1
|
Zewail MB, Doghish AS, El-Husseiny HM, Mady EA, Mohammed OA, Elbadry AMM, Elbokhomy AS, Bhnsawy A, El-Dakroury WA. Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management. Biomater Sci 2024. [PMID: 39484700 DOI: 10.1039/d4bm01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as transformative tools in modern drug delivery, offering unparalleled potential in enhancing the efficacy and safety of various therapeutics. In the context of rheumatoid arthritis (RA), a disabling autoimmune disorder characterized by chronic inflammation, joint damage, and limited patient mobility, LNPs hold significant promise for revolutionizing treatment strategies. LNPs offer several advantages over traditional drug delivery systems, including improved pharmacokinetics, enhanced tissue penetration, and reduced systemic toxicity. This article concisely summarizes the pathogenesis of RA, its associated risk factors, and therapeutic techniques and their challenges. Additionally, it highlights the noteworthy advancements made in managing RA through LNPs, including liposomes, niosomes, bilosomes, cubosomes, spanlastics, ethosomes, solid lipid nanoparticles, lipid micelles, lipid nanocapsules, nanostructured lipid carriers, etc. It also delves into the specific functional attributes of these nanocarrier systems, focusing on their role in treating and monitoring RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 17 Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, 10 Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amir S Elbokhomy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdelmenem Bhnsawy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
2
|
Rousseau C, Vuong QL, Gossuin Y, Maes B, Rosolen G. Concurrent photothermal therapy and nuclear magnetic resonance imaging with plasmonic-magnetic nanoparticles: A numerical study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108453. [PMID: 39426140 DOI: 10.1016/j.cmpb.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND AND OBJECTIVE Theranostics is the combination of the diagnostic and therapeutic phases. Here we focus on simultaneous use of photothermal therapy and magnetic resonance imaging, employing a contrast-photothermal agent that converts incident light into heat and affects the transverse relaxation time, a key magnetic resonance imaging parameter. Our work considers a gold-magnetite nanoshell platform to gauge the feasibility of magnetic resonance imaging monitoring of the heating associated with phototherapy, by studying the modification of the transverse relaxation rate induced by laser illumination of a solution containing these hybrid nanoparticles. METHODS We simulate a system composed of an aqueous solution with hybrid nanoshells under continuous laser irradiation, enabling the evaluation of spatial variations of the transverse relaxation rate within the sample. We work with the hybrid nanoshell platform comprising a metal/gold shell for thermoplasmonic effects and a magnetite core for magnetic resonance imaging contrast enhancement. The optical properties of the nanoshells are first obtained through simulations using the finite element method. Next, the heating generated by the laser illumination is calculated by numerical integration. Finally, the transverse relaxation rate is obtained through the application of an analytical model. Additionally, we conduct an optimization of the nanoshell geometry to fulfill requirements of both magnetic resonance imaging and phototherapy techniques. RESULTS Our findings demonstrate a narrow range of nanoshell sizes exhibiting both a plasmonic absorption peak in the human biological window and a high response to laser illumination of the transverse relaxation rate. Furthermore, the illumination can induce up to a 30% modification in transverse relaxation rate compared to the non-illuminated scenario in this range of nanoshell sizes. CONCLUSIONS In this work we establish the numerical understanding of the interplay between phototherapy and nuclear magnetic resonance imaging when employed concurrently. This allows magnetic resonance imaging monitoring of the heating associated with phototherapy.
Collapse
Affiliation(s)
- C Rousseau
- Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| | - Q L Vuong
- Biomedical Physics Unit, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
| | - Y Gossuin
- Biomedical Physics Unit, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
| | - B Maes
- Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
| | - G Rosolen
- Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
3
|
Hong J, Li K, He J, Liang M. A New Age of Drug Delivery: A Comparative Perspective of Ferritin-Drug Conjugates (FDCs) and Antibody-Drug Conjugates (ADCs). Bioconjug Chem 2024; 35:1142-1147. [PMID: 39129506 DOI: 10.1021/acs.bioconjchem.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ferritin-drug conjugates (FDCs) and antibody-drug conjugates (ADCs) respectively represent the innovative and traditional mainstream approaches in drug delivery systems, each offering unique advantages and challenges. This viewpoint delves into the evolving landscape of drug delivery technologies, specifically focusing on FDCs and ADCs. Each method exhibits unique advantages and inherent challenges, shaping their roles in therapeutic applications. The article provides a comparative analysis of two delivery systems, FDCs and ADCs, in terms of targeting accuracy, drug loading capacity, and the nature of the payload itself. This comparison offers valuable insights into the distinct advantages and disadvantages associated with each system, enabling a clearer understanding of their potential applications and limitations in therapeutic contexts. This analysis is crucial for optimizing the use of these delivery systems across varying medical contexts, offering a comprehensive overview of their impact on the field of drug delivery.
Collapse
Affiliation(s)
- Juanji Hong
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kang Li
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiuyang He
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Shahalaei M, Azad AK, Sulaiman WMAW, Derakhshani A, Mofakham EB, Mallandrich M, Kumarasamy V, Subramaniyan V. A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications. Front Chem 2024; 12:1398979. [PMID: 39206442 PMCID: PMC11351095 DOI: 10.3389/fchem.2024.1398979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Metallic nanoparticles (MNPs) have garnered significant attention due to their ability to improve the therapeutic index of medications by reducing multidrug resistance and effectively delivering therapeutic agents through active targeting. In addition to drug delivery, MNPs have several medical applications, including in vitro and in vivo diagnostics, and they improve the biocompatibility of materials and nutraceuticals. MNPs have several advantages in drug delivery systems and genetic manipulation, such as improved stability and half-life in circulation, passive or active targeting into the desired target selective tissue, and gene manipulation by delivering genetic materials. The main goal of this review is to provide current information on the present issues and prospects of MNPs in drug and gene delivery systems. The current study focused on MNP preparation methods and their characterization by different techniques, their applications to targeted delivery, non-viral vectors in genetic manipulation, and challenges in clinical trial translation.
Collapse
Affiliation(s)
- Mona Shahalaei
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Abul Kalam Azad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Atefeh Derakhshani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Banaee Mofakham
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
5
|
Bhattacharya T, Preetam S, Mukherjee S, Kar S, Roy DS, Singh H, Ghose A, Das T, Mohapatra G. Anticancer activity of quantum size carbon dots: opportunities and challenges. DISCOVER NANO 2024; 19:122. [PMID: 39103694 DOI: 10.1186/s11671-024-04069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Research into the anticancer activity of quantum-sized carbon dots (CDs) has emerged as a promising avenue in cancer research. This CDs delves into the opportunities and challenges associated with harnessing the potential of these nanostructures for combating cancer. Quantum-sized carbon dots, owing to their unique physicochemical properties, exhibit distinct advantages as potential therapeutic agents. Opportunities lie in their tunable size, surface functionalization capabilities, and biocompatibility, enabling targeted drug delivery and imaging in cancer cells. However, we include challenges, a comprehensive understanding of the underlying mechanisms, potential toxicity concerns, and the optimization of synthesis methods for enhanced therapeutic efficacy. A succinct summary of the state of the research in this area is given in this review, emphasizing the exciting possibilities and ongoing challenges in utilizing quantum-sized carbon dots as a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sanjukta Kar
- Dietetics and Applied Nutrition, Amity University Kolkata, Kadampukur, India
| | | | - Harshita Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Arak Ghose
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Gautam Mohapatra
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
7
|
Prasad R, Jyothi VGS, Kommineni N, Bulusu RT, Mendes B, Lovell JF, Conde J. Biomimetic Ghost Nanomedicine-Based Optotheranostics for Cancer. NANO LETTERS 2024; 24:8217-8231. [PMID: 38848540 PMCID: PMC11247544 DOI: 10.1021/acs.nanolett.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Theranostic medicine combines diagnostics and therapeutics, focusing on solid tumors at minimal doses. Optically activated photosensitizers are significant examples owing to their photophysical and chemical properties. Several optotheranostics have been tested that convert light to imaging signals, therapeutic radicals, and heat. Upon light exposure, conjugated photosensitizers kill tumor cells by producing reactive oxygen species and heat or by releasing cancer antigens. Despite clinical trials, these molecularly conjugated photosensitizers require protection from their surroundings and a localized direction for site-specific delivery during blood circulation. Therefore, cell membrane biomimetic ghosts have been proposed for precise and safe delivery of these optically active large molecules, which are clinically relevant because of their biocompatibility, long circulation time, bypass of immune cell recognition, and targeting ability. This review focuses on the role of biomimetic nanoparticles in the treatment and diagnosis of tumors through light-mediated diagnostics and therapy, providing insights into their preclinical and clinical status.
