pairs, rest: 425 image pairs) using 31 cases of SPECT and PET image pairs using an image-to-image translation network. Forty of 71 cases of left ventricular base-to-apex short-axis images were translated to SPECTSPT in the stress and resting state (stress: 1830 images, rest: 1856 images). Representative voxel values of SPECT and SPECTSPT in the 17 AHA segments against PET were compared. The stress, resting, and difference scores of 40 cases of SPECT and SPECTSPT were also compared in each of the 17 segments. RESULTS For AHA 17-segment-wise analysis, stressed SPECT but not SPECTSPT voxel values showed significant error from PET at basal anterior regions (segments #1, #6), and at mid inferoseptal regions (segments #8, #9, and #10). SPECT, but not SPECTSPT, voxel values at resting state showed significant error at basal anterior regions (segments #1, #2, and #6), and at mid inferior regions (segments #8, #9, and #11). Significant SPECT overscoring was observed against PET in basal-to-apical inferior regions (segments #4, #10, and #15) during stress. No significant overscoring was observed in SPECTSPT at stress, and only moderate over and underscoring in the basal inferior region (segment #4) was found in the resting and difference states. CONCLUSIONS Our PET-supervised deep learning model is a new approach to correct well-known inferior wall attenuation in SPECT myocardial perfusion imaging. As standalone SPECT systems are used worldwide, the SPECTSPT generation model may be applied as a low-cost and practical clinical tool that provides powerful auxiliary information for the diagnosis of myocardial blood flow.
Collapse
Affiliation(s)
- Masateru Kawakubo
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| | - Yoko Kaimoto
- Department of Radiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Risako Nakao
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Kawasaki
- Department of Advanced Information Technology, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Takafumi Iwaguchi
- Department of Advanced Information Technology, Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Yuka Matsuo
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Koichiro Kaneko
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Akiko Sakai
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shuji Sakai
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| |
Collapse
|
7
|
Akil S, Székely AE, Hedeer F, Olsson B, Engblom H, Hindorf C. Influence of different time framings, reconstruction algorithms and post-processing methods on the quantification of myocardial blood flow from 13 N-NH 3 PET images. Clin Physiol Funct Imaging 2024; 44:154-163. [PMID: 37881129 DOI: 10.1111/cpf.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/28/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND The aim was to investigate to what extent the quantification of myocardial blood flow (MBF) from dynamic 13 N-NH3 positron emission tomography (PET) images is affected by time frame schemes, time-of-flight (ToF), reconstruction algorithms, blood pool volume of interest (VOI) locations and compartment models in patients with suspected chronic coronary syndrome. METHODS A standard MBF value was determined from 25 patients' rest/stress 13 N-NH3 PET/CT images reconstructed with ordered subset expectation maximization (OSEM), 5 s time frame for the first frames without ToF, subsequently analyzed using a basal VOI and the deGrado compartment model. MBFs calculated using 2 or 10 s for the first frames, ToF, block-sequential regularized expectation maximization (BSREM), apical or large VOI, Hutchins or Krivokapich compartment models were compared to MBFstandard in Bland-Altman plots (bias ± SD). RESULTS Good agreement in global rest/stress MBF (mL/min/g) was found when changing the time frame scheme or reconstruction algorithm (MBFstandard vs. MBF2s : -0.02 ± 0.06; MBF10s : 0.01 ± 0.07; MBFBSREM : 0.01 ± 0.07), while a lower level of agreement was found when altering the other factors (MBFstandard vs. MBFToF : -0.07 ± 0.10; MBFapical VOI : -0.27 ± 0.25; MBFlarge VOI : -0.11 ± 0.10; MBFHutchins : -0.08 ± 0.10; MBFKrivokapich : -0.47 ± 0.50). CONCLUSIONS Quantification of MBF from 13 N-NH3 PET images is more affected by choice of compartment models, ToF and blood pool VOIs than by different time frame schemes and reconstruction algorithms.
Collapse
Affiliation(s)
- Shahnaz Akil
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna E Székely
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Fredrik Hedeer
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Berit Olsson
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Henrik Engblom
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Cecilia Hindorf
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Sakai A, Nagao M, Yamamoto A, Nakao R, Arashi H, Momose M, Sato K, Yamaguchi J. 13N-ammonia positron emission tomography for diagnosis and monitoring of ischemia without obstructive coronary artery disease. Int J Cardiol 2024; 395:131392. [PMID: 37748522 DOI: 10.1016/j.ijcard.2023.131392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Ischemia with no obstructive coronary arteries (INOCA), a chronic disorder with a poor prognosis, remains challenging to diagnose. 13N-ammonia positron emission tomography (13NH3 PET), which can quantify microcirculation, is its most reliable detection method. We aimed to investigate the differences in 13NH3 PET findings between INOCA and coronary artery disease (CAD). METHODS Overall, consecutive 433 patients with known or suspected CAD underwent adenosine-stress 13NH3 PET. Based on the European Society of Cardiology guidelines, INOCA was defined as typical angina without coronary stenosis (INOCA n = 45, CAD n = 293, no CAD n = 95). Papillary muscle ischemia (PMI) and global myocardial flow reserve (MFR) were examined as microvascular injuries using 13NH3 PET. RESULTS PMI was observed significantly more frequently in patients with INOCA than in those with CAD (40.0% vs. 11.6%, respectively; p = 0.02). Global MFR (1.84 ± 0.54 vs. 2.08 ± 0.66, respectively; p < 0.0001) and reactive hyperemia index were significantly lower in patients with INOCA than in those with CAD. Forty-five major adverse cardiac events (MACE) were recorded in a median follow-up time of 827 days. Kaplan-Meier analysis revealed that the survival rate worsened in patients with INOCA and PMI (log-rank test, p = 0.001). In the Cox proportional hazards model, PMI was an independent predictive factor for MACE (odds ratio, 4.16; 95% confidence interval, 2.13-8.15; p < 0.0001). CONCLUSIONS PMI presence and decreased MFR were 13NH3 PET findings characteristic of INOCA. 13NH3 PET can be used to monitor the treatment course.
Collapse
Affiliation(s)
- Akiko Sakai
- Department of Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjyuku-ku, Tokyo 162-8666, Japan.
| | - Michinobu Nagao
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjyuku-ku, Tokyo 162-8666, Japan
| | - Atsushi Yamamoto
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjyuku-ku, Tokyo 162-8666, Japan
| | - Risako Nakao
- Department of Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjyuku-ku, Tokyo 162-8666, Japan
| | - Hiroyuki Arashi
- Department of Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjyuku-ku, Tokyo 162-8666, Japan
| | - Mitsuru Momose
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjyuku-ku, Tokyo 162-8666, Japan
| | - Kayoko Sato
- Department of Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjyuku-ku, Tokyo 162-8666, Japan
| | - Junichi Yamaguchi
- Department of Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjyuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
9
|
Székely A, Steding-Ehrenborg K, Ryd D, Hedeer F, Valind K, Akil S, Hindorf C, Hedström E, Erlinge D, Arheden H, Engblom H. Quantitative myocardial perfusion should be interpreted in the light of sex and comorbidities in patients with suspected chronic coronary syndrome: A cardiac positron emission tomography study. Clin Physiol Funct Imaging 2024; 44:89-99. [PMID: 37642142 DOI: 10.1111/cpf.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Diagnosis and treatment of patients with suspected chronic coronary syndrome (CCS) currently relies on the degree of coronary artery stenosis and its significance for myocardial perfusion. However, myocardial perfusion can be affected by factors other than coronary stenosis. The aim of this study was to investigate to what extent sex, age, diabetes, hypertension and smoking affect quantitative myocardial perfusion, beyond the degree of coronary artery stenosis, in patients with suspected or established CCS. Eighty-six patients [median age 69 (range 46-86) years, 24 females] planned for elective coronary angiography due to suspected or established CCS were included. All patients underwent cardiac 13 N-NH3 positron emission tomography to quantify myocardial perfusion at rest and stress. Lowest myocardial perfusion (perfusionmin ) at stress and rest and lowest myocardial perfusion reserve (MPRmin ) for all vessel territories was used as dependent variables in a linear mixed model. Independent variables were vessel territory, degree of coronary artery stenosis (as a continuous variable of 0%-100% stenosis), sex, age, diabetes, hypertension and smoking habits. Degree of coronary artery stenosis (p < 0.001), male sex (1.8 ± 0.6 vs. 2.3 ± 0.6 mL/min/g, p < 0.001), increasing age (p = 0.025), diabetes (1.6 ± 0.5 vs. 2.0 ± 0.6 mL/min/g, p = 0.023) and smoking (1.9 ± 0.6 vs. 2.1 ± 0.6 mL/min/g, p = 0.052) were independently associated with myocardial perfusionmin at stress. Degree of coronary artery stenosis (p < 0.001), age (p = 0.040), diabetes (1.8 ± 0.6 vs. 2.3 ± 0.7, p = 0.046) and hypertension (2.2 ± 0.7 vs. 2.5 ± 0.6, p = 0.033) were independently associated with MPRmin . Sex, increasing age, diabetes, hypertension and smoking affect myocardial perfusion independent of coronary artery stenosis in patients with suspected or established CCS. Thus, these factors need to be considered when assessing the significance of reduced quantitative myocardial perfusion of patients with suspected or established CCS.
Collapse
Affiliation(s)
- Anna Székely
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Katarina Steding-Ehrenborg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Fredrik Hedeer
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Kristian Valind
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Shahnaz Akil
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Cecilia Hindorf
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - David Erlinge
- Cardiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Henrik Engblom
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
10
|
Renaud JM, Poitrasson-Rivière A, Moody JB, Hagio T, Ficaro EP, Murthy VL. Improved diagnostic accuracy for coronary artery disease detection with quantitative 3D 82Rb PET myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2023; 51:147-158. [PMID: 37721579 DOI: 10.1007/s00259-023-06414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE To establish requirements for normal databases for quantitative rubidium-82 (82Rb) PET MPI analysis with contemporary 3D PET/CT technology and reconstruction methods for maximizing diagnostic accuracy of total perfusion deficit (TPD), a combined metric of defect extent and severity, versus invasive coronary angiography. METHODS In total, 1571 patients with 82Rb PET/CT MPI on a 3D scanner and stress static images reconstructed with and without time-of-flight (TOF) modeling were identified. An additional eighty low pre-test probability of disease (PTP) patients reported as normal were used to form separate sex-stratified and sex-independent iterative and TOF normal databases. 3D normal databases were applied to matched patient reconstructions to quantify TPD. Per-patient and per-vessel performance of 3D versus 2D PET normal databases was assessed with receiver operator characteristic curve analysis. Diagnostic accuracy was evaluated at optimal thresholds established from PTP patients. Results were compared against logistic regression modeling of TPD adjusted for clinical variables, and standard clinical interpretation. RESULTS TPD diagnostic accuracy was significantly higher using 3D PET normal databases (per-patient: 80.1% for 3D databases, versus 74.9% and 77.7% for 2D database applied to iterative and TOF images respectively, p < 0.05). Differences in male and female normal distributions for 3D attenuation-corrected reconstructions were not clinically meaningful; therefore, sex-independent databases were used. Logistic regression modeling including TPD demonstrated improved performance over clinical reads. CONCLUSIONS Normal databases tailored to 3D PET images provide significantly improved diagnostic accuracy for PET MPI evaluation with automated quantitative TPD. Clinical application of these techniques should be considered to support accurate image interpretation.
