1
|
Nguyen MP, Goorden MC, Beekman FJ. EXIRAD-HE: multi-pinhole high-resolution ex vivo imaging of high-energy isotopes. ACTA ACUST UNITED AC 2020; 65:225029. [DOI: 10.1088/1361-6560/abbb77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Abstract
In the light of ever-increasing demands for PET scanner with better resolvability, higher sensitivity and wide accessibility for noninvasive screening of small structures and physiological processes in laboratory rodents, several dedicated PET scanners were developed and evaluated. Understanding conceptual design constraints pros and cons of different configurations and impact of the major components will be helpful to further establish the crucial role of these miniaturized systems in a broad spectrum of modern research. Hence, a comprehensive review of preclinical PET scanners developed till early 2020 with particular emphasis on innovations in instrumentation and geometrical designs is provided.
Collapse
Affiliation(s)
- Mahsa Amirrashedi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211, Switzerland; Geneva University Neurocenter, Geneva University, Geneva CH-1205, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense 500, Denmark
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
|
4
|
Goorden MC, Kamphuis C, Ramakers RM, Beekman FJ. Accelerated image reconstruction by a combined dual-matrix dual-voxel approach. ACTA ACUST UNITED AC 2020; 65:105014. [DOI: 10.1088/1361-6560/ab82e9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Liu Z, Zhang P, Ji H, Long Y, Jing B, Wan L, Xi D, An R, Lan X. A mini-panel PET scanner-based microfluidic radiobioassay system allowing high-throughput imaging of real-time cellular pharmacokinetics. LAB ON A CHIP 2020; 20:1110-1123. [PMID: 32043092 DOI: 10.1039/c9lc01066a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
On-chip radiometric detection of biological samples using radiotracers has become an emerging research field known as microfluidic radiobioassays. Performing parallel radiobioassays is highly desirable for saving time/effort, reducing experimental variation between assays, and minimizing the cost of the radioisotope. Continuously infused microfluidic radioassay (CIMR) is one of the useful tools for investigating cellular pharmacokinetics and assessing the binding and uptakes of radiopharmaceuticals. However, existing CIMR systems can only measure the dynamics of one sample at a time due to the limited field of view (FOV) of the positron detector. To increase the throughput, we propose a new CIMR system with a custom-built miniaturized panel-based positron-emission tomography (PET) scanner and a parallel infusion setup/method, capable of imaging the cellular pharmacokinetics of three samples in one measurement. With this system, the pharmacokinetics of parallel or comparison samples can be imaged simultaneously. The increased throughput is attributed to two innovations: 1) the large 3D FOV of the mini-panel PET scanner, enabling more samples to be imaged in the microfluidic chip; and 2) a parallel infusion method, in which only one reference chamber is needed for indicating the dynamic input of the infused radiotracer medium, thus saving the total reference chambers needed compared to the current sequential infusion method. Combining the CIMR technique and the mini-panel PET scanner, this study also firstly demonstrated the feasibility of using PET, as an imaging modality, for microfluidic radiobioassays. Besides the increased throughput, the 3D imaging of PET also provides possibilities for further applications such as organoid/3D culturing systems, non-planar microfluidics, and organs-on-chips. The system is more practical for a broader range of applications in nuclear medicine, molecular imaging, and lab-on-a-chip studies.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Pengfei Zhang
- Biomedical Engineering Department, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Boping Jing
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lu Wan
- RAYDATA Technology Co., Ltd. (Wuhan), Wuhan 430074, China
| | - Daoming Xi
- Raycan Technology Co., Ltd. (Suzhou), Suzhou 215163, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
6
|
Jiang W, Chalich Y, Deen MJ. Sensors for Positron Emission Tomography Applications. SENSORS 2019; 19:s19225019. [PMID: 31744258 PMCID: PMC6891456 DOI: 10.3390/s19225019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Positron emission tomography (PET) imaging is an essential tool in clinical applications for the diagnosis of diseases due to its ability to acquire functional images to help differentiate between metabolic and biological activities at the molecular level. One key limiting factor in the development of efficient and accurate PET systems is the sensor technology in the PET detector. There are generally four types of sensor technologies employed: photomultiplier tubes (PMTs), avalanche photodiodes (APDs), silicon photomultipliers (SiPMs), and cadmium zinc telluride (CZT) detectors. PMTs were widely used for PET applications in the early days due to their excellent performance metrics of high gain, low noise, and fast timing. However, the fragility and bulkiness of the PMT glass tubes, high operating voltage, and sensitivity to magnetic fields ultimately limit this technology for future cost-effective and multi-modal systems. As a result, solid-state photodetectors like the APD, SiPM, and CZT detectors, and their applications for PET systems, have attracted lots of research interest, especially owing to the continual advancements in the semiconductor fabrication process. In this review, we study and discuss the operating principles, key performance parameters, and PET applications for each type of sensor technology with an emphasis on SiPM and CZT detectors—the two most promising types of sensors for future PET systems. We also present the sensor technologies used in commercially available state-of-the-art PET systems. Finally, the strengths and weaknesses of these four types of sensors are compared and the research challenges of SiPM and CZT detectors are discussed and summarized.
