1
|
Niu J, Zhong Y, Jin C, Cen P, Wang J, Cui C, Xue L, Cui X, Tian M, Zhang H. Positron Emission Tomography Imaging of Synaptic Dysfunction in Parkinson's Disease. Neurosci Bull 2024; 40:743-758. [PMID: 38483697 PMCID: PMC11178751 DOI: 10.1007/s12264-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/09/2023] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases with a complex pathogenesis. Aggregations formed by abnormal deposition of alpha-synuclein (αSyn) lead to synapse dysfunction of the dopamine and non-dopamine systems. The loss of dopaminergic neurons and concomitant alterations in non-dopaminergic function in PD constitute its primary pathological manifestation. Positron emission tomography (PET), as a representative molecular imaging technique, enables the non-invasive visualization, characterization, and quantification of biological processes at cellular and molecular levels. Imaging synaptic function with PET would provide insights into the mechanisms underlying PD and facilitate the optimization of clinical management. In this review, we focus on the synaptic dysfunction associated with the αSyn pathology of PD, summarize various related targets and radiopharmaceuticals, and discuss applications and perspectives of PET imaging of synaptic dysfunction in PD.
Collapse
Affiliation(s)
- Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chunyi Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Xingyue Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310014, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Liu J, Kang J, Qi M, Tang J, Fang Y, Liu C, Hong J, Zuo J, Chen Z. Synthesis and initial evaluation of radioiodine-labelled deuterated tropane derivatives targeting dopamine transporter. Bioorg Med Chem Lett 2024; 102:129678. [PMID: 38408514 DOI: 10.1016/j.bmcl.2024.129678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
The dopamine transporter (DAT) is closely related to a variety of neurological disorders including Parkinson's disease (PD) and other neurodegenerative diseases. In vivo imaging of DAT with radio-labelled tracers has become a powerful technique in related disorders. The radioiodine-labelled tropane derivative [123I]FP-CIT ([123I]1a) is widely used in clinical single photon emission computed tomography (SPECT) imaging as a DAT imaging agent. To develop more metabolically stable DAT radioligands for accurate imaging, this work compared two novel deuterated tropane derivatives ([131I]1c-d) with non-deuterated tropane derivatives ([131I]1a-b). [131I]1a-d were obtained in high radiochemical purity (RCP) above 99 % with molar activities of 7.0-10.0 GBq/μmol. The [131I]1a and [131I]1c exhibited relatively higher affinity to DAT (Ki: 2.0-3.12 nM) than [131I]1b and [131I]1d. Biodistribution results showed that [131I]1c consistently exhibited a higher ratio of the target to non-target (striatum/cerebellum) than [131I]1a. Furthermore, metabolism studies indicated that the in vivo metabolic stability of [131I]1c was superior to that of [131I]1a. Ex vivo autoradiography showed that [131I]1c selectively localized on DAT-rich striatal regions and the specific signal could be blocked by DAT inhibitor. These results indicated that [131I]1c might be a potential probe for DAT SPECT imaging in the brain.
Collapse
Affiliation(s)
- Jie Liu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jing Kang
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Meihui Qi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jingjing Hong
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jiaojiao Zuo
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhengping Chen
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China; School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
3
|
Sousa JM, Appel L, Engström M, Nyholm D, Ahlström H, Lubberink M. Comparison of quantitative [ 11C]PE2I brain PET studies between an integrated PET/MR and a stand-alone PET system. Phys Med 2024; 117:103185. [PMID: 38042064 DOI: 10.1016/j.ejmp.2023.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
PET/MR systems demanded great efforts for accurate attenuation correction (AC) but differences in technology, geometry and hardware attenuation may also affect quantitative results. Dedicated PET systems using transmission-based AC are regarded as the gold standard for quantitative brain PET. The study aim was to investigate the agreement between quantitative PET outcomes from a PET/MR scanner against a stand-alone PET system. Nine patients with Parkinsonism underwent two 80-min dynamic PET scans with the dopamine transporter ligand [11C]PE2I. Images were reconstructed with resolution-matched settings using 68Ge-transmission (stand-alone PET), and zero-echo-time MR (PET/MR) scans for AC. Non-displaceable binding potential (BPND) and relative delivery (R1) were evaluated using volumes of interest and voxel-wise analysis. Correlations between systems were high (r ≥ 0.85) for both quantitative outcome parameters in all brain regions. Striatal BPND was significantly lower on PET/MR than on stand-alone PET (-7%). R1 was significantly overestimated in posterior cortical regions (9%) and underestimated in striatal (-9%) and limbic areas (-6%). The voxel-wise evaluation revealed that the MR-safe headphones caused a negative bias in both parametric BPND and R1 images. Additionally, a significant positive bias of R1 was found in the auditory cortex, most likely due to the acoustic background noise during MR imaging. The relative bias of the quantitative [11C]PE2I PET data acquired from a SIGNA PET/MR system was in the same order as the expected test-retest reproducibility of [11C]PE2I BPND and R1, compared to a stand-alone ECAT PET scanner. MR headphones and background noise are potential sources of error in functional PET/MR studies.