Collapse
Affiliation(s)
- Rajendra Prasad
- School
of Biochemical Engineering, Indian Institute
of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Vaskuri G. S. Jyothi
- Department
of Pharmaceutical Sciences, University of
Tennessee Health Science Center (UTHSC), Memphis, Tennessee 38163, United States
| | - Nagavendra Kommineni
- Center
for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ravi Teja Bulusu
- Department
of Pharmaceutical Sciences, Florida A&M
University, Tallahassee, Florida 32307, United States
| | - Bárbara
B. Mendes
- NOVA
Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal
- ToxOmics,
NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon, 1169-056, Portugal
| | - Jonathan F. Lovell
- Department
of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - João Conde
- NOVA
Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal
- ToxOmics,
NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon, 1169-056, Portugal
| |
Collapse
|
8
|
Mesut B, Al-Mohaya M, Gholap AD, Yeşilkaya E, Das U, Akhtar MS, Sah R, Khan S, Moin A, Faiyazuddin M. Demystifying the potential of lipid-based nanocarriers in targeting brain malignancies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03212-6. [PMID: 38963550 DOI: 10.1007/s00210-024-03212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/02/2024] [Indexed: 07/05/2024]
Abstract
Drug targeting for brain malignancies is restricted due to the presence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB), which act as barriers between the blood and brain parenchyma. Certainly, the limited therapeutic options for brain malignancies have made notable progress with enhanced biological understanding and innovative approaches, such as targeted therapies and immunotherapies. These advancements significantly contribute to improving patient prognoses and represent a promising shift in the landscape of brain malignancy treatments. A more comprehensive understanding of the histology and pathogenesis of brain malignancies is urgently needed. Continued research focused on unraveling the intricacies of brain malignancy biology holds the key to developing innovative and tailored therapies that can improve patient outcomes. Lipid nanocarriers are highly effective drug delivery systems that significantly improve their solubility, bioavailability, and stability while also minimizing unwanted side effects. Surface-modified lipid nanocarriers (liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, lipid nanocapsules, lipid-polymer hybrid nanocarriers, lipoproteins, and lipoplexes) are employed to improve BBB penetration and uptake through various mechanisms. This systematic review illuminates and covers various topics related to brain malignancies. It explores the different methods of drug delivery used in treating brain malignancies and delves into the benefits, limitations, and types of brain-targeted lipid-based nanocarriers. Additionally, this review discusses ongoing clinical trials and patents related to brain malignancy therapies and provides a glance into future perspectives for treating this condition.
Collapse
Affiliation(s)
- Burcu Mesut
- Pharmaceutical Technology Department, Faculty of Pharmacy, Istanbul University, Istanbul, 34216, Turkey
| | - Mazen Al-Mohaya
- Institute of Health Sciences, Istanbul University, Istanbul, 34216, Turkey
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Eda Yeşilkaya
- Institute of Health Sciences, Istanbul University, Istanbul, 34216, Turkey
| | - Ushasi Das
- Pharmaceutical Technology Department, Jadavpur University, Kolkata, West Bengal, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, 44600, Nepal.
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India.
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India.
| | | | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 2440, Hail, Saudi Arabia
| | - Md Faiyazuddin
- School of Pharmacy, Al - Karim University, Katihar, 854106, Bihar, India.
- Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Anitha K, Chenchula S, Surendran V, Shvetank B, Ravula P, Milan R, Chikatipalli R, R P. Advancing cancer theranostics through biomimetics: A comprehensive review. Heliyon 2024; 10:e27692. [PMID: 38496894 PMCID: PMC10944277 DOI: 10.1016/j.heliyon.2024.e27692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Nanotheranostics, especially those employing biomimetic approaches, are of substantial interest for molecular imaging and cancer therapy. The incorporation of diagnostics and therapeutics, known as cancer theranostics, represents a promising strategy in modern oncology. Biomimetics, inspired by nature, offers a multidisciplinary avenue with potential in advancing cancer theranostics. This review comprehensively analyses recent progress in biomimetics-based cancer theranostics, emphasizing its role in overcoming current treatment challenges, with a focus on breast, prostate, and skin cancers. Biomimetic approaches have been explored to address multidrug resistance (MDR), emphasizing their role in immunotherapy and photothermal therapy. The specific areas covered include biomimetic drug delivery systems bypassing MDR mechanisms, biomimetic platforms for immune checkpoint blockade, immune cell modulation, and photothermal tumor ablation. Pretargeting techniques enhancing radiotherapeutic agent uptake are discussed, along with a comprehensive review of clinical trials of global nanotheranostics. This review delves into biomimetic materials, nanotechnology, and bioinspired strategies for cancer imaging, diagnosis, and targeted drug delivery. These include imaging probes, contrast agents, and biosensors for enhanced specificity and sensitivity. Biomimetic strategies for targeted drug delivery involve the design of nanoparticles, liposomes, and hydrogels for site-specific delivery and improved therapeutic efficacy. Overall, this current review provides valuable information for investigators, clinicians, and biomedical engineers, offering insights into the latest biomimetics applications in cancer theranostics. Leveraging biomimetics aims to revolutionize cancer diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur, 425405, India
| | - Santenna Chenchula
- Department of Clinical Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, 462020, Madhya Pradesh, India
| | - Vijayaraj Surendran
- Dr Kalam College of Pharmacy, Thanjavur District, Tamil Nadu, 614 623, India
| | - Bhatt Shvetank
- School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, Maharashtra, India
| | - Parameswar Ravula
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Rhythm Milan
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Radhika Chikatipalli
- Sri Venkateshwara College of Pharmacy, Chittoor District, Andhra Pradesh, 517520, India
| | - Padmavathi R
- SVS Medical College, Mahbubnagar, Telangana, India
| |
Collapse
|
10
|
Meenambal R, Kruk T, Jakubowska K, Gurgul J, Szczepanowicz K, Szczęch M, Szyk-Warszyńska L, Warszyński P, Jantas D. Influence of Eu 3+ Doping on Physiochemical Properties and Neuroprotective Potential of Polyacrylic Acid Functionalized Cerium Oxide Nanoparticles. Int J Mol Sci 2024; 25:2501. [PMID: 38473749 DOI: 10.3390/ijms25052501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Cerium oxide nanoparticles (CeONPs) exhibiting antioxidant properties are investigated as potential tools for neurodegenerative diseases. Here, we synthesized polyacrylic acid conjugated cerium oxide (CeO) nanoparticles, and further to enhance their neuroprotective effect, Eu3+ was substituted at different concentrations (5, 10, 15 and 20 mol%) to the CeO, which can also impart fluorescence to the system. CeONPs and Eu-CeONPs in the size range of 15-30 nm were stable at room temperature. The X-ray Photoelectron Spectroscopy (XPS) analysis revealed the chemical state of Eu and Ce components, and we could conclude that all Eu3+ detected on the surface is well integrated into the cerium oxide lattice. The emission spectrum of Eu-CeO arising from the 7F0 → 5D1 MD and 7F0 → 5D2 transitions indicated the Eu3+ ion acting as a luminescence center. The fluorescence of Eu-CeONPs was visualized by depositing them at the surface of positively charged latex particles. The developed nanoparticles were safe for human neuronal-like cells. Compared with CeONPs, Eu-CeONPs at all concentrations exhibited enhanced neuroprotection against 6-OHDA, while the protection trend of Eu-CeO was similar to that of CeO against H2O2 in SH-SY5Y cells. Hence, the developed Eu-CeONPs could be further investigated as a potential theranostic probe.
Collapse
Affiliation(s)
- Rugmani Meenambal
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31-343 Krakow, Poland
| | - Tomasz Kruk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Klaudia Jakubowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31-343 Krakow, Poland
| | - Jacek Gurgul
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Lilianna Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30-239 Krakow, Poland
| | - Danuta Jantas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31-343 Krakow, Poland
| |
Collapse
|
11
|
Jain B, Verma DK, Rawat RN, Berdimurodov E. Nanomaterials in Targeting Cancer Cells with Nanotherapeutics: Transitioning Towards Responsive Systems. Curr Pharm Des 2024; 30:3018-3037. [PMID: 39143881 DOI: 10.2174/0113816128317407240724065912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 08/16/2024]
Abstract
On a global scale, cancer is a difficult and devastating illness. Several problems with current chemotherapies include cytotoxicity, lack of selectivity, stem-like cell growth, and multi-drug resistance. The most appropriate nanomaterials for cancer treatment are those with characteristics, such as cytotoxicity, restricted specificity, and drug capacity and bioavailability; these materials are nanosized (1-100 nm). Nanodrugs are rarely licenced for therapeutic use despite growing research. These compounds need nanocarrier-targeted drug delivery experiments to improve their translation. This review describes new nanomaterials reported in the literature, impediments to their clinical studies, and their beneficial cancer therapeutic use. It also suggests ways to use nanomaterials in cancer therapy more efficiently and describes the intrinsic challenges of cancer treatment and the different nanocarriers and chemicals that can be utilised for specified tumour targeting. Furthermore, it provides a concise overview of cancer theranostics methods, with a focus on those that make use of nanomaterials. Although nanotechnology offers a great source for future advancements in cancer detection and therapy, there is an emerging need for more studies to address the present barriers to clinical translation.
Collapse
Affiliation(s)
- Bhawana Jain
- Siddhachalam Laboratory, Institute of Life Science Research, Raipur, Chhattisgarh, 493221, India
| | - Dakeshwar Kumar Verma
- Department of Medicinal Chemistry, Govt. Digvijay P.G. Autonomous College, Rajnandgaon, 491441, India
| | - Reena Negi Rawat
- Department of Chemistry, Echelon Institute of Technology, Kabulpur, Kheri-Manjhawali Road, Naharpar, Faridabad, 121101, India
| | - Elyor Berdimurodov
- Department of Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
12
|
Barbey C, Wolf H, Wagner R, Pauly D, Breunig M. A shift of paradigm: From avoiding nanoparticular complement activation in the field of nanomedicines to its exploitation in the context of vaccine development. Eur J Pharm Biopharm 2023; 193:119-128. [PMID: 37838145 DOI: 10.1016/j.ejpb.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
The complement system plays a central role in our innate immunity to fight pathogenic microorganisms, foreign and altered cells, or any modified molecule. Consequences of complement activation include cell lysis, release of histamines, and opsonization of foreign structures in preparation for phagocytosis. Because nanoparticles interact with the immune system in various ways and can massively activate the complement system due to their virus-mimetic size and foreign texture, detrimental side effects have been described after administration like pro-inflammatory responses, inflammation, mild to severe anaphylactic crisis and potentially complement activated-related pseudoallergy (CARPA). Therefore, application of nanotherapeutics has sometimes been observed with restraint, and avoiding or even suppressing complement activation has been of utmost priority. In contrast, in the field of vaccine development, particularly protein-based immunogens that are attached to the surface of nanoparticles, may profit from complement activation regarding breadth and potency of immune response. Improved transport to the regional lymph nodes, enhanced antigen uptake and presentation, as well as beneficial effects on immune cells like B-, T- and follicular dendritic cells may be exploited by strategic nanoparticle design aimed to activate the complement system. However, a shift of paradigm regarding complement activation by nanoparticular vaccines can only be achieved if these beneficial effects are accurately elicited and overshooting effects avoided.