Collapse
Affiliation(s)
- Jennifer M Renaud
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA.
| | | | - Jonathan B Moody
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Tomoe Hagio
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Edward P Ficaro
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Nishijima S, Nagao M, Yamamoto A, Ichihara Y, Niinami H. Coronary artery bypass grafting transiently improves myocardial flow reserve in patients with impaired left ventricular function. Int J Cardiol 2023; 390:131231. [PMID: 37536422 DOI: 10.1016/j.ijcard.2023.131231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Myocardial flow reserve (MFR) derived from 13N-ammonia positron emission tomography is an index used to evaluate ischemic cardiomyopathy and predict the prognosis of patients with coronary artery disease (CAD). This study aimed to evaluate the short-term changes in MFR in patients who underwent coronary artery bypass grafting (CABG). In addition, as a reference, we showed the changes in MFR in the percutaneous coronary intervention (PCI) and optimal medical therapy (OMT) patient groups. METHODS To determine the short-term effects of CABG in CAD with left ventricular dysfunction, myocardial blood flow (MBF) and MFR were measured before and after CABG. Additionally, we showed changes in MBF and MFR of the PCI and OMT patient groups during treatment. RESULTS We observed that resting MBF did not significantly increase from baseline to post-CABG (0.84 ± 0.32 vs. 0.83 ± 0.23, P = 0.958); however, stress MBF increased significantly from baseline to post-CABG (1.23 ± 0.64 vs. 1.49 ± 0.42, P < 0.001). The global MFR increased significantly from baseline to post-CABG (1.49 ± 0.42 mL/g/min vs. 1.91 ± 0.51 mL/g/min, P < 0.001). Additionally, stress and resting ejection fraction (EF) significantly increased (stress EF: 42 ± 18.7% vs. 50.9 ± 18%, P = 0.005; resting EF: 45.8 ± 19.5% vs. 52.1 ± 19.4%, P = 0.031). CONCLUSIONS This study demonstrated that CABG significantly improved MFR in a short period of time with left ventricular dysfunction. These findings suggest that epicardial coronary artery patency restores myocardial microcirculatory dysfunction in the short term.
Collapse
Affiliation(s)
- Shuhei Nishijima
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan.
| | - Michinobu Nagao
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Yamamoto
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuki Ichihara
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Niinami
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
12
|
Kumar S, Bhaskaran A. Old Habits Die Hard: Is Coronary Assessment in Ventricular Tachycardia Storm Still Necessary? JACC Clin Electrophysiol 2023; 9:1900-1902. [PMID: 37542485 DOI: 10.1016/j.jacep.2023.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 08/07/2023]
Affiliation(s)
- Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia; Westmead Applied Research Centre, University of Sydney, New South Wales, Australia.
| | - Ashwin Bhaskaran
- Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia; Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Van Tosh A, Nichols KJ. SPECT measurements of myocardial blood flow and flow reserve: from development to implementation. J Nucl Cardiol 2023; 30:1437-1442. [PMID: 37160851 DOI: 10.1007/s12350-023-03273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Affiliation(s)
- Andrew Van Tosh
- Research Department, St. Francis Hospital, 100 Port Washington Blvd., Roslyn, NY, 11576-1348, USA.
| | - Kenneth J Nichols
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
14
|
Degtiarova G, Garefa C, Boehm R, Ciancone D, Sepulcri D, Gebhard C, Giannopoulos AA, Pazhenkottil AP, Kaufmann PA, Buechel RR. Radiomics for the detection of diffusely impaired myocardial perfusion: A proof-of-concept study using 13N-ammonia positron emission tomography. J Nucl Cardiol 2023; 30:1474-1483. [PMID: 36600174 PMCID: PMC10371953 DOI: 10.1007/s12350-022-03179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023]
Abstract
AIM The current proof-of-concept study investigates the value of radiomic features from normal 13N-ammonia positron emission tomography (PET) myocardial retention images to identify patients with reduced global myocardial flow reserve (MFR). METHODS Data from 100 patients with normal retention 13N-ammonia PET scans were divided into two groups, according to global MFR (i.e., < 2 and ≥ 2), as derived from quantitative PET analysis. We extracted radiomic features from retention images at each of five different gray-level (GL) discretization (8, 16, 32, 64, and 128 bins). Outcome independent and dependent feature selection and subsequent univariate and multivariate analyses was performed to identify image features predicting reduced global MFR. RESULTS A total of 475 radiomic features were extracted per patient. Outcome independent and dependent feature selection resulted in a remainder of 35 features. Discretization at 16 bins (GL16) yielded the highest number of significant predictors of reduced MFR and was chosen for the final analysis. GLRLM_GLNU was the most robust parameter and at a cut-off of 948 yielded an accuracy, sensitivity, specificity, negative and positive predictive value of 67%, 74%, 58%, 64%, and 69%, respectively, to detect diffusely impaired myocardial perfusion. CONCLUSION A single radiomic feature (GLRLM_GLNU) extracted from visually normal 13N-ammonia PET retention images independently predicts reduced global MFR with moderate accuracy. This concept could potentially be applied to other myocardial perfusion imaging modalities based purely on relative distribution patterns to allow for better detection of diffuse disease.
Collapse
Affiliation(s)
- Ganna Degtiarova
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Chrysoula Garefa
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Reto Boehm
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Domenico Ciancone
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Daniel Sepulcri
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Andreas A. Giannopoulos
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Aju P. Pazhenkottil
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Philipp A. Kaufmann
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| | - Ronny R. Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University and University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
15
|
Sohn JH, Behr SC, Hernandez PM, Seo Y. Quantitative Assessment of Myocardial Ischemia With Positron Emission Tomography. J Thorac Imaging 2023; 38:247-259. [PMID: 33492046 PMCID: PMC8295411 DOI: 10.1097/rti.0000000000000579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent advances in positron emission tomography (PET) technology and reconstruction techniques have now made quantitative assessment using cardiac PET readily available in most cardiac PET imaging centers. Multiple PET myocardial perfusion imaging (MPI) radiopharmaceuticals are available for quantitative examination of myocardial ischemia, with each having distinct convenience and accuracy profile. Important properties of these radiopharmaceuticals ( 15 O-water, 13 N-ammonia, 82 Rb, 11 C-acetate, and 18 F-flurpiridaz) including radionuclide half-life, mean positron range in tissue, and the relationship between kinetic parameters and myocardial blood flow (MBF) are presented. Absolute quantification of MBF requires PET MPI to be performed with protocols that allow the generation of dynamic multiframes of reconstructed data. Using a tissue compartment model, the rate constant that governs the rate of PET MPI radiopharmaceutical extraction from the blood plasma to myocardial tissue is calculated. Then, this rate constant ( K1 ) is converted to MBF using an established extraction formula for each radiopharmaceutical. As most of the modern PET scanners acquire the data only in list mode, techniques of processing the list-mode data into dynamic multiframes are also reviewed. Finally, the impact of modern PET technologies such as PET/CT, PET/MR, total-body PET, machine learning/deep learning on comprehensive and quantitative assessment of myocardial ischemia is briefly described in this review.
Collapse
Affiliation(s)
- Jae Ho Sohn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Spencer C. Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | | | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, CA
- UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA
| |
Collapse
|
16
|
Alonso Martinez LM, Naim N, Saiz AH, Simard JM, Boudjemeline M, Juneau D, DaSilva JN. A Reliable Production System of Large Quantities of [ 13N]Ammonia for Multiple Human Injections. Molecules 2023; 28:molecules28114517. [PMID: 37298995 DOI: 10.3390/molecules28114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
[13N]Ammonia is one of the most commonly used Positron Emission Tomography (PET) radiotracers in humans to assess myocardial perfusion and measure myocardial blood flow. Here, we report a reliable semi-automated process to manufacture large quantities of [13N]ammonia in high purity by proton-irradiation of a 10 mM aqueous ethanol solution using an in-target process under aseptic conditions. Our simplified production system is based on two syringe driver units and an in-line anion-exchange purification for up to three consecutive productions of ~30 GBq (~800 mCi) (radiochemical yield = 69 ± 3% n.d.c) per day. The total manufacturing time, including purification, sterile filtration, reformulation, and quality control (QC) analyses performed before batch release, is approximately 11 min from the End of Bombardment (EOB). The drug product complies with FDA/USP specifications and is supplied in a multidose vial allowing for two doses per patient, two patients per batch (4 doses/batch) on two separate PET scanners simultaneously. After four years of use, this production system has proved to be easy to operate and maintain at low costs. Over the last four years, more than 1000 patients have been imaged using this simplified procedure, demonstrating its reliability for the routine production of large quantities of current Good Manufacturing Practices (cGMP)-compliant [13N]ammonia for human use.