Collapse
Affiliation(s)
- João M Sousa
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
| | - Lieuwe Appel
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | - Dag Nyholm
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden; Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden; Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Mark Lubberink
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
4
|
Jonasson M, Frick A, Fazio P, Hjorth O, Danfors T, Axelsson J, Appel L, Furmark T, Varrone A, Lubberink M. Striatal dopamine transporter and receptor availability correlate with relative cerebral blood flow measured with [ 11C]PE2I, [ 18F]FE-PE2I and [ 11C]raclopride PET in healthy individuals. J Cereb Blood Flow Metab 2023; 43:1206-1215. [PMID: 36912083 PMCID: PMC10291448 DOI: 10.1177/0271678x231160881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 03/14/2023]
Abstract
The aim of this retrospective study was to investigate relationships between relative cerebral blood flow and striatal dopamine transporter and dopamine D2/3 availability in healthy subjects. The data comprised dynamic PET scans with two dopamine transporter tracers [11C]PE2I (n = 20) and [18F]FE-PE2I (n = 20) and the D2/3 tracer [11C]raclopride (n = 18). Subjects with a [11C]PE2I scan also underwent a dynamic scan with the serotonin transporter tracer [11C]DASB. Binding potential (BPND) and relative tracer delivery (R1) values were calculated on regional and voxel-level. Striatal R1 and BPND values were correlated, using either an MRI-based volume of interest (VOI) or an isocontour VOI based on the parametric BPND image. An inter-tracer comparison between [11C]PE2I BPND and [11C]DASB R1 was done on a VOI-level and simulations were performed to investigate whether the constraints of the modeling could cause correlation of the parameters. A positive association was found between BPND and R1 for all three dopamine tracers. A similar correlation was found for the inter-tracer correlation between [11C]PE2I BPND and [11C]DASB R1. Simulations showed that this relationship was not caused by cross-correlation between parameters in the kinetic model. In conclusion, these results suggest an association between resting-state striatal dopamine function and relative blood flow in healthy subjects.
Collapse
Affiliation(s)
- My Jonasson
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Andreas Frick
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Patrik Fazio
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Olof Hjorth
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Torsten Danfors
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Lieuwe Appel
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Tomas Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
5
|
Haider A, Elghazawy NH, Dawood A, Gebhard C, Wichmann T, Sippl W, Hoener M, Arenas E, Liang SH. Translational molecular imaging and drug development in Parkinson's disease. Mol Neurodegener 2023; 18:11. [PMID: 36759912 PMCID: PMC9912681 DOI: 10.1186/s13024-023-00600-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects elderly people and constitutes a major source of disability worldwide. Notably, the neuropathological hallmarks of PD include nigrostriatal loss and the formation of intracellular inclusion bodies containing misfolded α-synuclein protein aggregates. Cardinal motor symptoms, which include tremor, rigidity and bradykinesia, can effectively be managed with dopaminergic therapy for years following symptom onset. Nonetheless, patients ultimately develop symptoms that no longer fully respond to dopaminergic treatment. Attempts to discover disease-modifying agents have increasingly been supported by translational molecular imaging concepts, targeting the most prominent pathological hallmark of PD, α-synuclein accumulation, as well as other molecular pathways that contribute to the pathophysiology of PD. Indeed, molecular imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) can be leveraged to study parkinsonism not only in animal models but also in living patients. For instance, mitochondrial dysfunction can be assessed with probes that target the mitochondrial complex I (MC-I), while nigrostriatal degeneration is typically evaluated with probes designed to non-invasively quantify dopaminergic nerve loss. In addition to dopaminergic imaging, serotonin transporter and N-methyl-D-aspartate (NMDA) receptor probes are increasingly used as research tools to better understand the complexity of neurotransmitter dysregulation in PD. Non-invasive quantification of neuroinflammatory processes is mainly conducted by targeting the translocator protein 18 kDa (TSPO) on activated microglia using established imaging agents. Despite the overwhelming involvement of the brain and brainstem, the pathophysiology of PD is not restricted to the central nervous system (CNS). In fact, PD also affects various peripheral organs such as the heart and gastrointestinal tract - primarily via autonomic dysfunction. As such, research into peripheral biomarkers has taken advantage of cardiac autonomic denervation in PD, allowing the differential diagnosis between PD and multiple system atrophy with probes that visualize sympathetic nerve terminals in the myocardium. Further, α-synuclein has recently gained attention as a potential peripheral biomarker in PD. This review discusses breakthrough discoveries that have led to the contemporary molecular concepts of PD pathophysiology and how they can be harnessed to develop effective imaging probes and therapeutic agents. Further, we will shed light on potential future trends, thereby focusing on potential novel diagnostic tracers and disease-modifying therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 USA