Collapse
Affiliation(s)
- Clara Barbey
- Department of Pharmaceutical Technology, University Regensburg, Regensburg, Germany
| | - Hannah Wolf
- Department of Experimental Ophthalmology, University Marburg, Marburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Diana Pauly
- Department of Experimental Ophthalmology, University Marburg, Marburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
13
|
Gupta U, Maity D, Sharma VK. Recent advances of polymeric nanoplatforms for cancer treatment: smart delivery systems (SDS), nanotheranostics and multidrug resistance (MDR) inhibition. Biomed Mater 2023; 19:012003. [PMID: 37944188 DOI: 10.1088/1748-605x/ad0b23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Nanotheranostics is a promising field that combines the benefits of diagnostic and treatment into a single nano-platform that not only administers treatment but also allows for real-time monitoring of therapeutic response, decreasing the possibility of under/over-drug dosing. Furthermore, developing smart delivery systems (SDSs) for cancer theranostics that can take advantage of various tumour microenvironment (TME) conditions (such as deformed tumour vasculature, various over-expressed receptor proteins, reduced pH, oxidative stress, and resulting elevated glutathione levels) can aid in achieving improved pharmacokinetics, higher tumour accumulation, enhanced antitumour efficacy, and/or decreased side effects and multidrug resistance (MDR) inhibition. Polymeric nanoparticles (PNPs) are being widely investigated in this regard due to their unique features such as small size, passive/active targeting possibility, better pharmaceutical kinetics and biological distribution, decreased adverse reactions of the established drugs, inherent inhibitory properties to MDR efflux pump proteins, as well as the feasibility of delivering numerous therapeutic substances in just one design. Hence in this review, we have primarily discussed PNPs based targeted and/or controlled SDSs in which we have elaborated upon different TME mediated nanotheranostic platforms (NTPs) including active/passive/magnetic targeting platforms along with pH/ROS/redox-responsive platforms. Besides, we have elucidated different imaging guided cancer therapeutic platforms based on four major cancer imaging techniques i.e., fluorescence/photo-acoustic/radionuclide/magnetic resonance imaging, Furthermore, we have deliberated some of the most recently developed PNPs based multimodal NTPs (by combining two or more imaging or therapy techniques on a single nanoplatform) in cancer theranostics. Moreover, we have provided a brief update on PNPs based NTP which are recently developed to overcome MDR for effective cancer treatment. Additionally, we have briefly discussed about the tissue biodistribution/tumour targeting efficiency of these nanoplatforms along with recent preclinical/clinical studies. Finally, we have elaborated on various limitations associated with PNPs based nanoplatforms.
Collapse
Affiliation(s)
- Urvashi Gupta
- Department of Bioengineering, Imperial College London, London SW7 2BX, United Kingdom
| | - Dipak Maity
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, United States of America
| |
Collapse
|
14
|
Liu H, Huang Z, Chen H, Zhang Y, Yu P, Hu P, Zhang X, Cao J, Zhou T. A potential strategy against clinical carbapenem-resistant Enterobacteriaceae: antimicrobial activity study of sweetener-decorated gold nanoparticles in vitro and in vivo. J Nanobiotechnology 2023; 21:409. [PMID: 37932843 PMCID: PMC10626710 DOI: 10.1186/s12951-023-02149-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) present substantial challenges to clinical intervention, necessitating the formulation of novel antimicrobial strategies to counteract them. Nanomaterials offer a distinctive avenue for eradicating bacteria by employing mechanisms divergent from traditional antibiotic resistance pathways and exhibiting reduced susceptibility to drug resistance development. Non-caloric artificial sweeteners, commonly utilized in the food sector, such as saccharin, sucralose, acesulfame, and aspartame, possess structures amenable to nanomaterial formation. In this investigation, we synthesized gold nanoparticles decorated with non-caloric artificial sweeteners and evaluated their antimicrobial efficacy against clinical CRE strains. RESULTS Among these, gold nanoparticles decorated with aspartame (ASP_Au NPs) exhibited the most potent antimicrobial effect, displaying minimum inhibitory concentrations ranging from 4 to 16 µg/mL. As a result, ASP_Au NPs were chosen for further experimentation. Elucidation of the antimicrobial mechanism unveiled that ASP_Au NPs substantially elevated bacterial reactive oxygen species (ROS) levels, which dissipated upon ROS scavenger treatment, indicating ROS accumulation within bacteria as the fundamental antimicrobial modality. Furthermore, findings from membrane permeability assessments suggested that ASP_Au NPs may represent a secondary antimicrobial modality via enhancing inner membrane permeability. In addition, experiments involving crystal violet and confocal live/dead staining demonstrated effective suppression of bacterial biofilm formation by ASP_Au NPs. Moreover, ASP_Au NPs demonstrated notable efficacy in the treatment of Galleria mellonella bacterial infection and acute abdominal infection in mice, concurrently mitigating the organism's inflammatory response. Crucially, evaluation of in vivo safety and biocompatibility established that ASP_Au NPs exhibited negligible toxicity at bactericidal concentrations. CONCLUSIONS Our results demonstrated that ASP_Au NPs exhibit promise as innovative antimicrobial agents against clinical CRE.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Huanchang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Pingting Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jianming Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Sun Y, Tan Y, Yan D, Gui Y, Luo W, Zhu D, Wang D, Tang BZ. Recent advances of AIE-active materials for orthotopic tumor phototheranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1906. [PMID: 37264521 DOI: 10.1002/wnan.1906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/03/2023]
Abstract
Cancer ranks as a leading threat to human life and health. Compared to conventional cancer treatments, phototheranostics shares the advantages of integrated diagnosis and therapy, outstanding therapeutic performance and good controllability. Amid diverse phototheranostic agents, small organic luminogens with aggregation-induced emission (AIEgen) tendency show predominant advantages in terms of superior photostability, large Stokes shifts, and boosted theranostic capacity as aggregates. In the past two decades, AIE-active materials have demonstrated formidable applications in disease theranostics, especially for tumors. This review mainly highlights the recent advances of orthotopic tumor phototheranostics mediated by AIEgens with a classification of different organs. Additionally, a brief discussion of current bottlenecks and future directions is outlined. We believe this review can deepen the understanding and spur more innovations on tumor theranostics by employing AIEgens. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yan Sun
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Yonghong Tan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Yixiong Gui
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Wenshuai Luo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Dongxia Zhu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Dong Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
16
|
Gilad H, Barhum H, Ushkov A, Machnev A, Ofer D, Bobrovs V, Ginzburg P. Gilded vaterite optothermal transport in a bubble. Sci Rep 2023; 13:12158. [PMID: 37500742 PMCID: PMC10374586 DOI: 10.1038/s41598-023-39068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Laser beams, capable of controlling the mechanical motion of micron-scale objects, can serve as a tool, enabling investigations of numerous interaction scenarios under full control. Beyond pure electromagnetic interactions, giving rise to conventional gradient forces and radiation pressure, environment-induced thermal effects can play a role and, in certain cases, govern the dynamics. Here we explore a thermocapillary Marangoni effect, which is responsible for creating long-range few hundreds of nano-Newton forces, acting on a bubble around a 'gilded vaterite' nanoparticle. Decorating calcium carbonate spherulite (the vaterite) with gold nanoseeds allows tuning its optical absorption and, as a result, controlling its temperature in a solution. We demonstrate that keeping a balance between electromagnetic and thermal interactions allows creating of a stable micron-scale bubble around the particle and maintaining its size over time. The bubbles are shown to remain stable over minutes even after the light source is switched off. The bubbles were shown to swim toward a laser focus for over 400-µm distances across the sample. Optothermal effects, allowing for efficient transport, stable bubble creation, and particle-fluid interaction control, can grant nano-engineered drug delivery capsules with additional functions toward a theragnostic paradigm shift.
Collapse
Affiliation(s)
- Hod Gilad
- Department of Electrical Engineering, Tel Aviv University, 69978, Ramat Aviv, Tel Aviv, Israel.
- Light-Matter Interaction Centre, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Hani Barhum
- Department of Electrical Engineering, Tel Aviv University, 69978, Ramat Aviv, Tel Aviv, Israel
- Light-Matter Interaction Centre, Tel Aviv University, 69978, Tel Aviv, Israel
- Triangle Regional Research and Development Center, 3007500, Kfar Qara, Israel
| | - Andrey Ushkov
- Department of Electrical Engineering, Tel Aviv University, 69978, Ramat Aviv, Tel Aviv, Israel
- Light-Matter Interaction Centre, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Andrey Machnev
- Department of Electrical Engineering, Tel Aviv University, 69978, Ramat Aviv, Tel Aviv, Israel
- Light-Matter Interaction Centre, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Daniel Ofer
- Department of Electrical Engineering, Tel Aviv University, 69978, Ramat Aviv, Tel Aviv, Israel
- Light-Matter Interaction Centre, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Vjačeslavs Bobrovs
- Institute of Telecommunications, Riga Technical University, Azenes Street 12, Riga, 1048, Latvia
| | - Pavel Ginzburg
- Department of Electrical Engineering, Tel Aviv University, 69978, Ramat Aviv, Tel Aviv, Israel
- Light-Matter Interaction Centre, Tel Aviv University, 69978, Tel Aviv, Israel
| |
Collapse
|
17
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
18
|
Hosseini SM, Mohammadnejad J, Najafi-Taher R, Zadeh ZB, Tanhaei M, Ramakrishna S. Multifunctional Carbon-Based Nanoparticles: Theranostic Applications in Cancer Therapy and Diagnosis. ACS APPLIED BIO MATERIALS 2023; 6:1323-1338. [PMID: 36921253 DOI: 10.1021/acsabm.2c01000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Cancer diagnosis and treatment are the most critical challenges in modern medicine. Conventional cancer treatments no longer meet the needs of the health field due to the high rate of mutations and epigenetic factors that have caused drug resistance in tumor cells. Hence, the search for unique methods and factors is quickly expanding. The development of nanotechnology in medicine and the search for a system to integrate treatment and diagnosis to achieve an effective approach to overcome the known limitations of conventional treatment methods have led to the emergence of theranostic nanoparticles and nanosystems based on these nanoparticles. An influential group of these nanoparticles is carbon-based theranostic nanoparticles. These nanoparticles have received significant attention due to their unique properties, such as electrical conductivity, high strength, excellent surface chemistry, and wide range of structural diversity (graphene, nanodiamond, carbon quantum dots, fullerenes, carbon nanotubes, and carbon nanohorns). These nanoparticles were widely used in various fields, such as tissue engineering, drug delivery, imaging, and biosensors. In this review, we discuss in detail the recent features and advances in carbon-based theranostic nanoparticles and the advanced and diverse strategies used to treat diseases with these nanoparticles.