Collapse
Affiliation(s)
- Luis Michel Alonso Martinez
- Radiochemistry and Cyclotron Platform, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montréal, QC H2X 0A9, Canada
| | - Nabil Naim
- Radiochemistry and Cyclotron Platform, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montréal, QC H2X 0A9, Canada
| | - Alejandro Hernandez Saiz
- Radiochemistry and Cyclotron Platform, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montréal, QC H2X 0A9, Canada
| | - José-Mathieu Simard
- Radiochemistry and Cyclotron Platform, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montréal, QC H2X 0A9, Canada
- Radiopharmaceutical Science Laboratory, CHU de Québec, 2250 Boul. Henri-Bourassa, Québec, QC G1J 5B3, Canada
| | - Mehdi Boudjemeline
- Radiochemistry and Cyclotron Platform, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montréal, QC H2X 0A9, Canada
- Radiopharmaceutical Science Laboratory, CHU de Québec, 2250 Boul. Henri-Bourassa, Québec, QC G1J 5B3, Canada
| | - Daniel Juneau
- Radiochemistry and Cyclotron Platform, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montréal, QC H2X 0A9, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, UdeM, Pavillon Roger-Gaudry S-716, 2900 Boul. Édouard Montpetit, Montréal, QC H3C 3J7, Canada
| | - Jean N DaSilva
- Radiochemistry and Cyclotron Platform, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Rue Saint Denis, Montréal, QC H2X 0A9, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, UdeM, Pavillon Roger-Gaudry S-716, 2900 Boul. Édouard Montpetit, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
17
|
Zhang H, Caobelli F, Che W, Huang Y, Zhang Y, Fan X, Hu X, Xu C, Fei M, Zhang J, Lv Z, Shi K, Yu F. The prognostic value of CZT SPECT myocardial blood flow (MBF) quantification in patients with ischemia and no obstructive coronary artery disease (INOCA): a pilot study. Eur J Nucl Med Mol Imaging 2023; 50:1940-1953. [PMID: 36786817 PMCID: PMC10199834 DOI: 10.1007/s00259-023-06125-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/22/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Despite the demonstrated adverse outcome, it is difficult to early identify the risks for patients with ischemia and no obstructive coronary artery disease (INOCA). We aimed to explore the prognostic potential of CZT SPECT in INOCA patients. METHODS The study population consisted of a retrospective cohort of 118 INOCA patients, all of whom underwent CZT SPECT imaging and invasive coronary angiography (ICA). Dynamic data were reconstructed, and MBF was quantified using net retention model. Major adverse cardiovascular events (MACEs) were defined as cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, heart failure, late coronary revascularization, or hospitalization for unstable angina. RESULTS During a median follow-up of 15 months (interquartile range (IQR) 11-20), 19 (16.1%) MACEs occurred; both stress myocardial blood flow (sMBF) ([Formula: see text]) and coronary flow reserve (CFR) ([Formula: see text]) were significantly lower in the MACE group. Optimal thresholds of sMBF<3.16 and CFR<2.52 were extracted from the ROC curves, and both impaired sMBF (HR: 15.08; 95% CI 2.95-77.07; [Formula: see text]) and CFR (HR: 6.51; 95% CI 1.43-29.65; [Formula: see text]) were identified as prognostic factors for MACEs. Only sMBF<3.16 (HR: 11.20; 95% CI 2.04-61.41; [Formula: see text]) remained a robust predictor when sMBF and CFR were integrated considered. Compared with CFR, sMBF provides better prognostic model discrimination and reclassification ability (C-index improvement = 0.06, [Formula: see text]; net reclassification improvement (NRI) = 0.19; integrated discrimination improvement (IDI) = 0.10). CONCLUSION The preliminary results demonstrated that quantitative analysis on CZT SPECT provides prognostic value for INOCA patients, which may allow the stratification for early prevention and intervention.
Collapse
Affiliation(s)
- Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Huang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xueping Hu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chong Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Mengyu Fei
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Computer Aided Medical Procedures and Augmented Reality, Institute of Informatics I16, Technical University of Munich, Munich, Germany.
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
18
|
Wang L, Zheng Y, Zhang J, Wang M, Wu D, Wang Y, Qiu H, Hsu B, Fang W. Diagnostic value of quantitative myocardial blood flow assessment by NaI(Tl) SPECT in detecting significant stenosis: a prospective, multi-center study. J Nucl Cardiol 2023; 30:769-780. [PMID: 35971031 DOI: 10.1007/s12350-022-03085-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVES The aim of this prospective multi-center study was to investigate the diagnostic value of myocardial blood flow (MBF) quantification using NaI(Tl)-based single-photon emission computed tomography (SPECT) for determining coronary artery disease (CAD) defined by quantitative coronary angiography (QCA). BACKGROUND Absolute quantitation of MBF and myocardial flow reserve (MFR) using SPECT is clinically feasible; however, whether flow quantification using NaI(Tl) SPECT is superior to commonly performed SPECT myocardial perfusion imaging (MPI) in determining CAD has not been evaluated. METHODS Patients with suspected or known CAD underwent pharmacological stress/rest dynamic SPECT imaging and routine SPECT MPI followed by QCA. Obstructive disease was defined as ≥ 50% reduction in luminal diameter on QCA. RESULTS One hundred fifty-four patients (462 vessels) were included in the analysis. Obstructive CAD was detected in 76/154 patients (49.4%) and 112/462 vessels (24.2%). Optimal cut-off values were 1.86 mL/min/g for stress MBF and 1.95 for MFR, respectively. Stress MBF and MFR were more sensitive than MPI in both individual patients (stress MBF vs MPI: 81.6% vs 51.3%; MFR vs MPI: 72.4% vs 51.3%) and in coronary vascular regions (stress MBF vs MPI: 78.6% vs 31.3%; MFR vs MPI: 75.9% vs 31.3%; all P < .01). In receiver operating characteristic curve analysis, quantification revealed a significantly greater area under the curve than MPI at the patient (stress MBF vs MPI: 0.761 vs 0.641; MFR vs MPI: 0.770 vs 0.641) and the vessel (stress MBF vs MPI: 0.745 vs 0.613; MFR vs MPI: 0.756 vs 0.613; all P < .05) levels. Integrating quantitative SPECT measures with MPI significantly increased the area under the curve and improved the discriminatory and reclassification capacity. CONCLUSION Flow quantification using NaI(Tl) SPECT provides superior sensitivity and discriminatory capacity to MPI in detecting significant stenosis. Clinical trial registration NCT03637725.
Collapse
Affiliation(s)
- Lei Wang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Yumin Zheng
- Department of Nuclear Medicine, China-Japan Friendship Hospital, National Center for Respiratory Diseases, Beijing, China
| | - Jie Zhang
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Wang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Dayong Wu
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Yawen Wang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Hong Qiu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Bailing Hsu
- Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MO, USA
| | - Wei Fang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China.
| |
Collapse
|
19
|
One-stop patient-specific myocardial blood flow quantification technique based on allometric scaling law. J Biomech 2023; 151:111513. [PMID: 36868983 DOI: 10.1016/j.jbiomech.2023.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Establishing a patient-specific and non-invasive technique to derive blood flow as well as coronary structural information from one single cardiac CT imaging modality. 336 patients with chest pain or ST segment depression on electrocardiogram were retrospectively enrolled. All patients underwent adenosine-stressed dynamic CT myocardial perfusion imaging (CT-MPI) and coronary computed tomography angiography (CCTA) in sequence. Relationship between myocardial mass (M) and blood flow (Q), defined as log(Q) = b · log(M) + log(Q0), was explored based on the general allometric scaling law. We used 267 patients to obtain the regression results and found strong linear relationship between M (gram) and Q (mL/min) (b = 0.786, log(Q0) = 0.546, r = 0.704; p < 0.001). We Also found this correlation was applicable for patients with either normal or abnormal myocardial perfusion (p < 0.001). Datasets from the other 69 patients were used to validate this M-Q correlation and found the patient-specific blood flow could be accurately estimated from CCTA compared to that measured from CT-MPI (146.480 ± 39.607 vs 137.967 ± 36.227, r = 0.816, and 146.480 ± 39.607 vs 137.967 ± 36.227, r = 0.817, for the left ventricle region and LAD-subtended region, respectively, all unit in mL/min). In conclusion, we established a technique to provide general and patient-specific myocardial mass-blood flow correlation obeyed to allometric scaling law. Blood flow information could be directly derived from structural information acquired from CCTA.
Collapse
|
20
|
Yousefi H, Shi L, Soufer A, Tsatkin V, Bruni W, Avendano R, Greco K, McMahon D, Thorn S, Miller E, Sinusas A, Liu C. Quantification of intramyocardial blood volume using 99mTc-RBC SPECT/CT: a pilot human study. J Nucl Cardiol 2023; 30:292-297. [PMID: 36319815 DOI: 10.1007/s12350-022-03123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Quantification of intramyocardial blood volume (IMBV), the fraction of myocardium that is occupied by blood, is a promising Index to measure microcirculatory functions. In previous large animal SPECT/CT studies injected with 99mTc-labeled Red Blood Cell (RBC) and validated by ex vivo microCT, we have demonstrated that accurate IMBV can be measured. In this study, we report the data processing methods and results of the first-in-human pilot study. METHODS Data from three subjects have been included to date. Each subject underwent rest and adenosine-induced stress 99mTc-RBC SPECT/CT on a dedicated cardiac system with both non-contrast and contrast-enhanced CT acquired. Corrections of attenuation (AC) and scatter (SC), respiratory and cardiac gating, and partial volume correction (PVC) were applied. We also performed automatic segmentation and registration approach based on the blood pool topology in both SPECT and CT images. RESULTS The quantified IMBV across all subjects under resting conditions were 35.0% ± 3.3% for the end-diastolic phase and 24.1% ± 2.7% for the end-systolic phase. The cycle-dependent change in IMBV (ΔIMBV) between diastolic and systolic phases was 31.5% ± 3.0%. Under stress, IMBV were 40.6% ± 4.2% for the end-diastolic phase and 26.5% ± 2.8% for the end-systolic phase, and ΔIMBV was 34.7% ± 7.4%. CONCLUSIONS It is feasible to quantify IMBV in resting and stress conditions in human studies using SPECT/CT with 99mTc-RBC.
Collapse
Affiliation(s)
- Hamed Yousefi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Luyao Shi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Aaron Soufer
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Vera Tsatkin
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Wendy Bruni
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Ricardo Avendano
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Kathleen Greco
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Donna McMahon
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Stephanie Thorn
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Edward Miller
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Albert Sinusas
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Internal Medicine (Cardiology), Yale University, New Haven, CT, USA
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
Gimelli A, Lakshmanan S, Della Tommasina V, Liga R. What Is New in Risk Assessment in Nuclear Cardiology? Cardiol Clin 2023; 41:197-205. [PMID: 37003677 DOI: 10.1016/j.ccl.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Nuclear cardiology techniques allow in-depth evaluation of cardiac patients. A body of literature has established the use of nuclear cardiology. The results obtained with traditional cameras have been reinforced by those obtained with a series of innovations that have revolutionized the field of nuclear cardiology. This article highlights the role of nuclear cardiology in the risk assessment of patients with cardiac disease and sheds light on advancements of nuclear imaging techniques in the cardiovascular field. Patient risk stratification has a key role in modern precision medicine. Nuclear cardiac imaging techniques may quantitatively investigate major disease mechanisms of different cardiac pathologies.