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Atlanta, GA 30322 USA
| | - Nehal H. Elghazawy
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835 Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835 Egypt
| | - Alyaa Dawood
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835 Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835 Egypt
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Thomas Wichmann
- Department of Neurology/School of Medicine, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Marius Hoener
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Ernest Arenas
- Karolinska Institutet, MBB, Molecular Neurobiology, Stockholm, Sweden
| | - Steven H. Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 USA
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Atlanta, GA 30322 USA
| |
Collapse
|
6
|
Jakobson Mo S, Axelsson J, Stiernman L, Riklund K. Validation of dynamic [ 18F]FE-PE2I PET for estimation of relative regional cerebral blood flow: a comparison with [ 15O]H 2O PET. EJNMMI Res 2022; 12:72. [PMID: 36394638 PMCID: PMC9672223 DOI: 10.1186/s13550-022-00941-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dopamine transporter (DAT) imaging is used in the diagnostic work-up in suspected parkinsonian syndromes and dementia with Lewy bodies but cannot differentiate between these syndromes, and an extra brain imaging examination of the regional cerebral blood flow (rCBF) or glucose metabolism is often needed for differential diagnosis. The requirement of two different imaging examinations is resource-consuming and inconvenient for the patients. Therefore, imaging of both cortical blood flow and DAT imaging with the same radiotracer would be more convenient and cost-effective. The aim of this study was to test whether relative regional cerebral blood flow (rCBFR) can be measured with the DAT-specific positron emission tomography (PET) tracer [18F]FE-PE2I (FE-PE2I), by validation with cerebral perfusion measured with [15O]H2O PET (H2O). METHODS The rCBFR was quantified by kinetic modeling for FE-PE2I (R1) and H2O (F). The R1 was calculated using the simplified reference tissue model, and F was calculated with a modified Koopman double-integration method. The linear relationship and intraclass correlation (ICC) between R1 and F were tested in image data derived from 29 patients with recent onset parkinsonism and 30 healthy controls. RESULTS There was a strong linear correlation across all subjects between R1 and F in the frontal, parietal, temporal, cingulate and occipital cortex as well as in the striatum (r ≥ 0.731-0.905, p < 0.001) with a good-to-excellent ICC, ranging from 0.727 to 0.943 (p < 0.001). CONCLUSIONS Our results suggest that FE-PE2I may be used as a proxy for cerebral perfusion, thus potentially serving as a radiotracer for assessment of both DAT availability and rCBFR in one single dynamic scan. This could be valuable in the differential diagnosis of parkinsonian syndromes. TRIAL REGISTRATION EUDRA-CT 2015-003045-26. Registered 23 October 2015 https://www.clinicaltrialsregister.eu/ctr-search/search?query=2015-003045-26.
Collapse
Affiliation(s)
- Susanna Jakobson Mo
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden. .,Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.
| | - Jan Axelsson
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Lars Stiernman
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Dept. of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden.,Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Composite attenuation correction method using a 68Ge-transmission multi-atlas for quantitative brain PET/MR. Phys Med 2022; 97:36-43. [PMID: 35339864 DOI: 10.1016/j.ejmp.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 01/06/2023] Open
Abstract
In positron emission tomography (PET), 68Ge-transmission scanning is considered the gold standard in attenuation correction (AC) though not available in current dual imaging systems. In this experimental study we evaluated a novel AC method for PET/magnetic resonance (MR) imaging which is essentially based on a composite database of multiple 68Ge-transmission maps and T1-weighted (T1w) MR image-pairs (composite transmission, CTR-AC). This proof-of-concept study used retrospectively a database with 125 pairs of co-registered 68Ge-AC maps and T1w MR images from anatomical normal subjects and a validation dataset comprising dynamic [11C]PE2I PET data from nine patients with Parkinsonism. CTR-AC maps were generated by non-rigid image registration of all database T1w MRI to each subject's T1w, applying the same transformation to every 68Ge-AC map, and averaging the resulting 68Ge-AC maps. [11C]PE2I PET images were reconstructed using CTR-AC and a patient-specific 68Ge-AC map as the reference standard. Standardized uptake values (SUV) and quantitative parameters of kinetic analysis were compared, i.e., relative delivery (R1) and non-displaceable binding potential (BPND). CTR-AC showed high accuracy for whole-brain SUV (mean %bias ± SD: 0.5 ± 3.5%), whole-brain R1 (-0.1 ± 3.2%), and putamen BPND (3.7 ± 8.1%). SUV and R1 precision (SD of %bias) were modest and lowest in the anterior cortex, with an R1 %bias of -1.1 ± 6.4%). The prototype CTR-AC is capable of providing accurate MRAC-maps with continuous linear attenuation coefficients though still experimental. The method's accuracy is comparable to the best MRAC methods published so far, both in SUV and as found for ZTE-AC in quantitative parameters of kinetic modelling.