Collapse
Affiliation(s)
- Seyed Mohammad Hosseini
- Department of Life Science Engineering Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran 1439957131, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering Faculty of Modern Science and Technology, Nano Biotechnology Group, University of Tehran, Tehran 1439957131, Iran
| | - Roqya Najafi-Taher
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 11114115, Iran
| | - Zahra Beiram Zadeh
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Mohammad Tanhaei
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
19
|
Vega JD, Hara D, Schmidt RM, Abuhaija MB, Tao W, Dogan N, Pollack A, Ford JC, Shi J. In vivo active-targeting fluorescence molecular imaging with adaptive background fluorescence subtraction. Front Oncol 2023; 13:1130155. [PMID: 36998445 PMCID: PMC10043309 DOI: 10.3389/fonc.2023.1130155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Using active tumor-targeting nanoparticles, fluorescence imaging can provide highly sensitive and specific tumor detection, and precisely guide radiation in translational radiotherapy study. However, the inevitable presence of non-specific nanoparticle uptake throughout the body can result in high levels of heterogeneous background fluorescence, which limits the detection sensitivity of fluorescence imaging and further complicates the early detection of small cancers. In this study, background fluorescence emanating from the baseline fluorophores was estimated from the distribution of excitation light transmitting through tissues, by using linear mean square error estimation. An adaptive masked-based background subtraction strategy was then implemented to selectively refine the background fluorescence subtraction. First, an in vivo experiment was performed on a mouse intratumorally injected with passively targeted fluorescent nanoparticles, to validate the reliability and robustness of the proposed method in a stringent situation wherein the target fluorescence was overlapped with the strong background. Then, we conducted in vivo studies on 10 mice which were inoculated with orthotopic breast tumors and intravenously injected with actively targeted fluorescent nanoparticles. Results demonstrated that active targeting combined with the proposed background subtraction method synergistically increased the accuracy of fluorescence molecular imaging, affording sensitive tumor detection.
Collapse
Affiliation(s)
- Jorge D. Vega
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Daiki Hara
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Ryder M. Schmidt
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Marwan B. Abuhaija
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nesrin Dogan
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - John C. Ford
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- *Correspondence: John C. Ford, ; Junwei Shi,
| | - Junwei Shi
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: John C. Ford, ; Junwei Shi,
| |
Collapse
|
20
|
Zhang P, Cui Y, Wang J, Cheng J, Zhu L, Liu C, Yue S, Pang R, Guan J, Xie B, Zhang N, Qin M, Jing L, Hou Y, Lan Y. Dual-stimuli responsive smart nanoprobe for precise diagnosis and synergistic multi-modalities therapy of superficial squamous cell carcinoma. J Nanobiotechnology 2023; 21:4. [PMID: 36597067 PMCID: PMC9808965 DOI: 10.1186/s12951-022-01759-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Although the promising advancements of current therapeutic approaches is available for the squamous cell carcinoma (SCC) patients, the clinical treatment of SCC still faces many difficulties. The surgical irreparable disfigurement and the postoperative wound infection largely hamper the recovery, and the chemo/radiotherapy leads to toxic side effects. RESULTS Herein, a novel pH/Hyaluronidase (HAase) dual-stimuli triggered smart nanoprobe FeIIITA@HA has been designed through the biomineralization of Fe3+ and polyphenol tannic acid (TA) under the control of hyaluronic acid (HA) matrix. With the HA residues on the outer surface, FeIIITA@HA nanoprobes can specifically target the SCC cells through the over-expressed CD44, and accumulate in the carcinoma region after intravenously administration. The abundant HAase in carcinoma microenvironment will trigger the degradation of HA molecules, thereby exposing the FeIIITA complex. After ingesting by tumor cells via CD44 mediated endocytosis, the acidic lysosomal condition will further trigger the protonation of TA molecules, finally leading to the Fe3+ release of nanoprobe, and inducing a hybrid ferroptosis/apoptosis of tumor cells through peroxidase activity and glutathione depletion. In addition, Owing to the outstanding T1 magnetic resonance imaging (MRI) performance and phototermal conversion efficiency of nanoprobes, the MRI-guided photothermal therapy (PTT) can be also combined to complement the Fe3+-induced cancer therapy. Meanwhile, it was also found that the nanoprobes can promote the recruitment of CD4+ and CD8+ T cells to inhibit the tumor growth through the cytokines secretion. In addition, the FeIIITA@HA nanoprobes can be eliminated from the body and no obvious adverse side effect can be found in histological analysis, which confirmed the biosafety of them. CONCLUSION The current FeIIITA@HA nanoprobe has huge potential in clinical translation in the field of precise diagnosis and intelligent synergistic therapy of superficial SCC. This strategy will promisingly avoid the surgical defects, and reduce the systemic side effect of traditional chemotherapy, paving a new way for the future SCC treatment.
Collapse
Affiliation(s)
- Peisen Zhang
- grid.79703.3a0000 0004 1764 3838Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, 510180 Guangzhou, China ,grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Yingying Cui
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Jian Wang
- grid.506261.60000 0001 0706 7839Department of Head and Neck Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China ,grid.13291.380000 0001 0807 1581Department of Psychiatry, West China Hospital, National Chengdu Center for Safety Evaluation of Drugs, Sichuan University, Chengdu, 610041 China
| | - Junwei Cheng
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Lichong Zhu
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Chuang Liu
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Saisai Yue
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Runxin Pang
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Jiaoqiong Guan
- grid.79703.3a0000 0004 1764 3838Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, 510180 Guangzhou, China
| | - Bixia Xie
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Ni Zhang
- grid.13291.380000 0001 0807 1581Department of Psychiatry, West China Hospital, National Chengdu Center for Safety Evaluation of Drugs, Sichuan University, Chengdu, 610041 China ,grid.9227.e0000000119573309Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Meng Qin
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China ,grid.13291.380000 0001 0807 1581Department of Psychiatry, West China Hospital, National Chengdu Center for Safety Evaluation of Drugs, Sichuan University, Chengdu, 610041 China ,grid.9227.e0000000119573309Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Lihong Jing
- grid.9227.e0000000119573309Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Yi Hou
- grid.48166.3d0000 0000 9931 8406College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029 China
| | - Yue Lan
- grid.79703.3a0000 0004 1764 3838Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, 510180 Guangzhou, China
| |
Collapse
|
21
|
Dristant U, Mukherjee K, Saha S, Maity D. An Overview of Polymeric Nanoparticles-Based Drug Delivery System in Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231152083. [PMID: 36718541 PMCID: PMC9893377 DOI: 10.1177/15330338231152083] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Cancer is recognized as one of the world's deadliest diseases, with more than 10 million new cases each year. Over the past 2 decades, several studies have been performed on cancer to pursue solutions for effective treatment. One of the vital benefits of utilizing nanoparticles (NPs) in cancer treatment is their high adaptability for modification and amalgamation of different physicochemical properties to boost their anti-cancer activity. Various nanomaterials have been designed as nanocarriers attributing nontoxic and biocompatible drug delivery systems with improved bioactivity. The present review article briefly explained various types of nanocarriers, such as organic-inorganic-hybrid NPs, and their targeting mechanisms. Here a special focus is given to the synthesis, benefits, and applications of polymeric NPs (PNPs) involved in various anti-cancer therapeutics. It has also been discussed about the drug delivery approach by the functionalized/encapsulated PNPs (without/with targeting ability) that are being applied in the therapy and diagnostic (theranostics). Overall, this review can give a glimpse into every aspect of PNPs, from their synthesis to drug delivery application for cancer cells.
Collapse
Affiliation(s)
- Utkarsh Dristant
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
22
|
Sobhana S, Sarathy NP, Karthikeyan L, Shanthi K, Vivek R. Ultra-small NIR-Responsive Nanotheranostic Agent for Targeted Photothermal Ablation Induced Damage-Associated Molecular Patterns (DAMPs) from Post-PTT of Tumor Cells Activate Immunogenic Cell Death. Nanotheranostics 2023; 7:41-60. [PMID: 36593797 PMCID: PMC9760365 DOI: 10.7150/ntno.76720] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 01/04/2023] Open
Abstract
Theranostic nanoparticles (TNPs) is an efficient avenue that culminates both diagnosis and therapy into cancer treatment. Herein, we have formulated a theranostic nanocomposite (NC) with CuS being the ultra-small core component. To ensure stability to the NC, PEI was added which is a vital anchoring group polymer, especially on sulfide surfaces, and adds quality by being a better stabilizer and reducing agent. Additionally, to add stability, specificity, and added photothermal efficiency to the fabricated NC. In addition, encapsulation of indocyanine green (ICG), an efficient NIR absorber, and Folic acid (FA) were conjugated systematically, characterized, and analyzed for photo-stability. The photothermal conversion efficiency of the novel NC (CuS-PEI-ICG-FA) was analyzed at 808 nm, where the NC efficiently converted light energy to heat energy. The NC was also tested for hemocompatibility to clarify and also determined biocompatibility. Surprisingly, damage-associated molecular patterns (DAMPs) from post-PTT of tumor cells activate immunogenic cell death (ICD) for tumor-specific immune responses. The deserving photothermal performance and photo-stability makes the NC an ideal platform for photoacoustic imaging (PAI). A superior contrast was observed for PAI in a concentration-dependent manner enhancing the level of penetration into tissues, thereby better imaging. On account of this study, the newly formulated NC could be utilized as a "nanotheranostic" designed for therapeutic and image diagnostic agent of cancer biomedical applications.