Collapse
Affiliation(s)
- Wei Jiang
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Yamn Chalich
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - M. Jamal Deen
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Correspondence: or ; Tel.: +1-905-525-9140 (ext. 27137)
| |
Collapse
|
7
|
Mannheim JG, Kara F, Doorduin J, Fuchs K, Reischl G, Liang S, Verhoye M, Gremse F, Mezzanotte L, Huisman MC. Standardization of Small Animal Imaging-Current Status and Future Prospects. Mol Imaging Biol 2019; 20:716-731. [PMID: 28971332 DOI: 10.1007/s11307-017-1126-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The benefit of small animal imaging is directly linked to the validity and reliability of the collected data. If the data (regardless of the modality used) are not reproducible and/or reliable, then the outcome of the data is rather questionable. Therefore, standardization of the use of small animal imaging equipment, as well as of animal handling in general, is of paramount importance. In a recent paper, guidance for efficient small animal imaging quality control was offered and discussed, among others, the use of phantoms in setting up a quality control program (Osborne et al. 2016). The same phantoms can be used to standardize image quality parameters for multi-center studies or multi-scanners within center studies. In animal experiments, the additional complexity due to animal handling needs to be addressed to ensure standardized imaging procedures. In this review, we will address the current status of standardization in preclinical imaging, as well as potential benefits from increased levels of standardization.
Collapse
Affiliation(s)
- Julia G Mannheim
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany.
| | - Firat Kara
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kerstin Fuchs
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Sayuan Liang
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Laura Mezzanotte
- Optical Molecular Imaging, Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marc C Huisman
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Gu Z, Taschereau R, Vu NT, Prout DL, Silverman RW, Lee JT, Chatziioannou AF. Performance Evaluation of G8, a High-Sensitivity Benchtop Preclinical PET/CT Tomograph. J Nucl Med 2019; 60:142-149. [PMID: 29903933 PMCID: PMC6354226 DOI: 10.2967/jnumed.118.208827] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022] Open
Abstract
G8 is a benchtop integrated PET/CT scanner dedicated to high-sensitivity and high-resolution imaging of mice. This work characterizes its National Electrical Manufacturers Association NU 4-2008 performance where applicable and also assesses the basic imaging performance of the CT subsystem. Methods: The PET subsystem in G8 consists of 4 flat-panel detectors arranged in a boxlike geometry. Each panel consists of 2 modules of a 26 × 26 pixelated bismuth germanate scintillator array with individual crystals measuring 1.75 × 1.75 × 7.2 mm. The crystal arrays are coupled to multichannel photomultiplier tubes via a tapered, pixelated glass lightguide. A cone-beam CT scanner consisting of a MicroFocus x-ray source and a complementary metal oxide semiconductor detector provides anatomic information. Sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance, and the capability of performing phantom and mouse imaging were evaluated for the PET subsystem. Noise, dose level, contrast, and resolution were evaluated for the CT subsystem. Results: With an energy window of 350-650 keV, the peak sensitivity was 9.0% near the center of the field of view. The crystal energy resolution ranged from 15.0% to 69.6% in full width at half maximum (FWHM), with a mean of 19.3% ± 3.7%. The average intrinsic spatial resolution was 1.30 and 1.38 mm FWHM in the transverse and axial directions, respectively. The maximum-likelihood expectation maximization reconstructed image of a point source in air averaged 0.81 ± 0.11 mm FWHM. The peak noise-equivalent count rate for the mouse-sized phantom was 44 kcps for a total activity of 2.9 MBq (78 μCi), and the scatter fraction was 11%. For the CT subsystem, the value of the modulation transfer function at 10% was 2.05 cycles/mm. Conclusion: The overall performance demonstrates that the G8 can produce high-quality images for molecular imaging-based biomedical research.
Collapse
Affiliation(s)
- Zheng Gu
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California
- Sofie Biosciences, Culver City, California; and
| | - Richard Taschereau
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Nam T Vu
- Sofie Biosciences, Culver City, California; and
| | - David L Prout
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Robert W Silverman
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jason T Lee
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| | - Arion F Chatziioannou
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California
- Sofie Biosciences, Culver City, California; and
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California
| |
Collapse
|
9
|
Mellhammar E, Dahlbom M, Evans-Axelsson S, Strand SE. Preserving Preclinical PET Quality During Intratherapeutic Imaging in Radionuclide Therapy with Rose Metal Shielding Reducing Photon Flux. J Nucl Med 2018; 60:710-715. [PMID: 30389819 DOI: 10.2967/jnumed.118.217117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/05/2018] [Indexed: 11/16/2022] Open
Abstract
Performing PET imaging during ongoing radionuclide therapy can be a promising method to follow tumor response in vivo. However, the high therapeutic activity can interfere with the PET camera performance and degrade both image quality and quantitative capabilities. As a solution, low-energy photon emissions from the therapeutic radionuclide can be highly attenuated, still allowing sufficient detection of annihilation photons in coincidence. Methods: Hollow Rose metal cylinders with walls 2-4 mm thick were used to shield a 22Na point source and a uniform phantom filled with 18F as they were imaged on a preclinical PET camera with increasing activities of 177Lu. A mouse with a subcutaneous tumor was injected with 18F-FDG and imaged with an additional 120 MBq of 177Lu and repeated with shields surrounding the animal. Results: The addition of 177Lu to the volume imaged continuously degraded the image quality with increasing activity. The image quality was improved when shielding was introduced. The shields showed a high ability to produce stable and reproducible results for both spatial resolution and quantification of up to 120 MBq of 177Lu activity (maximum activity tested). Conclusion: Without shielding, the activity quantification will be inaccurate for time points at which therapeutic activities are high. The suggested method shows that the shields reduce the noise induced by the 177Lu and therefore enable longitudinal quantitative intratherapeutic imaging studies.