Collapse
|
22
|
Prediction of cardiovascular events using myocardial strain ratio derived from 13N-ammonia positron emission tomography. Eur Radiol 2022; 33:3889-3896. [PMID: 36562782 DOI: 10.1007/s00330-022-09359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Myocardial flow reserve (MFR), derived from ammonia N-13 positron emission tomography (NH3-PET), can predict the prognosis of patients with various heart diseases. We aimed to investigate whether myocardial strain ratio (MSR) was useful in predicting MACE and allowed for further risk stratification of cardiovascular events in patients with ischemic heart disease (IHD) in addition to MFR. METHODS Ninety-five patients underwent NH3-PET because of IHD. MFR was determined as the ratio of hyperemic to resting myocardial blood flow (MBF). MSR was defined as the ratio of strains at stress and rest. The endpoint was major adverse cardiac events (MACE), including all-cause death, acute coronary syndrome, heart failure hospitalization, and revascularization. The ability to predict MACE was assessed using receiver operating characteristic (ROC) analysis, and the predictability of ME was analyzed using Kaplan-Meier analysis. The Cox proportional hazards regression model was used to calculate the hazard ratio (HR) with 95% confidence interval (CI). RESULTS The ROC curve analysis demonstrated a cutoff of 0.93 for MACE with MSR (sensitivity and specificity of 77% and 71%, respectively). Patients with MSR < 0.93 displayed a significantly higher MACE rate than those with MSR ≥ 0.93 (p = 0.0036). The Cox proportional hazards regression analysis indicated that MSR was an independent marker that could predict MACE in imaging and clinical parameters (HR, 7.32; 95% CI: 1.59-33.7, p = 0.011). CONCLUSIONS MSR was an independent predictor of MACE and was useful for further risk stratification in IHD. MSR has the potential for a new indicator of revascularization in patients with IHD. KEY POINTS • We hypothesized that combining myocardial flow reserve (MFR) with the myocardial strain ratio (MSR) obtained by applying the feature-tracking technique to ammonia N-13 PET would make it predictive of major adverse cardiac events (MACE) compared to MFR alone. • MSR was an independent predictor of MACE, allowing for further risk stratification in addition to MFR in patients with ischemic heart disease. • MSR is a potential new indicator of revascularization.
Collapse
|
23
|
Improving Detection of CAD and Prognosis with PET/CT Quantitative Absolute Myocardial Blood Flow Measurements. Curr Cardiol Rep 2022; 24:1855-1864. [PMID: 36348147 DOI: 10.1007/s11886-022-01805-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an overview of the role of PET MPI in the detection of CAD, focussing on the added value of MBF for diagnosis and prognostication. RECENT FINDINGS Positron emission tomography (PET) myocardial perfusion imaging (MPI) is increasingly used for the risk stratification of patients with suspected or established coronary artery disease (CAD). PET MPI provides accurate and reproducible non-invasive quantification of myocardial blood flow (MBF) at rest and during hyperemia, providing incremental information over conventional myocardial perfusion alone. Inclusion of MBF in PET MPI interpretation improves both its sensitivity and specificity. Moreover, quantitative MBF measurements have repeatedly been shown to offer incremental and independent prognostic information over conventional clinical markers in a broad range of conditions, including in CAD. Quantitative MBF measurement is now an established and powerful tool enabling accurate risk stratification and guiding patients' management. The role of PET MPI and flow quantification in cardiac allograft vasculopathy (CAV), which represents a particular form of CAD, will also be reviewed.
Collapse
|
24
|
Zavadovsky KV, Mochula AV, Maltseva AN, Shipulin VV, Sazonova SI, Gulya MO, Liga R, Gimelli A. The current status of CZT SPECT myocardial blood flow and reserve assessment: Tips and tricks. J Nucl Cardiol 2022; 29:3137-3151. [PMID: 33939162 DOI: 10.1007/s12350-021-02620-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023]
Abstract
Cardiac PET-derived measurements of myocardial blood flow (MBF) and myocardial flow reserve (MFR) are proven robust indexes of the severity of coronary artery disease (CAD). They facilitate the diagnosis of diffuse epicardial and microvascular disease and are also of prognostic significance. However, low availability and high cost have limited their wide clinical implementation. Over the last 15 years, cadmium zinc telluride (CZT)-based detectors have been implemented into SPECT imaging devices. Myocardial perfusion scintigraphy can be performed faster and with less radiation exposure as compared with standard gamma cameras. Rapid dynamic SPECT studies with higher count rates can be performed. This technological breakthrough has renewed the interest in SPECT MBF assessment in patients with CAD. Currently, two cardiac-centered CZT gamma cameras are available commercially-Discovery NM530c and D-SPECT. They differ in parameters such as collimator design, number of detectors, sensitivity, spatial resolution and image reconstruction. A number of publications have focused on the feasibility of dynamic CZT SPECT and on the correlation with cardiac PET and invasive coronary angiography measurements of fractional flow reserve. Current study reviews the present status of MBF and MFR assessment with CZT SPECT. It also aims to provide an overview of specific issues related to acquisition, processing and interpretation of quantitative studies in patients with CAD.
Collapse
Affiliation(s)
- Konstantin V Zavadovsky
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia.
- Siberian State Medical University, Tomsk, Russia.
| | - Andrew V Mochula
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Alina N Maltseva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Vladimir V Shipulin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Svetlana I Sazonova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Marina O Gulya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | | | | |
Collapse
|
25
|
Packard RRS, Votaw JR, Cooke CD, Van Train KF, Garcia EV, Maddahi J. 18F-flurpiridaz positron emission tomography segmental and territory myocardial blood flow metrics: incremental value beyond perfusion for coronary artery disease categorization. Eur Heart J Cardiovasc Imaging 2022; 23:1636-1644. [PMID: 34928321 PMCID: PMC9671402 DOI: 10.1093/ehjci/jeab267] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS We determined the feasibility and diagnostic performance of segmental 18F-flurpiridaz myocardial blood flow (MBF) measurement by positron emission tomography (PET) compared with the standard territory method, and assessed whether flow metrics provide incremental diagnostic value beyond relative perfusion quantitation (PQ). METHODS AND RESULTS All evaluable pharmacological stress patients from the Phase III trial of 18F-flurpiridaz were included (n = 245) and blinded flow metrics obtained. For each coronary territory, the segmental flow metric was defined as the lowest 17-segment stress MBF (SMBF), myocardial flow reserve (MFR), or relative flow reserve (RFR) value. Diagnostic performances of segmental and territory MBF metrics were compared by receiver operating characteristic (ROC) areas under the curve (AUC). A multiple logistic model was used to evaluate whether flow metrics provided incremental diagnostic value beyond PQ alone. The diagnostic performances of segmental flow metrics were higher than their territory counterparts; SMBF AUC = 0.761 vs. 0.737; MFR AUC = 0.699 vs. 0.676; and RFR AUC = 0.716 vs. 0.635, respectively (P < 0.001 for all). Similar results were obtained for per-vessel coronary artery disease (CAD) ≥70% stenosis categorization and per-patient analyses. Combinatorial analyses revealed that only SMBF significantly improved the diagnostic performance of PQ in CAD ≥50% stenoses, with PQ AUC = 0.730, PQ + segmental SMBF AUC = 0.782 (P < 0.01), and PQ + territory SMBF AUC = 0.771 (P < 0.05). No flow metric improved diagnostic performance when combined with PQ in CAD ≥70% stenoses. CONCLUSION Assessment of segmental MBF metrics with 18F-flurpiridaz is feasible and improves flow-based epicardial CAD detection. When combined with PQ, only SMBF provides additive diagnostic performance in moderate CAD.
Collapse
Affiliation(s)
- René R Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, 10833 Le Conte Ave., CHS Building Room 17-054A, Los Angeles, CA 90095, USA
- Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Los Angeles, CA 90095, USA
- Veterans Affairs West Los Angeles Medical Center, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | - John R Votaw
- Department of Radiology and Imaging Sciences, Emory University Hospital, Emory University School of Medicine, 1364 E Clifton Rd NE, Atlanta, GA 30322, USA
| | - C David Cooke
- Department of Radiology and Imaging Sciences, Emory University Hospital, Emory University School of Medicine, 1364 E Clifton Rd NE, Atlanta, GA 30322, USA
- Syntermed, Inc., 333 Sandy Springs Circle NE, Suite 107. Atlanta, GA 30328, USA
| | - Kenneth F Van Train
- Syntermed, Inc., 333 Sandy Springs Circle NE, Suite 107. Atlanta, GA 30328, USA
| | - Ernest V Garcia
- Department of Radiology and Imaging Sciences, Emory University Hospital, Emory University School of Medicine, 1364 E Clifton Rd NE, Atlanta, GA 30322, USA
| | - Jamshid Maddahi
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, 10833 Le Conte Ave., CHS Building Room 17-054A, Los Angeles, CA 90095, USA
- Nuclear Medicine Clinic, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, 200 Medical Plaza Driveway Suite B114, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
D'Antonio A, Assante R, Zampella E, Acampa W. High technology by CZT cameras: It is time to join forces. J Nucl Cardiol 2022; 29:2322-2324. [PMID: 34426936 DOI: 10.1007/s12350-021-02777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy.
| |
Collapse
|
27
|
Grozdic Milojevic I, Kozarevic N, Sobic-Saranovic D. Novel nuclear medical procedures in the detection of microvascular dysfunction. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1143-1150. [PMID: 36218212 DOI: 10.1002/jcu.23322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
Coronary microvascular dysfunction is present in two-thirds of patients showing symptoms and signs of myocardial ischemia. Their microcirculation has abnormalities due to endothelial and smooth muscle cell dysfunction. Impairment of this mechanism causes a high risk of adverse cardiovascular event. Diagnosing coronary microvascular dysfunction is challenging. Guidelines recommend the use of nuclear medicine procedures in the above-mentioned indications. Myocardial perfusion imaging with positron emission tomography is a novel procedure with high diagnostic accuracy and quality of images. It has short acquisition, low effective radiation dose and prognostic factors. There are still unknowns about this procedure and all its benefits.
Collapse
Affiliation(s)
- Isidora Grozdic Milojevic
- Center for Nuclear Medicine, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nebojsa Kozarevic
- Center for Nuclear Medicine, University Clinical Center of Serbia, Belgrade, Serbia
| | - Dragana Sobic-Saranovic
- Center for Nuclear Medicine, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Liu FS, Wang SY, Shiau YC, Wu YW. Integration of quantitative absolute myocardial blood flow estimates from dynamic CZT-SPECT improves the detection of coronary artery disease. J Nucl Cardiol 2022; 29:2311-2321. [PMID: 34240342 DOI: 10.1007/s12350-021-02713-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Balanced ischemia with multi-vessel coronary artery disease (CAD) is difficult to diagnose with semiquantitative single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Dynamic cardiac SPECT provides quantitative estimations of stenosis severity and ischemic burden by assessing myocardial flow reserve (MFR) and myocardial blood flow (MBF). The aim of this study was to evaluate the incremental value of dynamic SPECT in multi-vessel coronary artery disease (CAD). METHODS Patients with suspected CAD who underwent dynamic ECG-gated dipyridamole MPI and coronary angiography within 6 months were retrospectively reviewed. The performance of summed stress, rest and difference scores (SSS, SRS, SDS), post-stress and resting MBF (MBFs, MBFr) and MFR were compared at both patient level and vessel level. RESULTS In 32 patients with 39 stenotic vessels, 12 had three-vessel disease (38%). Globally increased SSS and impaired MBF values were significantly associated with significant CAD at the patient level, but SDS and MFR were not. Regional increases in SSS and reductions in both MBFs and MBFr were significantly associated with stenotic vessels. The best cutoff value of global MBFs to predict CAD was 3.5 ml·g-1·min-1 (area under the curve, AUC = .84, P = .002). The best cutoff value of regional MBFs to detect significant stenosis was 3.6 ml·g-1·min-1 (AUC = .74, P < .001). However, the best possible cut-off values of MFR were not found. Sex-difference in both global and regional MBFr but MBFs was found, which might result in the non-significance in MFR. CONCLUSIONS This study validated a clinically available method to quantify MFR using dynamic CZT-SPECT. This method improved the detectability of multi-vessel CAD, and absolute MBFs was superior to MFR and other semiquantitative MPI parameters.