Collapse
Affiliation(s)
- Shankar Sobhana
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), Department of Zoology, Bharathiar University, Coimbatore-641 046, TN, India
| | - Namratha Partha Sarathy
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), Department of Zoology, Bharathiar University, Coimbatore-641 046, TN, India
| | - Laxmanan Karthikeyan
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), Department of Zoology, Bharathiar University, Coimbatore-641 046, TN, India
| | - Krishnamurthy Shanthi
- Department of Biochemistry, Prof. Dhanapalan College of Science and Management, Chennai, India
| | - Raju Vivek
- Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), Department of Zoology, Bharathiar University, Coimbatore-641 046, TN, India.,✉ Corresponding author: Raju Vivek, E-mail: . Bio-Nano Therapeutics Research Laboratory, Cancer Research Program (CRP), Department of Zoology, Bharathiar University, Coimbatore-641 046, TN, India
| |
Collapse
|
23
|
Chronobiology and Nanotechnology for Personalized Cancer Therapy. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
24
|
Nguyen PV, Allard-Vannier E, Aubrey N, Labrugère-Sarroste C, Chourpa I, Sobilo J, Le Pape A, Hervé-Aubert K. Radiolabeling, Quality Control and In Vivo Imaging of Multimodal Targeted Nanomedicines. Pharmaceutics 2022; 14:pharmaceutics14122679. [PMID: 36559172 PMCID: PMC9784797 DOI: 10.3390/pharmaceutics14122679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Following our previous study on the development of EGFR-targeted nanomedicine (NM-scFv) for the active delivery of siRNA in EGFR-positive cancers, this study focuses on the development and the quality control of a radiolabeling method to track it in in vivo conditions with nuclear imaging. Our NM-scFv is based on the electrostatic complexation of targeted nanovector (NV-scFv), siRNA and two cationic polymers. NV-scFv comprises an inorganic core, a fluorescent dye, a polymer layer and anti-EGFR ligands. To track NM-scFv in vivo with nuclear imaging, the DTPA chemistry was used to radiolabel NM-scFv with 111In. DTPA was thiolated and introduced onto NV-scFv via the maleimide chemistry. To obtain suitable radiolabeling efficiency, different DTPA/NV-scFv ratios were tested, including 0.03, 0.3 and 0.6. At the optimized ratio (where the DTPA/NV-scFv ratio was 0.3), a high radiolabeling yield was achieved (98%) and neither DTPA-derivatization nor indium-radiolabeling showed any impact on NM-scFv’s physicochemical characteristics (DH ~100 nm, PDi < 0.24). The selected NM-scFv-DTPA demonstrated good siRNA protection capacity and comparable in vitro transfection efficiency into EGFR-overexpressing cells in comparison to that of non-derivatized NM-scFv (around 67%). Eventually, it was able to track both qualitatively and quantitatively NM-scFv in in vivo environments with nuclear imaging. Both the radiolabeling and the NM-scFv showed a high in vivo stability level. Altogether, a radiolabeling method using DTPA chemistry was developed with success in this study to track our NM-scFv in in vivo conditions without any impact on its active targeting and physicochemical properties, highlighting the potential of our NM-scFv for future theranostic applications in EGFR-overexpressing cancers.
Collapse
Affiliation(s)
- Phuoc-Vinh Nguyen
- EA6295 Nanomedicines and Nanoprobes, University of Tours, 37000 Tours, France
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | | | - Nicolas Aubrey
- ISP UMR 1282, INRA, BioMAP, University of Tours, 37000 Tours, France
| | | | - Igor Chourpa
- EA6295 Nanomedicines and Nanoprobes, University of Tours, 37000 Tours, France
| | | | | | - Katel Hervé-Aubert
- EA6295 Nanomedicines and Nanoprobes, University of Tours, 37000 Tours, France
- Correspondence:
| |
Collapse
|
25
|
Fluorescent nanodiamond for nanotheranostic applications. Mikrochim Acta 2022; 189:447. [DOI: 10.1007/s00604-022-05545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
26
|
Smith L, Kuncic Z, Byrne HL, Waddington D. Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractThe development of nanoparticle agents for MRI-guided radiotherapy is growing at an increasing pace, with clinical trials now underway and many pre-clinical evaluation studies ongoing. Gadolinium and iron-oxide-based nanoparticles remain the most clinically advanced nanoparticles to date, although several promising candidates are currently under varying stages of development. Goals of current and future generation nanoparticle-based contrast agents for MRI-guided radiotherapy include achieving positive signal contrast on T1-weighted MRI scans, local radiation enhancement at clinically relevant concentrations and, where applicable, avoidance of uptake by the reticuloendothelial system. Exploiting the enhanced permeability and retention effect or the use of active targeting ligands on nanoparticle surfaces is utilised to promote tumour uptake. This review outlines the current status of promising nanoparticle agents for MRI-guided radiation therapy, including several platforms currently undergoing clinical evaluation or at various stages of the pre-clinical development process. Challenges facing nanoparticle agents and possible avenues for current and future development are discussed.
Collapse
|
27
|
Liu Y, Wang Z, Miao K, Zhang X, Li W, Zhao P, Sun P, Zheng T, Zhang X, Chen C. Research progress on near-infrared long persistent phosphor materials in biomedical applications. NANOSCALE ADVANCES 2022; 4:4972-4996. [PMID: 36504755 PMCID: PMC9680941 DOI: 10.1039/d2na00426g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
After excitation is stopped, long persistent phosphor materials (LPPs) can emit light for a long time. The most important feature is that it allows the separation of excitation and emission in time. Therefore, it plays a vital role in various fields such as data storage, information technology, and biomedicine. Owing to the unique mechanism of storage and luminescence, LPPs can avoid the interference of sample autofluorescence, as well as show strong tissue penetration ability, good afterglow performance, and rich spectral information in the near-infrared (NIR) region, which provides a broad prospect for the application of NIR LPPs in the field of biomedicine. In recent years, the development and applications in biomedical fields have been advanced significantly, such as biological imaging, sensing detection, and surgical guidance. In this review, we focus on the synthesis methods and luminescence mechanisms of different types of NIR LPPs, as well as their applications in bioimaging, biosensing detection, and cancer treatment in the field of biomedicine. Finally, future prospects and challenges of NIR LPPs in biomedical applications are also discussed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Zengxue Wang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Kun Miao
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Xundi Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Wei Li
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Pan Zhao
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Peng Sun
- Innovative of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Tingting Zheng
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Xiuyun Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| |
Collapse
|
28
|
Massironi N, Colombo M, Cosentino C, Fiandra L, Mauri M, Kayal Y, Testa F, Torri G, Urso E, Vismara E, Vlodavsky I. Heparin-Superparamagnetic Iron Oxide Nanoparticles for Theranostic Applications. Molecules 2022; 27:molecules27207116. [PMID: 36296711 PMCID: PMC9611043 DOI: 10.3390/molecules27207116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
In this study, superparamagnetic iron oxide nanoparticles (SPIONs) were engineered with an organic coating composed of low molecular weight heparin (LMWH) and bovine serum albumin (BSA), providing heparin-based nanoparticle systems (LMWH@SPIONs). The purpose was to merge the properties of the heparin skeleton and an inorganic core to build up a targeted theranostic nanosystem, which was eventually enhanced by loading a chemotherapeutic agent. Iron oxide cores were prepared via the co-precipitation of iron salts in an alkaline environment and oleic acid (OA) capping. Dopamine (DA) was covalently linked to BSA and LMWH by amide linkages via carbodiimide coupling. The following ligand exchange reaction between the DA-BSA/DA-LMWH and OA was conducted in a biphasic system composed of water and hexane, affording LMWH@SPIONs stabilized in water by polystyrene sulfonate (PSS). Their size and morphology were investigated via dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The LMWH@SPIONs’ cytotoxicity was tested, showing marginal or no toxicity for samples prepared with PSS at concentrations of 50 µg/mL. Their inhibitory activity on the heparanase enzyme was measured, showing an effective inhibition at concentrations comparable to G4000 (N-desulfo-N-acetyl heparin, a non-anticoagulant and antiheparanase heparin derivative; Roneparstat). The LMWH@SPION encapsulation of paclitaxel (PTX) enhanced the antitumor effect of this chemotherapeutic on breast cancer cells, likely due to an improved internalization of the nanoformulated drug with respect to the free molecule. Lastly, time-domain NMR (TD-NMR) experiments were conducted on LMWH@SPIONs obtaining relaxivity values within the same order of magnitude as currently used commercial contrast agents.