Collapse
Affiliation(s)
- Emma Mellhammar
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Magnus Dahlbom
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Susan Evans-Axelsson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Sven-Erik Strand
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.,Division of Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Lückerath K, Wei L, Fendler WP, Evans-Axelsson S, Stuparu AD, Slavik R, Mona CE, Calais J, Rettig M, Reiter RE, Herrmann K, Radu CG, Czernin J, Eiber M. Preclinical evaluation of PSMA expression in response to androgen receptor blockade for theranostics in prostate cancer. EJNMMI Res 2018; 8:96. [PMID: 30374743 PMCID: PMC6206308 DOI: 10.1186/s13550-018-0451-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 01/26/2023] Open
Abstract
Background Prostate-specific membrane antigen (PSMA)-directed radioligand therapy (RLT) is a promising yet not curative approach in castration-resistant (CR) prostate cancer (PC). Rational combination therapies may improve treatment efficacy. Here, we explored the effect of androgen receptor blockade (ARB) on PSMA expression visualized by PET and its potential additive effect when combined with 177Lu-PSMA RLT in a mouse model of prostate cancer. Methods Mice bearing human CRPC (C4-2 cells) xenografts were treated with 10 mg/kg enzalutamide (ENZ), with 50 mg/kg bicalutamide (BIC), or vehicle (control) for 21 days. PSMA expression was evaluated by 68Ga-PSMA11 PET/CT and quantified by flow cytometry of tumor fine needle aspirations before treatment and on days 23, 29, 34, and 39 post-therapy induction. For the RLT combination approach, mice bearing C4-2 tumors were treated with 10 mg/kg ENZ or vehicle for 21 days before receiving either 15 MBq (84 GBq/μmol) 177Lu-PSMA617 or vehicle. DNA damage was assessed as phospho-γH2A.X foci in tumor biopsies. Reduction of tumor volume on CT and survival were used as study endpoints. Results Tumor growth was delayed by ARB while 68Ga-PSMA11 uptake increased up to 2.3-fold over time when compared to controls. ABR-induced upregulation of PSMA expression was confirmed by flow cytometry. Phospho-γH2A.X levels increased 1.8- and 3.4-fold at 48 h in response to single treatment ENZ or RLT and ENZ+RLT, respectively. Despite significantly greater DNA damage and persistent increase of PSMA expression at the time of RLT, no additional tumor growth retardation was observed in the ENZ+RLT group (vs. RLT only, p = 0.372 at day 81). Median survival did not improve significantly when ENZ was combined with RLT. Conclusion ARB-mediated increases in PSMA expression in PC xenografts were evident by 68Ga-PSMA11 PET imaging and flow cytometry. 177Lu-PSMA617 effectively decreased C4-2 tumor size. However, while pre-treatment with ARB increased DNA damage significantly, it did not result in synergistic effects when combined with RLT. Electronic supplementary material The online version of this article (10.1186/s13550-018-0451-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina Lückerath
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. .,University of California at Los Angeles, Ahmanson Translational Imaging Division, 10833 Le Conte Ave, 200 Medical Plaza, Ste. B114-61, Los Angeles, CA, 90095-7370, USA.