Collapse
Affiliation(s)
- Fang-Shin Liu
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, 220, Taiwan
- Department of Nuclear Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi County, Taiwan
| | - Shan-Ying Wang
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, 220, Taiwan
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Yu-Chien Shiau
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, 220, Taiwan
| | - Yen-Wen Wu
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City, 220, Taiwan.
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- National Yang-Ming University School of Medicine, Taipei City, Taiwan.
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City, Taiwan.
| |
Collapse
|
29
|
Kawakubo M, Nagao M, Yamamoto A, Nakao R, Matsuo Y, Fukushim K, Watanabe E, Sakai A, Sasaki M, Sakai S. 13N-ammonia positron emission tomography-derived endocardial strain for the assessment of ischemia using feature-tracking in high-resolution cine imaging. J Nucl Cardiol 2022; 29:2103-2114. [PMID: 34117615 DOI: 10.1007/s12350-021-02677-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Assessing endocardial strain using a single 13N-ammonia positron emission tomography (PET) scan would be clinically useful, given the association between ischemia and myocardial deformation. However, no software has been developed for strain analysis using PET. We evaluated the clinical potential of feature tracking-derived strain values measured using PET, based on associations with the myocardial flow reserve (MFR). METHODS AND RESULTS This retrospective study included 95 coronary artery disease patients who underwent myocardial 13N-ammonia PET. Semi-automatic measurements were made using a feature-tracking technique during myocardial cine imaging, and values were calculated using a 16-segment model. Adenosine-stressed global circumferential strain (CS) and global longitudinal strain (LS) values were compared with global MFR values. Stressed and resting global strain values were also compared. Global strain values were significantly lower in 39 patients with abnormal MFRs [< 2.0] than in 56 patients with normal MFRs [≥ 2.0]. The global CS values in the stressed state were significantly decreased than the resting state values in patients with abnormal MFRs. CONCLUSIONS This study applied endocardial feature-tracking to 13N-ammonia PET, and the results suggested that blood flow and myocardial motility could be clinically assessed in ischemic patients using a single PET scan.
Collapse
Affiliation(s)
- Masateru Kawakubo
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Atsushi Yamamoto
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Risako Nakao
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuka Matsuo
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kenji Fukushim
- Department of Nuclear Medicine, Saitama Medical University, Saitama, Japan
| | - Eri Watanabe
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Akiko Sakai
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Sasaki
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuji Sakai
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
30
|
Diagnostic value of regional myocardial flow reserve measurements using Rubidium-82 PET. Int J Cardiovasc Imaging 2022; 38:2743-2751. [DOI: 10.1007/s10554-022-02644-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/06/2022] [Indexed: 11/05/2022]
Abstract
Abstract
Purpose
Visual assessment of Rubidium (Rb-82) PET myocardial perfusion images is usually combined with global myocardial flow reserve (MFR) measurements. However, small regional blood flow deficits may go unnoticed. Our aim was to compare the diagnostic value of regional with global MFR in the detection of obstructive coronary artery disease (oCAD).
Methods
We retrospectively included 1519 patients referred for rest and regadenoson-induced stress Rb-82 PET/CT without prior history of oCAD. MFR was determined globally, per vessel territory and per myocardial segment and compared using receiver-operating characteristic analysis. Vessel MFR was defined as the lowest MFR of the coronary territories and segmental MFR as the lowest MFR of the 17-segments. The primary endpoint was oCAD on invasive coronary angiography.
Results
The 148 patients classified as having oCAD had a lower global MFR (median 1.9, interquartile range [1.5–2.4] vs. 2.4 [2.0–2.9]), lower vessel MFR (1.6 [1.2–2.1] vs. 2.2 [1.9–2.6]) and lower segmental MFR (1.3 [ 0.9–1.6] vs. 1.8 [1.5–2.2]) as compared to the non-oCAD patients (p < 0.001). The area under the curve for segmental MFR (0.81) was larger (p ≤ 0.005) than of global MFR (0.74) and vessel MFR (0.78).
Conclusions
The use of regional MFR instead of global MFR is recommended as it improves the diagnostic value of Rb-82 PET in the detection of oCAD.
Collapse
|
31
|
Massalha S, Ben-Haim S. Carried away with the flow to maintain the reserve. J Nucl Cardiol 2022; 29:1679-1682. [PMID: 34231125 DOI: 10.1007/s12350-021-02717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Samia Massalha
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
- Department of Nuclear Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Simona Ben-Haim
- Department of Nuclear Medicine and Biophysics, Hadassah Medical Organization, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Institute of Nuclear Medicine, University College London, London, UK.
- UCL Hospitals, NHS Trust, London, UK.
| |
Collapse
|
32
|
Panjer M, Dobrolinska M, Wagenaar NRL, Slart RHJA. Diagnostic accuracy of dynamic CZT-SPECT in coronary artery disease. A systematic review and meta-analysis. J Nucl Cardiol 2022; 29:1686-1697. [PMID: 34350553 PMCID: PMC9345813 DOI: 10.1007/s12350-021-02721-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 10/27/2022]
Abstract
BACKGROUND With the appearance of cadmium-zinc-telluride (CZT) cameras, dynamic myocardial perfusion imaging (MPI) has been introduced, but comparable data to other MPI modalities, such as quantitative coronary angiography (CAG) with fractional flow reserve (FFR) and positron emission tomography (PET), are lacking. This study aimed to evaluate the diagnostic accuracy of dynamic CZT single-photon emission tomography (SPECT) in coronary artery disease compared to quantitative CAG, FFR, and PET as reference. MATERIALS AND METHODS Different databases were screened for eligible citations performing dynamic CZT-SPECT against CAG, FFR, or PET. PubMed, OvidSP (Medline), Web of Science, the Cochrane Library, and EMBASE were searched on the 5th of July 2020. Studies had to meet the following pre-established inclusion criteria: randomized controlled trials, retrospective trails or observational studies relevant for the diagnosis of coronary artery disease, and performing CZT-SPECT and within half a year the methodological references. Studies which considered coronary stenosis between 50% and 70% as significant based only on CAG were excluded. Data extracted were sensitivity, specificity, likelihood ratios, and diagnostic odds ratios. Quality was assessed with QUADAS-2 and statistical analysis was performed using a bivariate model. RESULTS Based on our criteria, a total of 9 studies containing 421 patients were included. For the assessment of CZT-SPECT, the diagnostic value pooled analysis with a bivariate model was calculated and yielded a sensitivity of 0.79 (% CI 0.73 to 0.85) and a specificity of 0.85 (95% CI 0.74 to 0.92). Diagnostic odds ratio (DOR) was 17.82 (95% CI 8.80 to 36.08, P < 0.001). Positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were 3.86 (95% CI 2.76 to 5.38, P < 0.001) and 0.21 (95% CI 0.13 to 0.33, P < 0.001), respectively. CONCLUSION Based on the results of the current systematic review and meta-analysis, dynamic CZT-SPECT MPI demonstrated a good sensitivity and specificity to diagnose CAD as compared to the gold standards. However, due to the heterogeneity of the methodologies between the CZT-SPECT MPI studies and the relatively small number of included studies, it warrants further well-defined study protocols.
Collapse
Affiliation(s)
- Mariska Panjer
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Magdalena Dobrolinska
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, Katowice, Poland
| | - Nils R L Wagenaar
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Nuclear Medicine, Ziekenhuis Groep Twente, Hengelo, The Netherlands
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
33
|
Wang J, Li JM, Li S, Hsu B. Absolute Resting 13N-Ammonia PET Myocardial Blood Flow for Predicting Myocardial Viability and Recovery of Ventricular Function after Coronary Artery Bypass Grafting. J Nucl Cardiol 2022; 29:987-999. [PMID: 33089879 DOI: 10.1007/s12350-020-02388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We aimed to evaluate the feasibility of resting myocardial blood flow (rMBF), quantified with dynamic 13 N-Ammonia (NH3) PET, for identifying myocardial viability and predicting improvement of left ventricular ejection fraction (LVEF) after coronary artery bypass grafting (CABG). METHODS Ninety-three patients with coronary artery disease (CAD) and chronic LVEF < 45%, scheduled for CABG, had dynamic 13NH3 PET and 18F-FDG PET imaging. The perfusion/metabolism polar maps were categorized in four patterns: normal (N), mismatch (M1), match (M2) and reverse mismatch (RM). The value of rMBF for identifying viable myocardium (M1, RM) and post CABG improvement of LVEF≥8% was analyzed by receiver operating characteristic (ROC) curves. Correlations of rMBF in segments to ΔLVEF post CABG were verified. RESULTS Mean rMBFs were significantly different (N=0.60±0.14; M1=0.44±0.07, M2=0.34±0.08, RM=0.53±0.09 ml/min/g, P<0.001). The optimal rMBF cutoff to identify viable myocardium was 0.42 ml/min/g (sensitivity=88.3%, specificity=82.0%) and 0.43 ml/min/g for predicting improvement of LVEF ≥8% (74.6%, 80.0%). The extent and rMBF of combined M1/RM demonstrated a moderate to high correlation to improved LVEF (r=0.78, 0.71, P<0.001). CONCLUSION Resting MBF, derived by dynamic 13NH3 PET, may be positioned as a supplement to 18F-FDG PET imaging for assessing the presence of viable myocardium and predicting potential improvement of LVEF after CABG.