Collapse
|
8
|
den Boer JA, de Vries EJ, Borra RJ, Waarde AV, Lammertsma AA, Dierckx RA. Role of Brain Imaging in Drug Development for Psychiatry. Curr Rev Clin Exp Pharmacol 2022; 17:46-71. [DOI: 10.2174/1574884716666210322143458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
Background:
Over the last decades, many brain imaging studies have contributed to
new insights in the pathogenesis of psychiatric disease. However, in spite of these developments,
progress in the development of novel therapeutic drugs for prevalent psychiatric health conditions
has been limited.
Objective:
In this review, we discuss translational, diagnostic and methodological issues that have
hampered drug development in CNS disorders with a particular focus on psychiatry. The role of
preclinical models is critically reviewed and opportunities for brain imaging in early stages of drug
development using PET and fMRI are discussed. The role of PET and fMRI in drug development
is reviewed emphasizing the need to engage in collaborations between industry, academia and
phase I units.
Conclusion:
Brain imaging technology has revolutionized the study of psychiatric illnesses, and
during the last decade, neuroimaging has provided valuable insights at different levels of analysis
and brain organization, such as effective connectivity (anatomical), functional connectivity patterns
and neurochemical information that may support both preclinical and clinical drug development.
Since there is no unifying pathophysiological theory of individual psychiatric syndromes and since
many symptoms cut across diagnostic boundaries, a new theoretical framework has been proposed
that may help in defining new targets for treatment and thus enhance drug development in CNS diseases.
In addition, it is argued that new proposals for data-mining and mathematical modelling as
well as freely available databanks for neural network and neurochemical models of rodents combined
with revised psychiatric classification will lead to new validated targets for drug development.
Collapse
Affiliation(s)
| | - Erik J.F. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald J.H. Borra
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rudi A. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Roshanbin S, Xiong M, Hultqvist G, Söderberg L, Zachrisson O, Meier S, Ekmark-Lewén S, Bergström J, Ingelsson M, Sehlin D, Syvänen S. In vivo imaging of alpha-synuclein with antibody-based PET. Neuropharmacology 2022; 208:108985. [PMID: 35149134 DOI: 10.1016/j.neuropharm.2022.108985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
The protein alpha-synuclein (αSYN) plays a central role in synucleinopathies such as Parkinsons's disease (PD) and multiple system atrophy (MSA). Presently, there are no selective αSYN positron emission tomography (PET) radioligands that do not also show affinity to amyloid-beta (Aβ). We have previously shown that radiolabeled antibodies, engineered to enter the brain via the transferrin receptor (TfR), is a promising approach for PET imaging of intrabrain targets. In this study, we used this strategy to visualize αSYN in the living mouse brain. Five bispecific antibodies, binding to both the murine TfR and αSYN were generated and radiolabeled with iodine-125 or iodine-124. All bispecific antibodies bound to αSYN and mTfR before and after radiolabelling in an ELISA assay, and bound to brain sections prepared from αSYN overexpressing mice as well as human PD- and MSA subjects, but not control tissues in autoradiography. Brain concentrations of the bispecific antibodies were between 26-63 times higher than the unmodified IgG format 2 h post-injection, corresponding to about 1.5% of the injected dose per gram brain tissue. Additionally, intrastriatal αSYN fibrils were visualised with PET in an αSYN deposition mouse model with one of the bispecific antibodies, [124I]RmAbSynO2-scFv8D3. However, PET images acquired in αSYN transgenic mice with verified brain pathology injected with [124I]RmAbSynO2-scFv8D3 and [124I]RmAb48-scFv8D3 showed no increase in antibody retention compared to WT mice. Despite successful imaging of deposited extracellular αSYN using a brain-penetrating antibody-based radioligand with no cross-specificity towards Aβ, this proof-of-concept study demonstrates challenges in imaging intracellular αSYN inclusions present in synucleinopathies.