| | - Liu Wei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, Universitätsklinikum Essen, Essen, Germany
| | | | - Andreea D Stuparu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Roger Slavik
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christine E Mona
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jeremie Calais
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew Rettig
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Robert E Reiter
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Nuclear Medicine, Universitätsklinikum Essen, Essen, Germany
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
11
|
Heinzmann K, Nguyen QD, Honess D, Smith DM, Stribbling S, Brickute D, Barnes C, Griffiths J, Aboagye E. Depicting Changes in Tumor Biology in Response to Cetuximab Monotherapy or Combination Therapy by Apoptosis and Proliferation Imaging Using 18F-ICMT-11 and 18F-FLT PET. J Nucl Med 2018; 59:1558-1565. [PMID: 29794225 PMCID: PMC6167530 DOI: 10.2967/jnumed.118.209304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022] Open
Abstract
Imaging biomarkers must demonstrate their value in monitoring treatment. Two PET tracers, the caspase-3/7-specific isatin-5-sulfonamide 18F-ICMT-11 (18F-(S)-1-((1-(2-fluoroethyl)-1H-[1,2,3]-triazol-4-yl)methyl)-5-(2(2,4-difluoro-phenoxymethyl)-pyrrolidine-1-sulfonyl)isatin) and 18F-FLT (3'-deoxy-3'-18F-fluorothymidine), were used to detect early treatment-induced changes in tumor biology and determine whether any of these changes indicate a response to cetuximab, administered as monotherapy or combination therapy with gemcitabine. Methods: In mice bearing cetuximab-sensitive H1975 tumors (non-small lung cancer), the effects of single or repeated doses of the antiepidermal growth factor receptor antibody cetuximab (10 mg/kg on day 1 only or on days 1 and 2) or a single dose of gemcitabine (125 mg/kg on day 2) were investigated by 18F-ICMT-11 or 18F-FLT on day 3. Imaging was also performed after 2 doses of cetuximab (days 1 and 2) in mice bearing cetuximab-insensitive HCT116 tumors (colorectal cancer). For imaging-histology comparison, tumors were evaluated for proliferation (Ki-67 and thymidine kinase 1 [TK1]), cell death (cleaved caspase-3 and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling [TUNEL]), and target engagement (epidermal growth factor receptor expression) by immunohistochemistry, immunofluorescence, and immunoblotting, respectively. Tumor and plasma were analyzed for thymidine and gemcitabine metabolites by liquid chromatography-mass spectrometry. Results: Retention of both tracers was sensitive to cetuximab in H1975 tumors. 18F-ICMT-11 uptake and ex vivo cleaved caspase-3 staining notably increased in tumors treated with repeated doses of cetuximab (75%) and combination treatment (46%). Although a single dose of cetuximab was insufficient to induce apoptosis, it did affect proliferation. Significant reductions in tumor 18F-FLT uptake (44%-50%; P < 0.001) induced by cetuximab monotherapy and combination therapy were paralleled by a clear decrease in proliferation (Ki-67 decrease, 72%-95%; P < 0.0001), followed by a marked tumor growth delay. TK1 expression and tumor thymidine concentrations were profoundly reduced. Neither imaging tracer depicted the gemcitabine-induced tumor changes. However, cleaved caspase-3 and Ki-67 staining did not significantly differ after gemcitabine treatment whereas TK1 expression and thymidine concentrations increased. No cetuximab-induced modulation of the imaging tracers or other response markers was detected in the insensitive model of HCT116. Conclusion:18F-ICMT-11 and 18F-FLT are valuable tools to assess cetuximab sensitivity depicting distinct and time-variant aspects of treatment response.
Collapse
Affiliation(s)
- Kathrin Heinzmann
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| | - Quang-Dé Nguyen
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| | - Davina Honess
- Cancer Research U.K. Cambridge Institute, Cambridge, United Kingdom
| | | | - Stephen Stribbling
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| | - Diana Brickute
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| | - Chris Barnes
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| | - John Griffiths
- Cancer Research U.K. Cambridge Institute, Cambridge, United Kingdom
| | - Eric Aboagye
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom; and
| |
Collapse
|
12
|
Lückerath K, Stuparu AD, Wei L, Kim W, Radu CG, Mona CE, Calais J, Rettig M, Reiter RE, Czernin J, Slavik R, Herrmann K, Eiber M, Fendler WP. Detection Threshold and Reproducibility of 68Ga-PSMA11 PET/CT in a Mouse Model of Prostate Cancer. J Nucl Med 2018; 59:1392-1397. [PMID: 29602819 DOI: 10.2967/jnumed.118.207704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022] Open
Abstract
To improve prostate-specific membrane antigen (PSMA)-targeted theranostic approaches, robust murine models of prostate cancer are needed. However, important characteristics of preclinical PSMA imaging-that is, the reproducibility of the imaging signal and the relationship between quantitative cell surface PSMA expression and lesion detectability with small-animal PET/CT-have not been defined yet. Methods: Murine prostate cancer RM1 sublines (ras myc transformed cells of C57BL/6 prostate origin) expressing varying levels of human PSMA were injected into the shoulder of C57BL/6 mice on day 0. 68Ga-PSMA11 PET/CT was performed on days 7 and 8 and interpreted by 2 masked readers to determine interday and interreader reproducibility. PSMA expression was quantified on days 7 and 8 by flow cytometry of fine-needle aspiration tumor biopsy samples. Cell surface PSMA expression was correlated with PET signal. The threshold for PET positivity was based on the clinical Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria. Results: The maximum and average percentages of injected 68Ga-PSMA11 activity per gram of tissue (%IA/g) correlated nearly perfectly as determined by 2 independent readers and on 2 separate days (intraclass correlation coefficient, 1.00/0.89 and 0.95/0.88, respectively). The number of PSMA molecules per cell increased from the RM1-yellow fluorescent protein subline (PSMA-; 2,000/cell) to the RM1-low subline (PSMA+; 17,000/cell), the RM1-medium subline (PSMA++; 22,000/cell), and the RM1-PGLS subline (PSMA-positive, green fluorescent protein-positive, and luciferase-positive; PSMA+++; 45,000/cell). Expression levels correlated with the visual positivity rate on 68Ga-PSMA11 PET and with the PSMA PET %IA/g. The PSMA threshold for PET positivity was approximately 20,000 per cell. Signal correlation was close at lower PSMA levels (RM1-low to RM1-medium; 10-23 %IA/g) but was lost at higher PSMA levels (RM1-medium to RM1-PGLS; 23-27 %IA/g). Conclusion: The in vivo relationship between 68Ga-PSMA11 PET/CT and PSMA expression level in a murine model of prostate cancer was robust for lower cell surface PSMA expression levels (≤22,000/cell). Thus, preclinical 68Ga-PSMA11 PET/CT can be used as an imaging biomarker to test PSMA-targeted interventions in murine models.