Collapse
Affiliation(s)
- Nicolò Massironi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126 Milan, Italy
| | - Cesare Cosentino
- Istituto di Ricerche Chimiche e Biochimiche “Giuliana Ronzoni”, 20133 Milan, Italy
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126 Milan, Italy
| | - Michele Mauri
- Department of Materials Science, University of Milano Bicocca, 20125 Milan, Italy
| | - Yasmina Kayal
- Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa 2611001, Israel
| | - Filippo Testa
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126 Milan, Italy
| | - Giangiacomo Torri
- Istituto di Ricerche Chimiche e Biochimiche “Giuliana Ronzoni”, 20133 Milan, Italy
- Correspondence: (G.T.); (E.V.); Tel.: +39-02-7064-1624 (G.T.); +39-02-2399-3088 (E.V.)
| | - Elena Urso
- Istituto di Ricerche Chimiche e Biochimiche “Giuliana Ronzoni”, 20133 Milan, Italy
| | - Elena Vismara
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
- Correspondence: (G.T.); (E.V.); Tel.: +39-02-7064-1624 (G.T.); +39-02-2399-3088 (E.V.)
| | - Israel Vlodavsky
- Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa 2611001, Israel
| |
Collapse
|
29
|
Akinjole O, Honaryar H, Coulibaly FS, Niroobakhsh Z, Youan BBC. Rheological analysis of a novel phenylboronic acid-closomer gel. Int J Pharm 2022; 626:122070. [PMID: 36041591 DOI: 10.1016/j.ijpharm.2022.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/30/2022]
Abstract
This study aims to characterize the rheological behavior of a novel phenylboronic acid (PBA)-based closomer nanoconjugate (Closogel) with potential application in pharmaceutical formulation. PBA was used as a cross-linking agent and model (antiviral) drug. The PBA loaded Closogel chemical structure was analyzed by boron (11B) NMR and Fourier transform infrared (FTIR) spectroscopy. The Closogel and control hydroxyethyl cellulose (HEC) gel were analyzed under oscillatory and continuous shear rheometry followed by mathematical modeling to characterize the gel flow behavior. The chemical analysis confirmed the existence of characteristic borate esters peaks and Boron chemical shifts within Closogel spectra. Due to its more flexible molecular structure, undiluted Closogel exhibited lower, yield stress, viscosity and relaxation time (30 Pa &163 Pa.s & 0.21 s vs 45 Pa &301 Pa.s & 0.39 s for HEC). Both Closogel and HEC gels exhibited a thixotropic behavior. The plastic undiluted and pseudoplastic 2.5 % w/v aqueous Closogels were more viscous than elastic (tan (δ) > 1) in the linear viscoelastic range. The Herschel-Bulkley model showed a significant fitting to all experimental data (R2 > 0.95). The 0.25 % w/v aqueous Closogel nearly exhibited a Newtonian behavior with a flow index of 0.93. These data suggest that PBA loaded Closomer-based gels have similar rheological behavior, with lower complex modulus than that of HEC gels, and they can be a promising platform used for delivery of topical antiviral or other bioactive agents.
Collapse
Affiliation(s)
- Omowumi Akinjole
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| | - Houman Honaryar
- School of Computing and Engineering, University of Missouri - Kansas City, 5100 Rockhill Road, Kansas City 64110, MO, USA.
| | - Fohona S Coulibaly
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| | - Zahra Niroobakhsh
- School of Computing and Engineering, University of Missouri - Kansas City, 5100 Rockhill Road, Kansas City 64110, MO, USA.
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, 2464 Charlotte, Kansas City 64108, MO, USA.
| |
Collapse
|
30
|
Miola M, Multari C, Vernè E. Iron Oxide-Au Magneto-Plasmonic Heterostructures: Advances in Their Eco-Friendly Synthesis. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7036. [PMID: 36234377 PMCID: PMC9573543 DOI: 10.3390/ma15197036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In recent years, nanotechnologies have attracted considerable interest, especially in the biomedical field. Among the most investigated particles, magnetic based on iron oxides and Au nanoparticles gained huge interest for their magnetic and plasmonic properties, respectively. These nanoparticles are usually produced starting from processes and reagents that can be the cause of potential human health and environmental concerns. For this reason, there is a need to develop simple, green, low-cost, and non-toxic synthesis methods and reagents. This review aims at providing an overview of the most recently developed processes to produce iron oxide magnetic nanoparticles, Au nanoparticles, and their magneto-plasmonic heterostructures using eco-friendly approaches, focusing the attention on the microorganisms and plant-assisted syntheses and showing the first results of the development of magneto-plasmonic heterostructures.
Collapse
|
31
|
Duceac IA, Coseri S. Biopolymers and their derivatives: Key components of advanced biomedical technologies. Biotechnol Adv 2022; 61:108056. [DOI: 10.1016/j.biotechadv.2022.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
32
|
Organ-specific therapeutic nanoparticles generates radiolucent reactive species for potential nanotheranostics using conventional X-ray technique in mammals. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Deng S, Gu J, Jiang Z, Cao Y, Mao F, Xue Y, Wang J, Dai K, Qin L, Liu K, Wu K, He Q, Cai K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnology 2022; 20:415. [PMID: 36109734 PMCID: PMC9479390 DOI: 10.1186/s12951-022-01613-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal cancer (GIC) is a common malignant tumour of the digestive system that seriously threatens human health. Due to the unique organ structure of the gastrointestinal tract, endoscopic and MRI diagnoses of GIC in the clinic share the problem of low sensitivity. The ineffectiveness of drugs and high recurrence rates in surgical and drug therapies are the main factors that impact the curative effect in GIC patients. Therefore, there is an urgent need to improve diagnostic accuracies and treatment efficiencies. Nanotechnology is widely used in the diagnosis and treatment of GIC by virtue of its unique size advantages and extensive modifiability. In the diagnosis and treatment of clinical GIC, surface-enhanced Raman scattering (SERS) nanoparticles, electrochemical nanobiosensors and magnetic nanoparticles, intraoperative imaging nanoparticles, drug delivery systems and other multifunctional nanoparticles have successfully improved the diagnosis and treatment of GIC. It is important to further improve the coordinated development of nanotechnology and GIC diagnosis and treatment. Herein, starting from the clinical diagnosis and treatment of GIC, this review summarizes which nanotechnologies have been applied in clinical diagnosis and treatment of GIC in recent years, and which cannot be applied in clinical practice. We also point out which challenges must be overcome by nanotechnology in the development of the clinical diagnosis and treatment of GIC and discuss how to quickly and safely combine the latest nanotechnology developed in the laboratory with clinical applications. Finally, we hope that this review can provide valuable reference information for researchers who are conducting cross-research on GIC and nanotechnology.
Collapse
Affiliation(s)
- Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhenxing Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yinghao Cao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yifan Xue
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jun Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Kun Dai
- Department of Neonatal Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Le Qin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Qianyuan He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
34
|
Kumbhar P, Kole K, Khadake V, Marale P, Manjappa A, Nadaf S, Jadhav R, Patil A, Singh SK, Dua K, Jha NK, Disouza J, Patravale V. Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer. J Control Release 2022; 349:812-830. [PMID: 35914614 DOI: 10.1016/j.jconrel.2022.07.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
Breast cancer (BC) is a highly diagnosed and topmost cause of death in females worldwide. Drug repurposing (DR) has shown great potential against BC by overcoming major shortcomings of approved anticancer therapeutics. However, poor physicochemical properties, pharmacokinetic performance, stability, non-selectivity to tumors, and side effects are severe hurdles in repurposed drug delivery against BC. The variety of nanocarriers (NCs) has shown great promise in delivering repurposed therapeutics for effective treatment of BC via improving solubility, stability, tumor selectivity and reducing toxicity. Besides, delivering repurposed cargos via theranostic NCs can be helpful in the quick diagnosis and treatment of BC. Localized delivery of repurposed candidates through apt NCs can diminish the systemic side effects and improve anti-tumor effectiveness. However, breast tumor variability and tumor microenvironment have created several challenges to nanoparticulate delivery of repurposed cargos. This review focuses on DR as an ingenious strategy to treat BC and circumvent the drawbacks of approved anticancer therapeutics. Various nanoparticulate avenues delivering repurposed therapeutics, including non-oncology cargos and vaccines to target BC effectively, are discussed along with case studies. Moreover, clinical trial information on repurposed medications and vaccines for the treatment of BC is covered along with various obstacles in nanoparticulate drug delivery against cancer that have been so far identified. In a nutshell, DR and drug delivery of repurposed drugs via NCs appears to be a propitious approach in devastating BC.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Varsha Khadake
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Pradnya Marale
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India; S. D. Patil Institute of Pharmacy, Urun-Islampur, Maharashtra 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagaon, Gadhinglaj, Maharashtra, India
| | - Rajendra Jadhav
- Bharati Vidyapeeth (Deemed to be University) Pune, Institute of Management, Kolhapur, India
| | - Ajit Patil
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
35
|
Mahmoudi A, Kesharwani P, Majeed M, Teng Y, Sahebkar A. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf B Biointerfaces 2022; 215:112481. [PMID: 35453063 DOI: 10.1016/j.colsurfb.2022.112481] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Curcumin is a natural polyphenolic compound that has promising therapeutic benefits. However, curcumin suffers from low aqueous solubility and poor bioavailability following oral administration, which are severe constraints to its full therapeutic potential. An exciting approach to resolving such challenges has been to incorporate curcumin into gold nanoparticles (AuNPs) to improve its unfavorable physicochemical and biopharmaceutical properties. Growing evidence shows that AuNPs increase cytotoxicity and apoptotic effect of curcumin on cancer cells. Moreover, AuNPs has the potential to enhance curcumin's cellular uptake and antioxidant properties. In addition, numerous benefits have been suggested for exploiting the curcumin's gold (Au) NPs as simple preparation and functionalization. Therefore, we can take advantage of the nanogold combination with curcumin in several therapeutic methods like photothermal therapy and theranostic nanocarrier. Here, we focus on the therapeutic properties of Au/curcumin NPs and the way to improve biocompatibility and bioavailability for curcumin encapsulation, intending to enhance their anticancer and antioxidant capacities. The present review also discusses the utilization and impact of Au NPs as a drug/gene delivery system/platform and various methods for the synthesis of Au/curcumin NPs.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | | | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Kolouchova K, Cernochova Z, Groborz O, Herynek V, Koucky F, Jaksa R, Benes J, Slouf M, Hruby M. Multiresponsive Fluorinated Polymers as a Theragnostic Platform Using 19F MRI. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Zhou M, Zou X, Cheng K, Zhong S, Su Y, Wu T, Tao Y, Cong L, Yan B, Jiang Y. The role of cell-penetrating peptides in potential anti-cancer therapy. Clin Transl Med 2022; 12:e822. [PMID: 35593206 PMCID: PMC9121317 DOI: 10.1002/ctm2.822] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Due to the complex physiological structure, microenvironment and multiple physiological barriers, traditional anti-cancer drugs are severely restricted from reaching the tumour site. Cell-penetrating peptides (CPPs) are typically made up of 5-30 amino acids, and can be utilised as molecular transporters to facilitate the passage of therapeutic drugs across physiological barriers. Up to now, CPPs have widely been used in many anti-cancer treatment strategies, serving as an excellent potential choice for oncology treatment. However, their drawbacks, such as the lack of cell specificity, short duration of action, poor stability in vivo, compatibility problems (i.e. immunogenicity), poor therapeutic efficacy and formation of unwanted metabolites, have limited their further application in cancer treatment. The cellular uptake mechanisms of CPPs involve mainly endocytosis and direct penetration, but still remain highly controversial in academia. The CPPs-based drug delivery strategy could be improved by clever design or chemical modifications to develop the next-generation CPPs with enhanced cell penetration capability, stability and selectivity. In addition, some recent advances in targeted cell penetration that involve CPPs provide some new ideas to optimise CPPs.