Collapse
Affiliation(s)
- Jiao Wang
- Teda International Cardiovascular Hospital Nuclear Medicine Department, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, 300457, China
| | - Jian-Ming Li
- Teda International Cardiovascular Hospital Nuclear Medicine Department, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, 300457, China.
| | - Shuai Li
- Teda International Cardiovascular Hospital Nuclear Medicine Department, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, 300457, China
| | - Bailing Hsu
- Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
34
|
Bakula A, Patriki D, von Felten E, Benetos G, Sustar A, Benz DC, Wiedemann-Buser M, Treyer V, Pazhenkottil AP, Gräni C, Gebhard C, Kaufmann PA, Buechel RR, Fuchs TA. Splenic switch-off as a novel marker for adenosine response in nitrogen-13 ammonia PET myocardial perfusion imaging: Cross-validation against CMR using a hybrid PET/MR device. J Nucl Cardiol 2022; 29:1205-1214. [PMID: 33354759 PMCID: PMC9163112 DOI: 10.1007/s12350-020-02448-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND No methodology is available to distinguish truly reduced myocardial flow reserve (MFR) in positron emission tomography myocardial perfusion imaging (PET MPI) from seemingly impaired MFR due to inadequate adenosine response. The adenosine-induced splenic switch-off (SSO) sign has been proposed as a potential marker for adequate adenosine response in cardiac magnetic resonance (CMR). We assessed the feasibility of detecting SSO in nitrogen-13 ammonia PET MPI using SSO in CMR as the standard of reference. METHODS AND RESULTS Fifty patients underwent simultaneous CMR and PET MPI on a hybrid PET/MR device with co-injection of a gadolinium-based contrast agent and nitrogen-13 ammonia during rest and adenosine-induced stress. In CMR, SSO was assessed visually (positive vs negative SSO) and quantitatively by calculating the ratio of the peak signal intensity of the spleen during stress over rest (SIR). In PET MPI, the splenic signal activity ratio (SAR) was calculated as the maximal standard uptake value of the spleen during stress over rest. The median SIR was significantly lower in patients with positive versus negative SSO in CMR (0.57 [IQR 0.49 to 0.62] vs 0.89 [IQR 0.76 to 0.98]; P < .001). Similarly, median SAR in PET MPI was significantly lower in patients with positive versus negative SSO (0.40 [IQR 0.32 to 0.45] vs 0.80 [IQR 0.47 to 0.98]; P < .001). CONCLUSION Similarly to CMR, SSO can be detected in nitrogen-13 ammonia PET MPI. This might help distinguish adenosine non-responders from patients with truly impaired MFR due to microvascular dysfunction or multivessel coronary artery disease.
Collapse
Affiliation(s)
- Adam Bakula
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Dimitri Patriki
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Elia von Felten
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Georgios Benetos
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Aleksandra Sustar
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Dominik C Benz
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Muriel Wiedemann-Buser
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Christoph Gräni
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Tobias A Fuchs
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
35
|
Zavadovsky KV, Mochula AV, Maltseva AN, Boshchenko AA, Baev AE, Andreev SL, Nesterov EA, Liga R, Gimelli A. The diagnostic value of SPECT CZT quantitative myocardial blood flow in high-risk patients. J Nucl Cardiol 2022; 29:1051-1063. [PMID: 33098073 DOI: 10.1007/s12350-020-02395-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/21/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND The objective of this study was to evaluate the accuracy of global MBF and MFR quantitation performed by myocardial perfusion scintigraphy (MPS) for the detection of multivessel coronary artery disease (CAD). METHODS 52 CAD patients underwent CZT MPS, with the evaluation of MBF and MFR, followed by invasive coronary angiography (ICA). According to MPS and ICA results, all patients were divided into three groups: (1) non-obstructive CAD and normal MPS scan (control group) (n = 7), (2) one vessel disease (1VD) (n = 16), (3) multivessel disease (MVD) (n = 29). RESULTS Global absolute MBF and MFR were significantly reduced in MVD patients as compared to those with 1VD [0.93 (IQR 0.76; 1.39) vs 1.94 (1.37; 2.21) mL·min-1·g-1, P = .00012] and [1.4 (IQR 1.02; 1.85) vs 2.3 (1.8; 2.67), P = . 0 004], respectively. The Syntax score correlated with global stress MBF (ρ = - 0.64; P < .0001) and MFR (ρ = - 0.53; P = .0003). ROC analysis showed higher sensitivity and specificity for stress MBF and MFR compared with semiquantitative MPS stress evaluation. Multivariate regression analysis showed that only stress MBF [OR (95% CI) 0.59 (0.42-0.82); P < .0003] was an independent predictor of MVD. CONCLUSIONS Quantitative myocardial blood flow values assessed with the use of CZT camera may identify high-risk patients, such as those with multivessel disease.
Collapse
Affiliation(s)
- Konstantin V Zavadovsky
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia.
| | - Andrew V Mochula
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Alina N Maltseva
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Andrew E Baev
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Sergey L Andreev
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | | | | | | |
Collapse
|
36
|
Acampa W, D'Antonio A, Imbriaco M, Pisani A, Cuocolo A. Multimodality imaging approach to Fabry cardiomyopathy: Any role for nuclear cardiology? J Nucl Cardiol 2022; 29:1439-1445. [PMID: 32378117 DOI: 10.1007/s12350-020-02124-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 11/29/2022]
Abstract
Anderson-Fabry disease (AFD) is a multisystem X-linked disorder of lipid metabolism frequently associated with progressive glycosphingolipid accumulation in cardiac, renal, and nervous cells. The diagnosis of AFD is usually assessed by enzyme assay and genetic tests, but advanced cardiac imaging can be useful in detecting early signs of the disease. Echocardiography and cardiac magnetic resonance are the first-line imaging modalities to investigate cardiac involvement in AFD, but the recent introduction of new molecular and hybrid imaging techniques opens to a wider range of diagnostic applications. This article aims to provide an overview of nuclear cardiology techniques in diagnosis and clinical management of AFD.
Collapse
Affiliation(s)
- Wanda Acampa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Antonio Pisani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
37
|
Yamamoto A, Nagao M, Ando K, Nakao R, Matsuo Y, Sakai A, Momose M, Kaneko K, Hagiwara N, Sakai S. First Validation of Myocardial Flow Reserve Derived from Dynamic 99mTc-Sestamibi CZT-SPECT Camera Compared with 13N-Ammonia PET. Int Heart J 2022; 63:202-209. [PMID: 35354742 DOI: 10.1536/ihj.21-487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
13N-ammonia positron emission tomography (NH3-PET) can evaluate myocardial blood flow (MBF) at rest, stress, and myocardial flow reserve (MFR) as well as the ratio of MBF at stress to that at rest. MFR is useful in predicting the prognoses of patients with various heart diseases. Cadmium-zinc-telluride single photon emission computed tomography (CZT-SPECT) enables us to acquire dynamic images of radiotracer kinetics and measure original MBF and MFR using 99mTc-sestamibi. This study aimed to investigate the utility of CZT-SPECT for quantitative assessment of MBF compared to NH3-PET. We validated the correlation of MBF and MFR between CZT-SPECT and NH3-PET. Fourteen patients using one-day rest/stress CZT-SPECT, D-SPECT followed by NH3-PET within 1 month were enrolled and analyzed prospectively. The reproducibility of the MBF and MFR obtained with these two methods was examined using Spearman's correlation coefficient and Bland-Altman plot analysis. The diagnostic value of D-SPECT for abnormal MFR defined using NH3-PET results as MFR < 2.0 was assessed using receiver-operating characteristic (ROC) analysis. The median duration between D-SPECT and NH3-PET was 20 days. Although MBF was overestimated by D-SPECT compared to NH3-PET at high value (mean difference, 0.43 [0.34-0.53]), MBF and MFR were correlated with the two modalities (MBF: r = 0.71, P < 0.0001, MFR: r = 0.60, P < 0.0001). The ROC curve analysis demonstrated a cutoff of 1.6 for detecting abnormal MFR with D-SPECT (sensitivity, 68%; specificity, 91%; AUC, 0.75). MBF and MFR obtained using D-SPECT and NH3-PET had a good correlation, suggesting that the quantitative MFR evaluation by CZT-SPECT may help understand the trend of NH3-PET MFR.
Collapse
Affiliation(s)
- Atsushi Yamamoto
- Department of Cardiology, Tokyo Women's Medical University.,Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Michinobu Nagao
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Kiyoe Ando
- Department of Cardiology, Tokyo Women's Medical University
| | - Risako Nakao
- Department of Cardiology, Tokyo Women's Medical University
| | - Yuka Matsuo
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Akiko Sakai
- Department of Cardiology, Tokyo Women's Medical University
| | - Mitsuru Momose
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Koichiro Kaneko
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | | | - Shuji Sakai
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| |
Collapse
|
38
|
Yamamoto A, Nagao M, Ando K, Nakao R, Sakai A, Watanabe E, Momose M, Sato K, Fukushima K, Sakai S, Hagiwara N. Myocardial Flow Reserve in Coronary Artery Disease with Low Attenuation Plaque: Coronary CTA and 13N-ammonia PET Assessments. Acad Radiol 2022; 29 Suppl 4:S17-S24. [PMID: 33281040 DOI: 10.1016/j.acra.2020.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVES Physiological measurements from coronary angiography show that coronary stenosis with necrotic core plaque reduces coronary flow reserve (CFR). Myocardial flow reserve (MFR) estimated by 13N-ammonia PET (NH3-PET) is a different index from CFR. Low attenuation plaque (LAP) on coronary CTA (CCTA) contains necrotic core, but the link between LAP and MFR has not been elucidated. We aimed to investigate the influence of LAP on MFR in coronary artery disease (CAD). MATERIALS AND METHODS The study included 105 consecutive patients who underwent NH3-PET and CCTA within 3 months. Nonevaluable coronary arteries due to severe calcification and stent implants were excluded. Finally, 290 major vessels were retrospectively analyzed. Coronary arteries were divided into mild (1%-49%), moderate (50%-69% stenosis), and severe (≥70% stenosis) groups. Coronary plaques were classified either LAP (including soft tissue CT value <30 HU) or completely classified plaques. MFR for the major vessels were calculated and MFR <2.0 was considered a significant decrease. Comparison of MFR between territories with and without LAP, and the effect of plaque characteristics on MFR was analyzed. RESULTS MFR was significantly lower for territories with LAP than with calcified plaques or no plaque (2.1 ± 0.7, 2.4 ± 0.7, and 2.3 ± 0.7; p < 0.05). There was no difference between calcified plaque and no plaque territories (p = 0.79). Multivariate logistic analysis for plaque characteristics and stenosis severity revealed that LAP and severe stenosis were independent predictors for territories with MFR <2.0 with odds ratios of 3.1 (95% confidence interval, 1.2-8.1) and 3.0 (95% confidence interval, 1.7-5.3). CONCLUSION LAP reduced MFR compared with calcified plaque or no plaque in CAD. LAP is an independent predictor of the territory with MFR <2.0.