Collapse
Affiliation(s)
- Katharina Lückerath
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Andreea D Stuparu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Liu Wei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Woosuk Kim
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Christine E Mona
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jeremie Calais
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Matthew Rettig
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Robert E Reiter
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Roger Slavik
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Nuclear Medicine, Universitätsklinikum Essen, Essen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany; and
| | - Matthias Eiber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang P Fendler
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
13
|
Fendler WP, Stuparu AD, Evans-Axelsson S, Lückerath K, Wei L, Kim W, Poddar S, Said J, Radu CG, Eiber M, Czernin J, Slavik R, Herrmann K. Establishing 177Lu-PSMA-617 Radioligand Therapy in a Syngeneic Model of Murine Prostate Cancer. J Nucl Med 2017; 58:1786-1792. [PMID: 28546332 DOI: 10.2967/jnumed.117.193359] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Clinical 177Lu-PSMA-617 radioligand therapy (RLT) is applied in advanced-stage prostate cancer. However, to the best of our knowledge murine models to study the biologic effects of various activity levels have not been established. The aim of this study was to optimize specific and total activity for 177Lu-PSMA-617 RLT in a syngeneic model of murine prostate cancer. Methods: Murine-reconstituted, oncogene-driven prostate cancer cells (0.1 × 106) (RM1), transduced to express human prostate-specific membrane antigen (PSMA), were injected into the left flank of C57Bl6 immunocompetent mice. RLT was performed by administering a single tail vein injection of 177Lu-PSMA-617 at different formulations for specific (60 MBq at high, 62 MBq/nmol; intermediate, 31 MBq/nmol; or low 15 MBq/nmol specific activity) or total activity (30, 60, or 120 MBq). Organ distribution was determined by ex vivo γ-counter measurement. DNA double-strand breaks were measured using anti-gamma-H2A.X (phospho S139) immunohistochemistry. Efficacy was assessed by serial CT tumor volumetry and 18F-FDG PET metabolic volume. Toxicity was evaluated 4 wk after the start of RLT. Results: Mean tumor-to-kidney ratios ± SEM were 19 ± 5, 10 ± 5, and 2 ± 0 for high, intermediate, and low (each n = 3) specific activity, respectively. Four of 6 (67%) mice treated with intermediate or high specific activity and none of 6 (0%) mice treated with low specific activity or formulation demonstrated significant DNA double-strand breaks (≥5% γ-H2A.X-positive cells). High when compared with intermediate or low specific activity resulted in a lower mean ± SEM tumor load by histopathology (vital tissue, 4 ± 2 vs. 8 ± 3 mm2; n = 3 vs. 6), day-4 18F-FDG PET (metabolic volume, 87 ± 23 vs. 118 ± 14 mm3; n = 6 vs. 12), and day-7 CT (volume, 323 ± 122 vs. 590 ± 46 mm3; n = 3 vs. 6; P = 0.039). 177Lu-PSMA-617 (120 MBq) with high specific activity induced superior tumor growth inhibition (P = 0.021, n = 5/group) without subacute hematologic toxicity (n = 3/group). Conclusion:177Lu-PSMA-617 (120 MBq) and high specific activity resulted in the highest efficacy in a syngeneic model of murine prostate cancer. The model will be useful for studying the effects of PSMA-directed RLT combined with potentially synergistic pharmacologic approaches.