Collapse
Affiliation(s)
- Sahar Roshanbin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden.
| | - Mengfei Xiong
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | | | - Silvio Meier
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Sara Ekmark-Lewén
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Bidesi NSR, Vang Andersen I, Windhorst AD, Shalgunov V, Herth MM. The role of neuroimaging in Parkinson's disease. J Neurochem 2021; 159:660-689. [PMID: 34532856 PMCID: PMC9291628 DOI: 10.1111/jnc.15516] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Two hallmarks of PD are the accumulation of alpha-synuclein and the loss of dopaminergic neurons in the brain. There is no cure for PD, and all existing treatments focus on alleviating the symptoms. PD diagnosis is also based on the symptoms, such as abnormalities of movement, mood, and cognition observed in the patients. Molecular imaging methods such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) can detect objective alterations in the neurochemical machinery of the brain and help diagnose and study neurodegenerative diseases. This review addresses the application of functional MRI, PET, and SPECT in PD patients. We provide an overview of the imaging targets, discuss the rationale behind target selection, the agents (tracers) with which the imaging can be performed, and the main findings regarding each target's state in PD. Molecular imaging has proven itself effective in supporting clinical diagnosis of PD and has helped reveal that PD is a heterogeneous disorder, which has important implications for the development of future therapies. However, the application of molecular imaging for early diagnosis of PD or for differentiation between PD and atypical parkinsonisms has remained challenging. The final section of the review is dedicated to new imaging targets with which one can detect the PD-related pathological changes upstream from dopaminergic degeneration. The foremost of those targets is alpha-synuclein. We discuss the progress of tracer development achieved so far and challenges on the path toward alpha-synuclein imaging in humans.
Collapse
Affiliation(s)
- Natasha S R Bidesi
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Hjorth OR, Frick A, Gingnell M, Hoppe JM, Faria V, Hultberg S, Alaie I, Månsson KNT, Wahlstedt K, Jonasson M, Lubberink M, Antoni G, Fredrikson M, Furmark T. Expression and co-expression of serotonin and dopamine transporters in social anxiety disorder: a multitracer positron emission tomography study. Mol Psychiatry 2021; 26:3970-3979. [PMID: 31822819 DOI: 10.1038/s41380-019-0618-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/09/2022]
Abstract
Serotonin and dopamine are putatively involved in the etiology and treatment of anxiety disorders, but positron emission tomography (PET) studies probing the two neurotransmitters in the same individuals are lacking. The aim of this multitracer PET study was to evaluate the regional expression and co-expression of the transporter proteins for serotonin (SERT) and dopamine (DAT) in patients with social anxiety disorder (SAD). Voxel-wise binding potentials (BPND) for SERT and DAT were determined in 27 patients with SAD and 43 age- and sex-matched healthy controls, using the radioligands [11C]DASB (3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile) and [11C]PE2I (N-(3-iodopro-2E-enyl)-2beta-carbomethoxy-3beta-(4'-methylphenyl)nortropane). Results showed that, within transmitter systems, SAD patients exhibited higher SERT binding in the nucleus accumbens while DAT availability in the amygdala, hippocampus, and putamen correlated positively with symptom severity. At a more lenient statistical threshold, SERT and DAT BPND were also higher in other striatal and limbic regions in patients, and correlated with symptom severity, whereas no brain region showed higher binding in healthy controls. Moreover, SERT/DAT co-expression was significantly higher in SAD patients in the amygdala, nucleus accumbens, caudate, putamen, and posterior ventral thalamus, while lower co-expression was noted in the dorsomedial thalamus. Follow-up logistic regression analysis confirmed that SAD diagnosis was significantly predicted by the statistical interaction between SERT and DAT availability, in the amygdala, putamen, and dorsomedial thalamus. Thus, SAD was associated with mainly increased expression and co-expression of the transporters for serotonin and dopamine in fear and reward-related brain regions. Resultant monoamine dysregulation may underlie SAD symptomatology and constitute a target for treatment.