Collapse
|
39
|
Nakano S, Kohsaka S, Chikamori T, Fukushima K, Kobayashi Y, Kozuma K, Manabe S, Matsuo H, Nakamura M, Ohno T, Sawano M, Toda K, Ueda Y, Yokoi H, Gatate Y, Kasai T, Kawase Y, Matsumoto N, Mori H, Nakazato R, Niimi N, Saito Y, Shintani A, Watanabe I, Watanabe Y, Ikari Y, Jinzaki M, Kosuge M, Nakajima K, Kimura T. JCS 2022 Guideline Focused Update on Diagnosis and Treatment in Patients With Stable Coronary Artery Disease. Circ J 2022; 86:882-915. [DOI: 10.1253/circj.cj-21-1041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shintaro Nakano
- Cardiology, Saitama Medical University International Medical Center
| | | | | | - Kenji Fukushima
- Department of Radiology and Nuclear Medicine, Fukushima Medical University
| | | | - Ken Kozuma
- Cardiology, Teikyo University School of Medicine
| | - Susumu Manabe
- Cardiac Surgery, International University of Health and Welfare Mita Hospital
| | | | - Masato Nakamura
- Cardiovascular Medicine, Toho University Ohashi Medical Center
| | | | | | - Koichi Toda
- Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | - Yasunori Ueda
- Cardiovascular Division, National Hospital Organization Osaka National Hospital
| | - Hiroyoshi Yokoi
- Cardiovascular Center, International University of Health and Welfare Fukuoka Sanno Hospital
| | - Yodo Gatate
- Cardiology, Self-Defense Forces Central Hospital
| | | | | | | | - Hitoshi Mori
- Cardiology, Saitama Medical University International Medical Center
| | | | | | - Yuichi Saito
- Cardiovascular Medicine, Chiba University School of Medicine
| | - Ayumi Shintani
- Medical Statistics, Osaka City University Graduate School of Medicine
| | - Ippei Watanabe
- Cardiovascular Medicine, Toho University School of Medicine
| | | | - Yuji Ikari
- Cardiology, Tokai University School of Medicine
| | | | | | - Kenichi Nakajima
- Functional Imaging and Artificial Intelligence, Kanazawa University
| | - Takeshi Kimura
- Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | | |
Collapse
|
40
|
Sakuma H, Ishida M. Advances in Myocardial Perfusion MR Imaging: Physiological Implications, the Importance of Quantitative Analysis, and Impact on Patient Care in Coronary Artery Disease. Magn Reson Med Sci 2022; 21:195-211. [PMID: 34108304 PMCID: PMC9199984 DOI: 10.2463/mrms.rev.2021-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 11/09/2022] Open
Abstract
Stress myocardial perfusion imaging (MPI) is the preferred test in patients with intermediate-to-high clinical likelihood of coronary artery disease (CAD) and can be used as a gatekeeper to avoid unnecessary revascularization. Cardiac magnetic resonance (CMR) has a number of favorable characteristics, including: (1) high spatial resolution that can delineate subendocardial ischemia; (2) comprehensive assessment of morphology, global and regional cardiac functions, tissue characterization, and coronary artery stenosis; and (3) no radiation exposure to patients. According to meta-analysis studies, the diagnostic accuracy of perfusion CMR is comparable to positron emission tomography (PET) and perfusion CT, and is better than single-photon emission CT (SPECT) when fractional flow reserve (FFR) is used as a reference standard. In addition, stress CMR has an excellent prognostic value. One meta-analysis study demonstrated the annual event rate of cardiovascular death or non-fatal myocardial infarction was 4.9% and 0.8%, respectively, in patients with positive and negative stress CMR. Quantitative assessment of perfusion CMR not only allows the objective evaluation of regional ischemia but also provides insights into the pathophysiology of microvascular disease and diffuse subclinical atherosclerosis. For accurate quantification of myocardial perfusion, saturation correction of arterial input function is important. There are two major approaches for saturation correction, one is a dual-bolus method and the other is a dual-sequence method. Absolute quantitative mapping with myocardial perfusion CMR has good accuracy in detecting coronary microvascular dysfunction. Flow measurement in the coronary sinus (CS) with phase contrast cine CMR is an alternative approach to quantify global coronary flow reserve (CFR). The measurement of global CFR by quantitative analysis of perfusion CMR or flow measurement in the CS permits assessment of microvascular disease and diffuse subclinical atherosclerosis, which may provide improved prediction of future event risk in patients with suspected or known CAD. Multi-institutional studies to validate the diagnostic and prognostic values of quantitative perfusion CMR approaches are required.
Collapse
Affiliation(s)
- Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
41
|
Nakao R, Nagao M, Yamamoto A, Fukushima K, Watanabe E, Sakai S, Hagiwara N. Papillary muscle ischemia on high-resolution cine imaging of nitrogen-13 ammonia positron emission tomography: Association with myocardial flow reserve and prognosis in coronary artery disease. J Nucl Cardiol 2022; 29:293-303. [PMID: 32566962 DOI: 10.1007/s12350-020-02231-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The evaluation of papillary muscle (PM) perfusion through existing perfusion imaging, including single-photon emission computed tomography and magnetic resonance imaging, is not possible. Therefore, this study sought to investigate the detection of PM ischemia in coronary artery disease (CAD) using nitrogen-13 (N-13) ammonia positron emission tomography (NH3 PET) and its association with global myocardial flow reserve (MFR) and major adverse cardiac events (MACE). METHODS Data of adenosine-stress NH3 PET for 263 consecutive patients with known or suspected CAD were retrospectively analyzed. PM ischemia was defined as the absence of PM accumulation under stress conditions and PM presence at rest on high-resolution cine imaging derived from PET-computed tomography scanner with time-of-flight technology. The primary outcome was MACE. RESULTS Of 263 patients, 30 experienced mean follow-up period of 910 days (MACE), while 31 (11.8%) presented PM ischemia. Compared to patients without PM ischemia, those with PM ischemia reported a significantly lower global MFR and a significantly higher rate of MACE (P < .0001). CONCLUSION NH3 PET enables the detection of PM ischemia in approximately 10% of patients with known or suspected CAD. PM ischemia is associated with reduced global MFR and is an important sign in predicting prognosis.
Collapse
Affiliation(s)
- Risako Nakao
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Atsushi Yamamoto
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kenji Fukushima
- Department of Nuclear Medicine Cardiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Eri Watanabe
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shuji Sakai
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Nobuhisa Hagiwara
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
42
|
Chau O, Islam A, Yu E, Qu M, Butler J, Biernaski H, Sun A, Bissonnette JP, MacDonald A, Graf C, So A, Wisenberg G, Lee T, Prato FS, Gaede S. Multi-Modality Imaging Assessment of the Heart Before and After Stage III Non-Small Cell Lung Cancer Radiotherapy. Adv Radiat Oncol 2022; 7:100927. [PMID: 35434423 PMCID: PMC9006649 DOI: 10.1016/j.adro.2022.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
|
43
|
Kawakubo M, Nagao M, Kikuchi N, Yamamoto A, Nakao R, Matsuo Y, Kaneko K, Watanabe E, Sasaki M, Nunoda S, Sakai S. 13N-ammonia positron emission tomography-derived left-ventricular strain in patients after heart transplantation validated using cardiovascular magnetic resonance feature tracking as reference. Ann Nucl Med 2022; 36:70-81. [PMID: 34643890 DOI: 10.1007/s12149-021-01686-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Heart transplant rejection leads to cardiac allograft vasculopathy (CAV). 13N-ammonia positron emission tomography (PET) can be useful in detecting CAV, as it can evaluate both epicardial vessels and microvasculature. In this study, we evaluated the regional wall motion in heart transplant patients using our PET-specific feature-tracking (FT) algorithm for myocardial strain calculation and validated it using a cardiovascular magnetic resonance (CMR) FT strain as a reference. METHODS A total of 15 heart transplant patients who underwent both 13N-ammonia PET and CMR within 3 months were retrospectively enrolled. The same slice position of short-axis cine images of the middle slice of left ventricle (LV) and the same slice position of horizontal long-axis cine images were selected for the two modalities to measure the circumferential strain (CS) and longitudinal strain (LS), respectively. Based on the FT technique, time-strain curves were calculated by semi-automatic tracking of the endocardial contour on cine images throughout a cardiac cycle. The peak value in the time-strain curve was defined as the representative value. Correlations of CS and LS between PET and CMR were analyzed using Pearson correlation coefficients. The inter-modality error of strain measurements was evaluated using intraclass correlation coefficients (ICCs) with two-way random single measures. RESULTS Excellent correlations of CS and LS between PET and CMR were observed (CS: r = 0.80; p < 0.01; LS: r = 0.87; p < 0.01). Excellent ICCs were observed (0.89 and 0.85) in CS and LS derived from PET. CONCLUSIONS We propose the first PET strain showing an excellent agreement with the CMR strain and high reproducibility in measurement.
Collapse
Affiliation(s)
- Masateru Kawakubo
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Noriko Kikuchi
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Yamamoto
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Risako Nakao
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuka Matsuo
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Koichiro Kaneko
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Eri Watanabe
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Sasaki
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichi Nunoda
- Department of Therapeutic Strategy for Severe Heart Failure, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Shuji Sakai
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
44
|
Heart diseases by Ammonia. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Otaki Y, Van Kriekinge SD, Wei CC, Kavanagh P, Singh A, Parekh T, Di Carli M, Maddahi J, Sitek A, Buckley C, Berman DS, Slomka PJ. Improved myocardial blood flow estimation with residual activity correction and motion correction in 18F-flurpiridaz PET myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2021; 49:1881-1893. [PMID: 34967914 DOI: 10.1007/s00259-021-05643-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/28/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE We sought to evaluate the diagnostic performance for coronary artery disease (CAD) of myocardial blood flow (MBF) quantification with 18F-flurpiridaz PET using motion correction (MC) and residual activity correction (RAC). METHODS In total, 231 patients undergoing same-day pharmacologic rest and stress 18F-flurpiridaz PET from Phase III Flurpiridaz trial (NCT01347710) were studied. Frame-by-frame MC was performed and RAC was accomplished by subtracting the rest residual counts from the dynamic stress polar maps. MBF and myocardial flow reserve (MFR) were derived with a two-compartment early kinetic model for the entire left ventricle (global), each coronary territory, and 17-segment. Global and minimal values of three territorial (minimal vessel) and segmental estimation (minimal segment) of stress MBF and MFR were evaluated in the prediction of CAD. MBF and MFR were evaluated with and without MC and RAC (1: no MC/no RAC, 2: no MC/RAC, 3: MC/RAC). RESULTS The area-under the receiver operating characteristics curve (AUC [95% confidence interval]) of stress MBF with MC/RAC was higher for minimal segment (0.89 [0.85-0.94]) than for minimal vessel (0.86 [0.81-0.92], p = 0.03) or global estimation (0.81 [0.75-0.87], p < 0.0001). The AUC of MFR with MC/RAC was higher for minimal segment (0.87 [0.81-0.93]) than for minimal vessel (0.83 [0.76-0.90], p = 0.014) or global estimation (0.77 [0.69-0.84], p < 0.0001). The AUCs of minimal segment stress MBF and MFR with MC/RAC were higher compared to those with no MC/RAC (p < 0.001 for both) or no MC/no RAC (p < 0.0001 for both). CONCLUSIONS Minimal segment MBF or MFR estimation with MC and RAC improves the diagnostic performance for obstructive CAD compared to global assessment.