Collapse
Affiliation(s)
- Wolfgang P Fendler
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Andreea D Stuparu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Susan Evans-Axelsson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Katharina Lückerath
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Liu Wei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Woosuk Kim
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jonathan Said
- Translational Pathology Core Laboratory, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA; and
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Matthias Eiber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Roger Slavik
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.,Universitätsklinikum Essen, Department of Nuclear Medicine, Essen, Germany
| |
Collapse
|
14
|
Müller C, Vermeulen C, Johnston K, Köster U, Schmid R, Türler A, van der Meulen NP. Preclinical in vivo application of (152)Tb-DOTANOC: a radiolanthanide for PET imaging. EJNMMI Res 2016; 6:35. [PMID: 27108447 PMCID: PMC4842197 DOI: 10.1186/s13550-016-0189-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Terbium has attracted the attention of researchers and physicians due to the existence of four medically interesting radionuclides, potentially useful for SPECT and PET imaging, as well as for α- and β(-)-radionuclide therapy. The aim of this study was to produce (152)Tb (T 1/2 = 17.5 h, Eβ+av = 1140 keV) and evaluate it in a preclinical setting in order to demonstrate its potential for PET imaging. For this purpose, DOTANOC was used for targeting the somatostatin receptor in AR42J tumor-bearing mice. METHODS (152)Tb was produced by proton-induced spallation of tantalum targets, followed by an online isotope separation process at ISOLDE/CERN. After separation of (152)Tb using cation exchange chromatography, it was directly employed for radiolabeling of DOTANOC. PET/CT scans were performed with AR42J tumor-bearing mice at different time points after injection of (152)Tb-DOTANOC which was applied at variable molar peptide amounts. (177)Lu-DOTANOC was prepared and used in biodistribution and SPECT/CT imaging studies for comparison with the PET results. RESULTS After purification, (152)Tb was obtained at activities up to ~600 MBq. Radiolabeling of DOTANOC was achieved at a specific activity of 10 MBq/nmol with a radiochemical purity >98 %. The PET/CT scans of mice allowed visualization of AR42J tumor xenografts and the kidneys, in which the radiopeptide was accumulated. After injection of large peptide amounts, the tumor uptake was reduced as compared to the result after injection of small peptide amounts. PET images of mice, which received (152)Tb-DOTANOC at small peptide amounts, revealed the best tumor-to-kidney ratios. The data obtained with (177)Lu-DOTANOC in biodistribution and SPECT/CT imaging studies confirmed the (152)Tb-based PET results. CONCLUSIONS Production of 30-fold higher quantities of (152)Tb as compared to the previously performed pilot study was feasible. This allowed, for the first time, labeling of a peptide at a reasonable specific activity and subsequent application for in vivo PET imaging. As a β(+)-particle-emitting radiolanthanide, (152)Tb would be of distinct value for clinical application, as it may allow exact prediction of the tissue distribution of therapeutic radiolanthanides.
Collapse
Affiliation(s)
- Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI, Switzerland.
| | - Christiaan Vermeulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI, Switzerland
| | | | | | - Raffaella Schmid
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI, Switzerland
| | - Andreas Türler
- Laboratory of Radiochemistry, Paul Scherrer Institut, Villigen-PSI, Switzerland.,Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, Villigen-PSI, Switzerland. .,Laboratory of Radiochemistry, Paul Scherrer Institut, Villigen-PSI, Switzerland.
| |
Collapse
|
15
|
Abstract
Positron emission tomography (PET) is a powerful noninvasive imaging technique able to measure distinct biological processes in vivo by administration of a radiolabeled probe. Whole-body measurements track the probe accumulation providing a means to measure biological changes such as metabolism, cell location, or tumor burden. PET can also be applied to both preclinical and clinical studies providing three-dimensional information. For immunotherapies (in particular understanding T cell responses), PET can be utilized for spatial and longitudinal tracking of T lymphocytes. Although PET has been utilized clinically for over 30 years, the recent development of additional PET radiotracers have dramatically expanded the use of PET to detect endogenous or adoptively transferred T cells in vivo. Novel probes have identified changes in T cell quantity, location, and function. This has enabled investigators to track T cells outside of the circulation and in hematopoietic organs such as spleen, lymph nodes, and bone marrow, or within tumors. In this review, we cover advances in PET detection of the antitumor T cell response and areas of focus for future studies.
Collapse
|
16
|
Vanhove C, Bankstahl JP, Krämer SD, Visser E, Belcari N, Vandenberghe S. Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance. EJNMMI Phys 2015; 2:31. [PMID: 26560138 PMCID: PMC4642455 DOI: 10.1186/s40658-015-0135-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/05/2015] [Indexed: 11/22/2022] Open
Abstract
Small-animal imaging has become an important technique for the development of new radiotracers, drugs and therapies. Many laboratories have now a combination of different small-animal imaging systems, which are being used by biologists, pharmacists, medical doctors and physicists. The aim of this paper is to give an overview of the important factors in the design of a small animal, nuclear medicine and imaging experiment. Different experts summarize one specific aspect important for a good design of a small-animal experiment.
Collapse
Affiliation(s)
- Christian Vanhove
- Department of Electronics and Information Systems, MEDISIP, Ghent University-iMinds Medical IT-IBiTech, De Pintelaan 185 block B, B-9000, Ghent, Belgium.