Collapse
Affiliation(s)
- Meiling Zhou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xi Zou
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Kexin Cheng
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Suye Zhong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yangzhou Su
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Wu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Bin Yan
- Department of Pathology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China.,School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
38
|
Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Friedrich RP, Kappes M, Cicha I, Tietze R, Braun C, Schneider-Stock R, Nagy R, Alexiou C, Janko C. Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles. Int J Nanomedicine 2022; 17:2139-2163. [PMID: 35599750 PMCID: PMC9115408 DOI: 10.2147/ijn.s355007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/27/2022] [Indexed: 12/01/2022] Open
Abstract
Label-free detection of nanoparticles is essential for a thorough evaluation of their cellular effects. In particular, nanoparticles intended for medical applications must be carefully analyzed in terms of their interactions with cells, tissues, and organs. Since the labeling causes a strong change in the physicochemical properties and thus also alters the interactions of the particles with the surrounding tissue, the use of fluorescently labeled particles is inadequate to characterize the effects of unlabeled particles. Further, labeling may affect cellular uptake and biocompatibility of nanoparticles. Thus, label-free techniques have been recently developed and implemented to ensure a reliable characterization of nanoparticles. This review provides an overview of frequently used label-free visualization techniques and highlights recent studies on the development and usage of microscopy systems based on reflectance, darkfield, differential interference contrast, optical coherence, photothermal, holographic, photoacoustic, total internal reflection, surface plasmon resonance, Rayleigh light scattering, hyperspectral and reflectance structured illumination imaging. Using these imaging modalities, there is a strong enhancement in the reliability of experiments concerning cellular uptake and biocompatibility of nanoparticles, which is crucial for preclinical evaluations and future medical applications.
Collapse
Affiliation(s)
- Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Mona Kappes
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-Universität München, München, 80336, Germany
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Roland Nagy
- Department Elektrotechnik-Elektronik-Informationstechnik (EEI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Correspondence: Christina Janko, Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Glückstrasse 10a, Erlangen, 91054, Germany, Tel +49 9131 85 33142, Fax +49 9131 85 34808, Email
| |
Collapse
|
40
|
Sotiropoulou G, Zingkou E, Bisyris E, Pampalakis G. Activity-Based Probes for Proteases Pave the Way to Theranostic Applications. Pharmaceutics 2022; 14:pharmaceutics14050977. [PMID: 35631563 PMCID: PMC9145445 DOI: 10.3390/pharmaceutics14050977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Proteases are important enzymes in health and disease. Their activities are regulated at multiple levels. In fact, proteases are synthesized as inactive proenzymes (zymogens) that are activated by proteolytic removal of their pro-peptide sequence and can remain active or their activity can be attenuated by complex formation with specific endogenous inhibitors or by limited proteolysis or degradation. Consequently, quite often, only a fraction of the protease molecules is in the active/functional form, thus, the abundance of a protease is not always linearly proportional to the (patho)physiological function(s). Therefore, assays to determine the active forms of proteases are needed, not only in research but also in molecular diagnosis and therapy. Activity-based probes (ABPs) are chemical entities that bind covalently to the active enzyme/protease. ABPs carry a detection tag to enable localization and quantification of specific enzymatic/proteolytic activities with applications in molecular imaging and diagnosis. Moreover, ABPs act as suicide inhibitors of proteases, which can be exploited for delineation of the functional role(s) of a given protease in (patho) biological context and as potential therapeutics. In this sense, ABPs represent new theranostic agents. We outline recent developments pertaining to ABPs for proteases with potential therapeutic applications, with the aim to highlight their importance in theranostics.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
- Correspondence: (G.S.); (G.P.)
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
| | - Evangelos Bisyris
- Department of Pharmacy, School of Health Sciences, University of Patras, 26500 Rion-Patras, Greece; (E.Z.); (E.B.)
| | - Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.S.); (G.P.)
| |
Collapse
|
41
|
Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater Sci 2022; 10:3029-3053. [PMID: 35419582 DOI: 10.1039/d2bm00181k] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For decades, nanomedicines have been reported as a potential means to overcome the limitations of conventional drug delivery systems by reducing side effects, toxicity and the non-ideal pharmacokinetic behaviour typically exhibited by small molecule drugs. However, upon administration many nanoparticles prompt induction of host inflammatory responses due to recognition and uptake by macrophages, eliminating up to 95% of the administered dose. While significant advances in nanoparticle engineering and consequent therapeutic efficacy have been made, it is becoming clear that nanoparticle recognition by the mononuclear phagocyte system (MPS) poses an impassable junction in the current framework of nanoparticle development. Hence, this has negative consequences on the clinical translation of nanotechnology with respect to therapeutic efficacy, systemic toxicity and economic benefit. In order to improve the translation of nanomedicines from bench-to-bedside, there is a requirement to either modify nanomedicines in terms of how they interact with intrinsic processes in the body, or modulate the body to be more accommodating for nanomedicine treatments. Here we provide an overview of the current standard for design elements of nanoparticles, as well as factors to consider when producing nanomedicines that have minimal MPS-nanoparticle interactions; we explore this landscape across the cellular to tissue and organ levels. Further, rather than designing materials to suit the body, a growing research niche involves modulating biological responses to administered nanomaterials. We here discuss how developing strategic methods of MPS 'pre-conditioning' with small molecule or biological drugs, as well as implementing strategic dosing regimens, such as 'decoy' nanoparticles, is essential to increasing nanoparticle therapeutic efficacy. By adopting such a perspective, we hope to highlight the increasing trends in research dedicated to improving nanomedicine translation, and subsequently making a positive clinical impact.
Collapse
Affiliation(s)
- Jessica A Mills
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Feifei Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Thomas R Jarrett
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia. .,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Australia
| |
Collapse
|
42
|
Nienhaus K, Xue Y, Shang L, Nienhaus GU. Protein adsorption onto nanomaterials engineered for theranostic applications. NANOTECHNOLOGY 2022; 33:262001. [PMID: 35294940 DOI: 10.1088/1361-6528/ac5e6c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The key role of biomolecule adsorption onto engineered nanomaterials for therapeutic and diagnostic purposes has been well recognized by the nanobiotechnology community, and our mechanistic understanding of nano-bio interactions has greatly advanced over the past decades. Attention has recently shifted to gaining active control of nano-bio interactions, so as to enhance the efficacy of nanomaterials in biomedical applications. In this review, we summarize progress in this field and outline directions for future development. First, we briefly review fundamental knowledge about the intricate interactions between proteins and nanomaterials, as unraveled by a large number of mechanistic studies. Then, we give a systematic overview of the ways that protein-nanomaterial interactions have been exploited in biomedical applications, including the control of protein adsorption for enhancing the targeting efficiency of nanomedicines, the design of specific protein adsorption layers on the surfaces of nanomaterials for use as drug carriers, and the development of novel nanoparticle array-based sensors based on nano-bio interactions. We will focus on particularly relevant and recent examples within these areas. Finally, we conclude this topical review with an outlook on future developments in this fascinating research field.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Li Shang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| |
Collapse
|
43
|
Alkilany AM, Rachid O, Alkawareek MY, Billa N, Daou A, Murphy CJ. PLGA-Gold Nanocomposite: Preparation and Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14030660. [PMID: 35336033 PMCID: PMC8949597 DOI: 10.3390/pharmaceutics14030660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
A composite system consisting of both organic and inorganic nanoparticles is an approach to prepare a new material exhibiting “the best of both worlds”. In this review, we highlight the recent advances in the preparation and applications of poly(lactic-co-glycolic acid)-gold nanoparticles (PLGA-GNP). With its current clinically use, PLGA-based nanocarriers have promising pharmaceutical applications and can “extract and utilize” the fascinating optical and photothermal properties of encapsulated GNP. The resulting “golden polymeric nanocarrier” can be tracked, analyzed, and visualized using the encapsulated gold nanoprobes which facilitate a better understanding of the hosting nanocarrier’s pharmacokinetics and biological fate. In addition, the “golden polymeric nanocarrier” can reveal superior nanotherapeutics that combine both the photothermal effect of the encapsulated gold nanoparticles and co-loaded chemotherapeutics. To help stimulate more research on the development of nanomaterials with hybrid and exceptional properties, functionalities, and applications, this review provides recent examples with a focus on the available chemistries and the rationale behind encapsulating GNP into PLGA nanocarriers that has the potential to be translated into innovative, clinically applicable nanomedicine.