Collapse
Affiliation(s)
- Olof R Hjorth
- Department of Psychology, Uppsala University, Uppsala, Sweden.
| | - Andreas Frick
- Department of Psychology, Uppsala University, Uppsala, Sweden.,The Beijer Laboratory, Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden.,Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Malin Gingnell
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Johanna M Hoppe
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Vanda Faria
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Center for Pain and the Brain, Department of Anesthesiology Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Sara Hultberg
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Iman Alaie
- Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Kristoffer N T Månsson
- Centre for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Kurt Wahlstedt
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - My Jonasson
- Department of Surgical Sciences-Nuclear medicine and PET, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences-Nuclear medicine and PET, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mats Fredrikson
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Peng S, Tang C, Schindlbeck K, Rydzinski Y, Dhawan V, Spetsieris PG, Ma Y, Eidelberg D. Dynamic 18F-FPCIT PET: Quantification of Parkinson's disease metabolic networks and nigrostriatal dopaminergic dysfunction in a single imaging session. J Nucl Med 2021; 62:jnumed.120.257345. [PMID: 33741649 PMCID: PMC8612203 DOI: 10.2967/jnumed.120.257345] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Previous multi-center imaging studies with 18F-FDG PET have established the presence of Parkinson's disease motor- and cognition-related metabolic patterns termed PDRP and PDCP in patients with this disorder. Given that in PD cerebral perfusion and glucose metabolism are typically coupled in the absence of medication, we determined whether subject expression of these disease networks can be quantified in early-phase images from dynamic 18F-FPCIT PET scans acquired to assess striatal dopamine transporter (DAT) binding. Methods: We studied a cohort of early-stage PD patients and age-matched healthy control subjects who underwent 18F-FPCIT at baseline; scans were repeated 4 years later in a smaller subset of patients. The early 18F-FPCIT frames, which reflect cerebral perfusion, were used to compute PDRP and PDCP expression (subject scores) in each subject, and compared to analogous measures computed based on 18F-FDG PET scan when additionally available. The late 18F-FPCIT frames were used to measure caudate and putamen DAT binding in the same individuals. Results: PDRP subject scores from early-phase 18F-FPCIT and 18F-FDG scans were elevated and striatal DAT binding reduced in PD versus healthy subjects. The PDRP scores from 18F-FPCIT correlated with clinical motor ratings, disease duration, and with corresponding measures from 18F-FDG PET. In addition to correlating with disease duration and analogous 18F-FDG PET values, PDCP scores correlated with DAT binding in the caudate/anterior putamen. PDRP and PDCP subject scores using either method rose over 4 years whereas striatal DAT binding declined over the same time period. Conclusion: Early-phase images obtained with 18F-FPCIT PET can provide an alternative to 18F-FDG PET for PD network quantification. This technique therefore allows PDRP/PDCP expression and caudate/putamen DAT binding to be evaluated with a single tracer in one scanning session.
Collapse
Affiliation(s)
- Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York; and
| | - Chris Tang
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York; and
| | - Katharina Schindlbeck
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York; and
| | - Yaacov Rydzinski
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Vijay Dhawan
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York; and
| | - Phoebe G. Spetsieris
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York; and
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York; and
| | - David Eidelberg
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York; and
| |
Collapse
|
13
|
Validation of Parametric Methods for [ 11C]UCB-J PET Imaging Using Subcortical White Matter as Reference Tissue. Mol Imaging Biol 2021; 22:444-452. [PMID: 31209780 DOI: 10.1007/s11307-019-01387-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The aim of this study was to evaluate different non-invasive methods for generating (R)-1-((3-([11C]methyl)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) ([11C]UCB-J) parametric maps using white matter (centrum semi-ovale-SO) as reference tissue. PROCEDURES Ten healthy volunteers (8 M/2F; age 27.6 ± 10.0 years) underwent a 90-min dynamic [11C]UCB-J positron emission tomography (PET) scan with full arterial blood sampling and metabolite analysis before and after administration of a novel chemical entity with high affinity for presynaptic synaptic vesicle glycoprotein 2A (SV2A). A simplified reference tissue model (SRTM2), multilinear reference tissue model (MRTM2), and reference Logan graphical analysis (rLGA) were used to generate binding potential maps using SO as reference tissue (BPSO). Shorter dynamic acquisitions down to 50 min were also considered. In addition, standard uptake value ratios (SUVR) relative to SO were evaluated for three post-injection intervals (SUVRSO,40-70min, SUVRSO,50-80min, and SUVRSO,60-90min respectively). Regional parametric BPSO + 1 and SUVRSO were compared with regional distribution volume ratios of a 1-tissue compartment model (1TCM DVRSO) using Spearman correlation and Bland-Altman analysis. RESULTS For all methods, highly significant correlations were found between regional, parametric BPSO + 1 (r = [0.63;0.96]) or SUVRSO (r = [0.90;0.91]) estimates and regional 1TCM DVRSO. For a 90-min dynamic scan, parametric SRTM2 and MRTM2 values presented similar small bias and variability (- 3.0 ± 2.9 % for baseline SRTM2) and outperformed rLGA (- 10.0 ± 5.3 % for baseline rLGA). Reducing the dynamic acquisition to 60 min had limited impact on the bias and variability of parametric SRTM2 BPSO estimates (- 1.0 ± 9.9 % for baseline SRTM2) while a higher variability (- 1.83 ± 10.8 %) for baseline MRTM2 was observed for shorter acquisition times. Both SUVRSO,60-90min and SUVRSO,50-80min showed similar small bias and variability (- 2.8 ± 4.6 % bias for baseline SUVRSO,60-90min). CONCLUSION SRTM2 is the preferred method for a voxelwise analysis of dynamic [11C]UCB-J PET using SO as reference tissue, while reducing the dynamic acquisition to 60 min has limited impact on [11C]UCB-J BPSO parametric maps. For a static PET protocol, both SUVRSO,60-90min and SUVRSO,50-80min images are an excellent proxy for [11C]UCB-J BPSO parametric maps.