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Preclinical Molecular Imaging, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefanie D Krämer
- Radiopharmaceutical Sciences/Biopharmacy, ETH Zurich, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Eric Visser
- Department of Radiology and Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, the Netherlands
| | - Nicola Belcari
- Department of Physics, University of Pisa and INFN sezione di Pisa, 56127 Pisa, Italy
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, Ghent University-iMinds Medical IT-IBiTech, De Pintelaan 185 block B, B-9000, Ghent, Belgium
| |
Collapse
|
17
|
Lee KS, Kim TJ, Pratx G. Single-cell tracking with PET using a novel trajectory reconstruction algorithm. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:994-1003. [PMID: 25423651 PMCID: PMC4392854 DOI: 10.1109/tmi.2014.2373351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Virtually all biomedical applications of positron emission tomography (PET) use images to represent the distribution of a radiotracer. However, PET is increasingly used in cell tracking applications, for which the "imaging" paradigm may not be optimal. Here, we investigate an alternative approach, which consists in reconstructing the time-varying position of individual radiolabeled cells directly from PET measurements. As a proof of concept, we formulate a new algorithm for reconstructing the trajectory of one single moving cell directly from list-mode PET data. We model the trajectory as a 3-D B-spline function of the temporal variable and use nonlinear optimization to minimize the mean-square distance between the trajectory and the recorded list-mode coincidence events. Using Monte Carlo simulations (GATE), we show that this new algorithm can track a single source moving within a small-animal PET system with 3 mm accuracy provided that the activity of the cell [Bq] is greater than four times its velocity [mm/s]. The algorithm outperforms conventional ML-EM as well as the "minimum distance" method used for positron emission particle tracking (PEPT). The new method was also successfully validated using experimentally acquired PET data. In conclusion, we demonstrated the feasibility of a new method for tracking a single moving cell directly from PET list-mode data, at the whole-body level, for physiologically relevant activities and velocities.
Collapse
Affiliation(s)
- Keum Sil Lee
- Department of Radiology, Stanford University, CA 94305 USA
| | - Tae Jin Kim
- Department of Radiation Oncology, Stanford University, CA 94305 USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, CA 94305 USA
| |
Collapse
|
18
|
Haller S, Ametamey SM, Schibli R, Müller C. Investigation of the chick embryo as a potential alternative to the mouse for evaluation of radiopharmaceuticals. Nucl Med Biol 2014; 42:226-33. [PMID: 25533725 DOI: 10.1016/j.nucmedbio.2014.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/14/2014] [Accepted: 10/16/2014] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The chick embryo is an emerging in vivo model in several areas of pre-clinical research including radiopharmaceutical sciences. Herein, it was evaluated as a potential test system for assessing the biodistribution and in vivo stability of radiopharmaceuticals. For this purpose, a number of radiopharmaceuticals labeled with (18)F, (125)I, (99m)Tc, and (177)Lu were investigated in the chick embryo and compared with the data obtained in mice. METHODS Chick embryos were cultivated ex ovo for 17-19 days before application of the radiopharmaceutical directly into the peritoneum or intravenously using a vein of the chorioallantoic membrane (CAM). At a defined time point after application of radioactivity, the embryos were euthanized by shock-freezing using liquid nitrogen. Afterwards they were separated from residual egg components for post mortem imaging purposes using positron emission tomography (PET) or single photon emission computed tomography (SPECT). RESULTS SPECT images revealed uptake of [(99m)Tc]pertechnetate and [(125)I]iodide in the thyroid of chick embryos and mice, whereas [(177)Lu]lutetium, [(18)F]fluoride and [(99m)Tc]-methylene diphosphonate ([(99m)Tc]-MDP) were accumulated in the bones. [(99m)Tc]-dimercaptosuccinic acid ((99m)Tc-DMSA) and the somatostatin analog [(177)Lu]-DOTATOC, as well as the folic acid derivative [(177)Lu]-DOTA-folate showed accumulation in the renal tissue whereas [(99m)Tc]-mebrofenin accumulated in the gall bladder and intestine of both species. In vivo dehalogenation of [(18)F]fallypride and of the folic acid derivative [(125)I]iodo-tyrosine-folate was observed in both species. In contrast, the 3'-aza-2'-[(18)F]fluorofolic acid ([(18)F]-AzaFol) was stable in the chick embryo as well as in the mouse. CONCLUSIONS Our results revealed the same tissue distribution profile and in vivo stability of radiopharmaceuticals in the chick embryo and the mouse. This observation is promising with regard to a potential use of the chick embryo as an inexpensive and simple test model for preclinical screening of novel radiopharmaceuticals.