Collapse
Affiliation(s)
- Yuka Otaki
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Serge D Van Kriekinge
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Chih-Chun Wei
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Paul Kavanagh
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Ananya Singh
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Tejas Parekh
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Marcelo Di Carli
- Cardiovascular Imaging Program, Departments of Medicine and Radiology and Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jamshid Maddahi
- Division of Nuclear Medicine, Department of Molecular and Medical Pharmacology and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Arkadiusz Sitek
- Sano Centre for Computational Medicine, Cracow, Malopolskie, Poland
| | | | - Daniel S Berman
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Piotr J Slomka
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA.
| |
Collapse
|
46
|
Kawakubo M, Nagao M, Yamamoto A, Nakao R, Matsuo Y, Kaneko K, Watanabe E, Sakai A, Sasaki M, Sakai S. 13 N-ammonia PET-derived right ventricular longitudinal strain and myocardial flow reserve in right coronary artery disease. Eur J Nucl Med Mol Imaging 2021; 49:1870-1880. [PMID: 34897553 DOI: 10.1007/s00259-021-05647-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE We developed a feature-tracking algorithm for use with electrocardiography-gated high-resolution 13 N-ammonia positron emission tomography (PET) imaging, and we hypothesized it could be used to clarify the association between right ventricular (RV) longitudinal strain (LS) and right coronary artery (RCA) ischemia. The aim of this study was to investigate the association between the reduction of regional myocardial flow reserve (MFR) in RCA territories and PET-derived LS of the RV free wall. METHODS Ninety-three patients with coronary artery stenosis > 50%, diagnosed by coronary computed tomography angiography, and 10 controls were retrospectively analyzed. RV-LS in the free wall was measured by a feature-tracking technique on the resting and stressed 13 N-ammonia PET images of horizontal long axis slices. The patients were sub-grouped according to regional MFR values at the territories of RCA, left anterior descending artery (LAD), and left circumflex coronary artery (LCx): RCA-MFR < 2.0 [n = 34], RCA-MFR ≥ 2.0 but MFR < 2.0 at LAD or LCx territories [n = 11], and MFR ≥ 2.0 for all territories [n = 48]. Stress and resting RV-LS were compared in each of the four groups. Multiple comparisons of RV-LS among the four groups were performed in the stress and resting state. RESULTS Decreased stress RV-LS in patients with an RCA-MFR < 2.0 was observed. In the patients with MFR ≥ 2.0 for all territories, the stressed RV-LS was significantly increased compared to that in the resting state. Significantly decreased RV free wall LS during adenosine stress in patients with RCA-MFR < 2.0 was observed in the other three groups. CONCLUSIONS We measured RV myocardial LS using feature tracking in cine imaging of 13 N-ammonia PET. The results of this study suggest that PET-derived stressed RV-LS is useful for detecting reduced RV myocardial motion due to ischemia in the RCA territory.
Collapse
Affiliation(s)
- Masateru Kawakubo
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Atsushi Yamamoto
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Risako Nakao
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuka Matsuo
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Koichiro Kaneko
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Eri Watanabe
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Akiko Sakai
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Sasaki
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuji Sakai
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
47
|
Matsuo Y, Nagao M, Yamamoto A, Ando K, Nakao R, Fukushima K, Momose M, Sakai A, Sato K, Sakai S. Coronary flow quantification estimated by dynamic 320-detector CT angiography: validation by 13N ammonia PET myocardial flow reserve. Br J Radiol 2021; 94:20201415. [PMID: 34586914 DOI: 10.1259/bjr.20201415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Resting coronary flow index (rCFI) estimated by 320-detector low-dose dynamic coronary CT angiography (CCTA) is a direct flow quantification using intracoronary attenuation. We propose modified-rCFI from new protocol combining dynamic scan and standard CCTA using dose-modulation, and validate its consistency with quantitative values and ischemia depicted by 13N-ammonia PET (NH3-PET). METHODS 46 patients who underwent dynamic CCTA and NH3-PET for coronary artery disease were evaluated using original rCFI in 21 patients and modified-rCFI in 25 patients. Two types of rCFI were calculated for three major coronary arteries. Myocardial blood flow (MBF) at rest and stress, myocardial flow reserve (MFR), and the presence or absence of ischemia for three major territories were depicted by NH3-PET. Coronary territories were categorized as territories with MFR <2.0, ≥2.0, or with and without ischemia. Receiver operating characteristic analysis was performed to determine the optimal cut-off of rCFI to distinguish territories with MFR <2.0 or the presence of ischemia. RESULTS rCFI and modified-rCFI had significant positive correlations with stress MBF and MFR. The optical cut-offs of rCFI and modified-rCFI of 0.39 and 0.61 could detect territories with MFR <2.0, with AUCs of 0.75 and 0.73, sensitivities of 48 and 34%, and specificities of 97 and 98%. Optimal cut-offs of rCFI and modified-rCFI distinguished ischemic segments from non-ischemic segments, with AUCs of 0.75 and 0.91, sensitivities of 53 and 50%, and specificities of 93 and 95%. CONCLUSION Two types of rCFI correlated with quantitative values from NH3-PET, and were consistent with a high specificity in detecting functional ischemia. ADVANCES IN KNOWLEDGE rCFI can contribute as additional functional test over standard CCTA in clinical work-up.
Collapse
Affiliation(s)
- Yuka Matsuo
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Michinobu Nagao
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Yamamoto
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kiyoe Ando
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, Saitama, Japan
| | - Risako Nakao
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, Saitama, Japan
| | - Kenji Fukushima
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, Saitama, Japan
| | - Mitsuru Momose
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Akiko Sakai
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kayoko Sato
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shuji Sakai
- Department of Diagnostic Imaging & Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
48
|
Gewirtz H. PET 18F-flurpridaz quantitative measurements of myocardial blood flow: Added value for diagnosis of coronary artery disease? Of course! J Nucl Cardiol 2021; 28:2330-2334. [PMID: 32020502 DOI: 10.1007/s12350-020-02043-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Henry Gewirtz
- Department of Medicine (Cardiology Division), Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Cardiac Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
49
|
Moody JB, Poitrasson-Rivière A, Hagio T, Buckley C, Weinberg RL, Corbett JR, Murthy VL, Ficaro EP. Added value of myocardial blood flow using 18F-flurpiridaz PET to diagnose coronary artery disease: The flurpiridaz 301 trial. J Nucl Cardiol 2021; 28:2313-2329. [PMID: 32002847 DOI: 10.1007/s12350-020-02034-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND 18F-Flurpiridaz is a promising investigational radiotracer for PET myocardial perfusion imaging with favorable properties for quantification of myocardial blood flow (MBF). We sought to validate the incremental diagnostic value of absolute MBF quantification in a large multicenter trial against quantitative coronary angiography. METHODS We retrospectively analyzed a subset of patients (N = 231) from the first phase 3 flurpiridaz trial (NCT01347710). Dynamic PET data at rest and pharmacologic stress were fit to a previously validated 2-tissue-compartment model. Absolute MBF and myocardial flow reserve (MFR) were compared with coronary artery disease severity quantified by invasive coronary angiography on a per-patient and per-vessel basis. RESULTS Stress MBF per-vessel accurately identified obstructive disease (c-index 0.79) and progressively declined with increasing stenosis severity (2.35 ± 0.71 in patients without CAD; 1.92 ± 0.49 in non-obstructed territories of CAD patients; and 1.54 ± 0.50 in diseased territories, P < 0.05). MFR similarly declined with increasing stenosis severity (3.03 ± 0.94; 2.69 ± 0.95; and 2.33 ± 0.86, respectively, P < 0.05). In multivariable logistic regression modeling, stress MBF and MFR provided incremental diagnostic value beyond patient characteristics and relative perfusion analysis. CONCLUSIONS Clinical myocardial blood flow measurement with 18F-flurpiridaz cardiac PET shows promise for routine application.
Collapse
Affiliation(s)
- Jonathan B Moody
- INVIA Medical Imaging Solutions, 3025 Boardwalk Street, Suite 200, Ann Arbor, MI, 48108, USA.
| | | | - Tomoe Hagio
- INVIA Medical Imaging Solutions, 3025 Boardwalk Street, Suite 200, Ann Arbor, MI, 48108, USA
| | | | - Richard L Weinberg
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - James R Corbett
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Edward P Ficaro
- INVIA Medical Imaging Solutions, 3025 Boardwalk Street, Suite 200, Ann Arbor, MI, 48108, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
50
|
Akil S, Hedeer F, Oddstig J, Olsson T, Jögi J, Erlinge D, Carlsson M, Arheden H, Hindorf C, Engblom H. Appropriate coronary revascularization can be accomplished if myocardial perfusion is quantified by positron emission tomography prior to treatment decision. J Nucl Cardiol 2021; 28:1664-1672. [PMID: 31705424 PMCID: PMC8421314 DOI: 10.1007/s12350-019-01938-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Many patients undergo percutaneous coronary intervention (PCI) without the use of non-invasive stress testing prior to treatment. The aim of this study was to determine the potential added value of guiding revascularization by quantitative assessment of myocardial perfusion prior to intervention. METHODS AND RESULTS Thirty-three patients (10 females) with suspected or established CAD who had been referred for a clinical coronary angiography (CA) with possibility for PCI were included. Adenosine stress and rest 13N-NH3 PET, cardiac magnetic resonance (CMR), and cardiopulmonary exercise test were performed 4 ± 3 weeks before and 5 ± 1 months after CA. The angiographer was blinded to the PET and CMR results. Myocardial flow reserve (MFR) < 2.0 by PET was considered abnormal. A PCI was performed in 19/33 patients. In 41% (11/27) of the revascularized vessel territories, a normal regional MFR was found prior to the PCI and no improvement in MFR was found at follow-up (P = 0.9). However, vessel territories with regional MFR < 2.0 at baseline improved significantly after PCI (P = 0.003). Of the 14 patients not undergoing PCI, four had MFR < 2.0 in one or more coronary territories. CONCLUSION Assessment of quantitative myocardial perfusion prior to revascularization could lead to more appropriate use of CA when managing patients with stable CAD.
Collapse
Affiliation(s)
- Shahnaz Akil
- Department of Radiological Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Lund, Sweden.
| | - Fredrik Hedeer
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Lund, Sweden
| | - Jenny Oddstig
- Radiation Physics, Skane University Hospital, Lund, Sweden
| | - Thomas Olsson
- Radiation Physics, Skane University Hospital, Lund, Sweden
| | - Jonas Jögi
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Lund, Sweden
| | - David Erlinge
- Department of Clinical Sciences, Cardiology, Skane University Hospital, Lund University, Lund, Sweden
| | - Marcus Carlsson
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Lund, Sweden
| | | | - Henrik Engblom
- Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund University, Lund, Sweden
| |
Collapse
|