Collapse
|
14
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
15
|
Sousa JM, Appel L, Merida I, Heckemann RA, Costes N, Engström M, Papadimitriou S, Nyholm D, Ahlström H, Hammers A, Lubberink M. Accuracy and precision of zero-echo-time, single- and multi-atlas attenuation correction for dynamic [ 11C]PE2I PET-MR brain imaging. EJNMMI Phys 2020; 7:77. [PMID: 33369700 PMCID: PMC7769756 DOI: 10.1186/s40658-020-00347-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A valid photon attenuation correction (AC) method is instrumental for obtaining quantitatively correct PET images. Integrated PET/MR systems provide no direct information on attenuation, and novel methods for MR-based AC (MRAC) are still under investigation. Evaluations of various AC methods have mainly focused on static brain PET acquisitions. In this study, we determined the validity of three MRAC methods in a dynamic PET/MR study of the brain. METHODS Nine participants underwent dynamic brain PET/MR scanning using the dopamine transporter radioligand [11C]PE2I. Three MRAC methods were evaluated: single-atlas (Atlas), multi-atlas (MaxProb) and zero-echo-time (ZTE). The 68Ge-transmission data from a previous stand-alone PET scan was used as reference method. Parametric relative delivery (R1) images and binding potential (BPND) maps were generated using cerebellar grey matter as reference region. Evaluation was based on bias in MRAC maps, accuracy and precision of [11C]PE2I BPND and R1 estimates, and [11C]PE2I time-activity curves. BPND was examined for striatal regions and R1 in clusters of regions across the brain. RESULTS For BPND, ZTE-MRAC showed the highest accuracy (bias < 2%) in striatal regions. Atlas-MRAC exhibited a significant bias in caudate nucleus (- 12%) while MaxProb-MRAC revealed a substantial, non-significant bias in the putamen (9%). R1 estimates had a marginal bias for all MRAC methods (- 1.0-3.2%). MaxProb-MRAC showed the largest intersubject variability for both R1 and BPND. Standardized uptake values (SUV) of striatal regions displayed the strongest average bias for ZTE-MRAC (~ 10%), although constant over time and with the smallest intersubject variability. Atlas-MRAC had highest variation in bias over time (+10 to - 10%), followed by MaxProb-MRAC (+5 to - 5%), but MaxProb showed the lowest mean bias. For the cerebellum, MaxProb-MRAC showed the highest variability while bias was constant over time for Atlas- and ZTE-MRAC. CONCLUSIONS Both Maxprob- and ZTE-MRAC performed better than Atlas-MRAC when using a 68Ge transmission scan as reference method. Overall, ZTE-MRAC showed the highest precision and accuracy in outcome parameters of dynamic [11C]PE2I PET analysis with use of kinetic modelling.