Collapse
Affiliation(s)
- Stephanie Haller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland; Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland.
| |
Collapse
|
19
|
Witney TH, Pisaneschi F, Alam IS, Trousil S, Kaliszczak M, Twyman F, Brickute D, Nguyen QD, Schug Z, Gottlieb E, Aboagye EO. Preclinical evaluation of 3-18F-fluoro-2,2-dimethylpropionic acid as an imaging agent for tumor detection. J Nucl Med 2014; 55:1506-12. [PMID: 25012458 DOI: 10.2967/jnumed.114.140343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Deregulated cellular metabolism is a hallmark of many cancers. In addition to increased glycolytic flux, exploited for cancer imaging with (18)F-FDG, tumor cells display aberrant lipid metabolism. Pivalic acid is a short-chain, branched carboxylic acid used to increase oral bioavailability of prodrugs. After prodrug hydrolysis, pivalic acid undergoes intracellular metabolism via the fatty acid oxidation pathway. We have designed a new probe, 3-(18)F-fluoro-2,2-dimethylpropionic acid, also called (18)F-fluoro-pivalic acid ((18)F-FPIA), for the imaging of aberrant lipid metabolism and cancer detection. METHODS Cell intrinsic uptake of (18)F-FPIA was measured in murine EMT6 breast adenocarcinoma cells. In vivo dynamic imaging, time course biodistribution, and radiotracer stability testing were performed. (18)F-FPIA tumor retention was further compared in vivo to (18)F-FDG uptake in several xenograft models and inflammatory tissue. RESULTS (18)F-FPIA rapidly accumulated in EMT6 breast cancer cells, with retention of intracellular radioactivity predicted to occur via a putative (18)F-FPIA carnitine-ester. The radiotracer was metabolically stable to degradation in mice. In vivo imaging of implanted EMT6 murine and BT474 human breast adenocarcinoma cells by (18)F-FPIA PET showed rapid and extensive tumor localization, reaching 9.1% ± 0.5% and 7.6% ± 1.2% injected dose/g, respectively, at 60 min after injection. Substantial uptake in the cortex of the kidney was seen, with clearance primarily via urinary excretion. Regarding diagnostic utility, uptake of (18)F-FPIA was comparable to that of (18)F-FDG in EMT6 tumors but superior in the DU145 human prostate cancer model (54% higher uptake; P = 0.002). Furthermore, compared with (18)F-FDG, (18)F-FPIA had lower normal-brain uptake resulting in a superior tumor-to-brain ratio (2.5 vs. 1.3 in subcutaneously implanted U87 human glioma tumors; P = 0.001), predicting higher contrast for brain cancer imaging. Both radiotracers showed increased localization in inflammatory tissue. CONCLUSION (18)F-FPIA shows promise as an imaging agent for cancer detection and warrants further investigation.
Collapse
Affiliation(s)
- Timothy H Witney
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Federica Pisaneschi
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Israt S Alam
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Sebastian Trousil
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Maciej Kaliszczak
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Frazer Twyman
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Quang-Dé Nguyen
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| | - Zachary Schug
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Eyal Gottlieb
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London Faculty of Medicine, London, United Kingdom; and
| |
Collapse
|
20
|
Lajtos I, Czernin J, Dahlbom M, Daver F, Emri M, Farshchi-Heydari S, Forgacs A, Hoh CK, Joszai I, Krizsan AK, Lantos J, Major P, Molnar J, Opposits G, Tron L, Vera DR, Balkay L. Cold wall effect eliminating method to determine the contrast recovery coefficient for small animal PET scanners using the NEMA NU-4 image quality phantom. Phys Med Biol 2014; 59:2727-46. [PMID: 24800813 DOI: 10.1088/0031-9155/59/11/2727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The contrast recovery coefficients (CRC) were evaluated for five different small animal PET scanners: GE Explore Vista, Genisys4, MiniPET-2, nanoScan PC and Siemens Inveon. The NEMA NU-4 2008 performance test with the suggested image quality phantom (NU4IQ) does not allow the determination of the CRC values for the hot regions in the phantom. This drawback of NU4IQ phantom motivated us to develop a new method for this purpose. The method includes special acquisition and reconstruction protocols using the original phantom, and results in an artificially merged image enabling the evaluation of CRC values. An advantageous feature of this method is that it stops the cold wall effect from distorting the CRC calculation. Our suggested protocol results in a set of CRC values contributing to the characterization of small animal PET scanners. GATE simulations were also performed to validate the new method and verify the evaluated CRC values. We also demonstrated that the numerical values of this parameter depend on the actual object contrast of the hot region(s) and this mainly comes from the spillover effect. This effect was also studied while analysing the background activity level around the hot rods. We revealed that the calculated background mean values depended on the target contrast in a scanner specific manner. Performing the artificially merged imaging procedure and additional simulations using the micro hollow sphere (MHS) phantom geometry, we also proved that the inactive wall around the hot spheres can have a remarkable impact on the calculated CRC. In conclusion, we have shown that the proposed artificial merging procedure and the commonly used NU4IQ phantom prescribed by the NEMA NU-4 can easily deliver reliable CRC data otherwise unavailable for the NU4IQ phantom in the conventional protocol or the MHS phantom.
Collapse
Affiliation(s)
- Imre Lajtos
- Department of Nuclear Medicine, Medical Center, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yamane T, Park MJ, Richter D, Nekolla SG, Javadi MS, Lapa C, Samnick S, Buck AK, Herrmann K, Higuchi T. Small-Animal PET Imaging of Isolated Perfused Rat Heart. J Nucl Med 2014; 55:495-9. [DOI: 10.2967/jnumed.113.129429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
|