Collapse
Affiliation(s)
- Alaaldin M. Alkilany
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (O.R.); (N.B.); (A.D.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
- Correspondence: (A.M.A.); (C.J.M.)
| | - Ousama Rachid
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (O.R.); (N.B.); (A.D.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Mahmoud Y. Alkawareek
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nashiru Billa
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (O.R.); (N.B.); (A.D.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Anis Daou
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar; (O.R.); (N.B.); (A.D.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
- Correspondence: (A.M.A.); (C.J.M.)
| |
Collapse
|
44
|
Kansara K, Bolan S, Radhakrishnan D, Palanisami T, Al-Muhtaseb AH, Bolan N, Vinu A, Kumar A, Karakoti A. A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118726. [PMID: 34953948 DOI: 10.1016/j.envpol.2021.118726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Engineered nanomaterials (ENMs) are at the forefront of many technological breakthroughs in science and engineering. The extensive use of ENMs in several consumer products has resulted in their release to the aquatic environment. ENMs entering the aquatic ecosystem undergo a dynamic transformation as they interact with organic and inorganic constituents present in aquatic environment, specifically abiotic factors such as NOM and clay minerals, and attain an environmental identity. Thus, a greater understanding of ENM-abiotic factors interactions is required for an improved risk assessment and sustainable management of ENMs contamination in the aquatic environment. This review integrates fundamental aspects of ENMs transformation in aquatic environment as impacted by abiotic factors, and delineates the recent advances in bioavailability and ecotoxicity of ENMs in relation to risk assessment for ENMs-contaminated aquatic ecosystem. It specifically discusses the mechanism of transformation of different ENMs (metals, metal oxides and carbon based nanomaterials) following their interaction with the two most common abiotic factors NOM and clay minerals present within the aquatic ecosystem. The review critically discusses the impact of these mechanisms on the altered ecotoxicity of ENMs including the impact of such transformation at the genomic level. Finally, it identifies the gaps in our current understanding of the role of abiotic factors on the transformation of ENMs and paves the way for the future research areas.
Collapse
Affiliation(s)
- Krupa Kansara
- Biological and Life Sciences, School of Arts and Science, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, - 380009, India
| | - Shiv Bolan
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Deepika Radhakrishnan
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Thava Palanisami
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, University of Western Australia, Perth, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Science, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat, - 380009, India
| | - Ajay Karakoti
- Global Innovative Center for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
45
|
Cheng B, Ahn HH, Nam H, Jiang Z, Gao FJ, Minn I, Pomper MG. A Unique Core–Shell Structured, Glycol Chitosan-Based Nanoparticle Achieves Cancer-Selective Gene Delivery with Reduced Off-Target Effects. Pharmaceutics 2022; 14:pharmaceutics14020373. [PMID: 35214105 PMCID: PMC8878887 DOI: 10.3390/pharmaceutics14020373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
Abstract
The inherent instability of nucleic acids within serum and the tumor microenvironment necessitates a suitable vehicle for non-viral gene delivery to malignant lesions. A specificity-conferring mechanism is also often needed to mitigate off-target toxicity. In the present study, we report a stable and efficient redox-sensitive nanoparticle system with a unique core–shell structure as a DNA carrier for cancer theranostics. Thiolated polyethylenimine (PEI-SH) is complexed with DNA through electrostatic interactions to form the core, and glycol chitosan-modified with succinimidyl 3-(2-pyridyldithio)propionate (GCS-PDP) is grafted on the surface through a thiolate-disulfide interchange reaction to form the shell. The resulting nanoparticles, GCS-PDP/PEI-SH/DNA nanoparticles (GNPs), exhibit high colloid stability in a simulated physiological environment and redox-responsive DNA release. GNPs not only show a high and redox-responsive cellular uptake, high transfection efficiency, and low cytotoxicity in vitro, but also exhibit selective tumor targeting, with minimal toxicity, in vivo, upon systemic administration. Such a performance positions GNPs as viable candidates for molecular-genetic imaging and theranostic applications.
Collapse
Affiliation(s)
- Bei Cheng
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
| | - Hye-Hyun Ahn
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
| | - Hwanhee Nam
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zirui Jiang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
| | - Feng J. Gao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Il Minn
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, USA
- Correspondence: (I.M.); (M.G.P.)
| | - Martin G. Pomper
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (B.C.); (H.-H.A.); (H.N.); (Z.J.)
- Institute for NanoBioTechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, USA
- Correspondence: (I.M.); (M.G.P.)
| |
Collapse
|
46
|
Antunes P, Cruz A, Barbosa J, Bonifácio VDB, Pinto SN. Lipid Droplets in Cancer: From Composition and Role to Imaging and Therapeutics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030991. [PMID: 35164256 PMCID: PMC8840564 DOI: 10.3390/molecules27030991] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
Cancer is the second most common cause of death worldwide, having its origin in the abnormal growth of cells. Available chemotherapeutics still present major drawbacks, usually associated with high toxicity and poor distribution, with only a small fraction of drugs reaching the tumour sites. Thus, it is urgent to develop novel therapeutic strategies. Cancer cells can reprogram their lipid metabolism to sustain uncontrolled proliferation, and, therefore, accumulate a higher amount of lipid droplets (LDs). LDs are cytoplasmic organelles that store neutral lipids and are hypothesized to sequester anti-cancer drugs, leading to reduced efficacy. Thus, the increased biogenesis of LDs in neoplastic conditions makes them suitable targets for anticancer therapy and for the development of new dyes for cancer cells imaging. In recent years, cancer nanotherapeutics offered some exciting possibilities, including improvement tumour detection and eradication. In this review we summarize LDs biogenesis, structure and composition, and highlight their role in cancer theranostics.
Collapse
Affiliation(s)
- Patrícia Antunes
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Adriana Cruz
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José Barbosa
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Vasco D. B. Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (V.D.B.B.); (S.N.P.)
| | - Sandra N. Pinto
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (V.D.B.B.); (S.N.P.)
| |
Collapse
|
47
|
Mondal S, Pan N, Ghosh R, Bera A, Mukherjee D, Maji TK, Adhikari A, Ghosh S, Bhattacharya C, Pal SK. Interaction of a Jaundice Marker Molecule with Redox Modulatory Nano Hybrid: A Combined Electrochemical and Spectroscopic Study towards the Development of a Theranostics Tool. ChemMedChem 2022; 17:e202100660. [DOI: 10.1002/cmdc.202100660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Susmita Mondal
- S N Bose National Centre for Basic Sciences CBMS Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Nivedita Pan
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological, Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 kolkata INDIA
| | - Ria Ghosh
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological and Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Arpan Bera
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological and Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Dipanjan Mukherjee
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological and Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Tuhin Kumar Maji
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological and Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Anirudddha Adhikari
- S N Bose National Centre for Basic Sciences Department of Chemical, Biological and Macromolecular Sciences Block JD, Sector III, Salt Lake 700106 Kolkata INDIA
| | - Sangeeta Ghosh
- IIEST Shibpur: Indian Institute of Engineering Science and Technology Department of Chemistry Howrah-711103, West Bengal, INDIA 711103 Howrah INDIA
| | - Chinmoy Bhattacharya
- IISET Department of Chemistry Howrah-711103, West Bengal, INDIA 711103 Howrah INDIA
| | - Samir Kumar Pal
- SNBNCBS CBMS Block JD, Sector IIISalt Lake City 700098 Kolkata INDIA
| |
Collapse
|
48
|
Ariztia J, Solmont K, Moïse NP, Specklin S, Heck MP, Lamandé-Langle S, Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug Chem 2022; 33:24-52. [PMID: 34994545 DOI: 10.1021/acs.bioconjchem.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging is a biomedical research discipline that has quickly emerged to afford the observation, characterization, monitoring, and quantification of biomarkers and biological processes in living organism. It covers a large array of imaging techniques, each of which provides anatomical, functional, or metabolic information. Multimodality, as the combination of two or more of these techniques, has proven to be one of the best options to boost their individual properties, hence offering unprecedented tools for human health. In this review, we will focus on the combination of positron emission tomography and fluorescence imaging from the specific perspective of the chemical synthesis of dual imaging agents. Based on a detailed analysis of the literature, this review aims at giving a comprehensive overview of the chemical strategies implemented to build adequate imaging tools considering radiohalogens and radiometals as positron emitters, fluorescent dyes mostly emitting in the NIR window and all types of targeting vectors.
Collapse
Affiliation(s)
- Julen Ariztia
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Kathleen Solmont
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | | | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Marie Pierre Heck
- Université Paris-Saclay, INRAE, Département Médicaments et Technologies pour la santé (DMTS), SCBM, 91191, Gif-sur-Yvette cedex, France
| | | | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| |
Collapse
|
49
|
Bárta J, Prouzová Procházková L, Škodová M, Děcká K, Popovich K, Janoušková Pavelková T, Beck P, Čuba V. Advanced photochemical processes for the manufacture of nanopowders: an evaluation of long-term pilot plant operation. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00374g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, a UV light-based technology for the syntheses of nano-dimensional metal oxides feasible in an industrial scale is proposed, based on our long term experience with the operation of a photochemical pilot plant.
Collapse
Affiliation(s)
- Jan Bárta
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Lenka Prouzová Procházková
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague 6, Czech Republic
| | - Michaela Škodová
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Kateřina Děcká
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Kseniya Popovich
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Tereza Janoušková Pavelková
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Patrik Beck
- Tesla V.T. Mikroel, Nademlejnská 600/1, 198 00 Prague 9, Czech Republic
| | - Václav Čuba
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| |
Collapse
|
50
|
Jain K, Ahmad J, Rizwanullah M, Suthar T, Albarqi HA, Ahmad MZ, Vuddanda PR, Khan MA. Receptor-Targeted Surface Engineered Nanomaterials for Breast Cancer Imaging and Theranostic Applications. Crit Rev Ther Drug Carrier Syst 2022; 39:1-44. [DOI: 10.1615/critrevtherdrugcarriersyst.2022040686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|