Collapse
Affiliation(s)
- João M Sousa
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Lieuwe Appel
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | - Rolf A Heckemann
- Department of Radiation Physics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | - Dag Nyholm
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
- Department of Neurosciences, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Alexander Hammers
- King's College London & Guy's and St Thomas' PET Centre, King's College, London, UK
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
16
|
Jiang L, Wang X, Li P, Feng Z, Shi X, Shao H. Efficacy of 11C-2β-carbomethoxy-3β-(4-fluorophenyl) tropane positron emission tomography combined with 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of early Parkinson disease: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e23395. [PMID: 33371068 PMCID: PMC7748366 DOI: 10.1097/md.0000000000023395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) has a high incidence in the elderly, and the late stage seriously affects the daily life of the patients. Most of the initial symptoms of PD are not obvious or atypical, which brings difficulties to the early diagnosis. Replacement therapy and neuroprotection after early diagnosis can significantly improve the prognosis and quality of life of patients. More and more evidence shows that 11C-2β-carbomethoxy-3β-(4-fluorophenyl) tropane positron emission tomography ( 11C-CFT PET) combined with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) can effectively improve the accuracy of early diagnosis. However, there is no consistent conclusion at present. The purpose of this study is to evaluate the efficacy of 11C-CFT PET combined with 18F-FDG PET in the diagnosis of early PD. METHODS We will search 7 electronic databases (PubMed, EMBASE, Web of Science, Cochrane library, PsycINFO, AMED, Scopus), ongoing trials and grey literature to collect related randomized controlled trials and will use Review Manager Software 5.2 and STATA Software 16.0 for analysis and synthesis. RESULTS We will integrate the existing randomized controlled trials to evaluate the value of 11C-CFT PET combined with 18F-FDG PET in the diagnosis of early PD. CONCLUSION Our study may prove that 11C-CFT PET combined with 18F-FDG PET can effectively diagnose early PD. REGISTRATION NUMBER International Prospective Register of Systematic Reviews (PROSPERO): CRD42020203442.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Shao
- Department of Imaging, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
17
|
Ivanidze J, Skafida M, Pandya S, Patel D, Osborne JR, Raj A, Gupta A, Henchcliffe C, Dyke JP. Molecular Imaging of Striatal Dopaminergic Neuronal Loss and the Neurovascular Unit in Parkinson Disease. Front Neurosci 2020; 14:528809. [PMID: 33071729 PMCID: PMC7530280 DOI: 10.3389/fnins.2020.528809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder, characterized by loss of nigrostriatal dopaminergic neurons. Impairment of the neurovascular unit (NVU) has been hypothesized to play a critical role in early PD pathophysiology, and to precede neurodegenerative mechanisms. [C-11]-PE2I (N-(3-iodoprop-2E-enyl)-2b-carbomethoxy-3b-(4-methyl-phenyl)nortropane) (PE2I) is a PET radiotracer targeting neuronal dopamine transporters (DaT) with high specificity, allowing for highly accurate and specific DaT quantification. We investigated NVU integrity using arterial spin labeling (ASL) MRI in a prospective cohort of 26 patients with PD, and correlated our findings with analysis of striatal DaT density using PE2I PET in a subcohort of 17 patients. Analysis was performed in FreeSurfer to obtain rCBF and mean standardized regional PET avidity. Pearson correlations and Mann-Whitney tests were performed. Significantly lower mean normalized striatal PE2I SUV values were seen in multiple regions in patients with greater disease duration (p < 0.05). PET uptake in the putamen correlated with disease duration independent of patient age. Stratifying patients based on Montreal Cognitive Assessment (MoCA) scores (stratified into ≥ 27 vs. < 27), there was statistically significantly lower PE2I PET avidity in the higher MoCA score group in both more and less affected sides of the caudate, putamen and pallidum (p < 0.05). A moderate negative correlation between MDS-UPDRS part 3 (motor) "off" and rCBF values was also seen in the L and R cerebellum WM (r = -0.43 and -0.47, p < 0.05). A statistically significant negative correlation was found between dominant hand pegboard test results and rCBF in the less affected pallidum (r = -0.41; p = 0.046). A statistically significant negative correlation of ASL MRI with [11C]-PE2I PET was also found (r = -0.53 to -0.58; p-value 0.017-0.033) between left cerebral WM rCBF and more and less affected striatal PET regions. Our ROI-based analyses suggest that longer disease duration is associated with lower rCBF and lower PE2I mean SUV, implying greater NVU dysfunction and dopaminergic neuronal loss, respectively. Combined ASL MRI and PE2I PET imaging could inform future prospective clinical trials providing an improved mechanistic understanding of the disease, laying the foundation for the development of early disease biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Myrto Skafida
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Sneha Pandya
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylon Patel
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Claire Henchcliffe
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
18
|
Kerstens VS, Varrone A. Dopamine transporter imaging in neurodegenerative movement disorders: PET vs. SPECT. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00386-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Purpose
The dopamine transporter (DAT) serves as biomarker for parkinsonian syndromes. DAT can be measured in vivo with single-photon emission computed tomography (SPECT) and positron emission tomography (PET). DAT-SPECT is the current clinical molecular imaging standard. However, PET has advantages over SPECT measurements, and PET radioligands with the necessary properties for clinical applications are on the rise. Therefore, it is time to review the role of DAT imaging with SPECT compared to PET.
Methods
PubMed and Web of Science were searched for relevant literature of the previous 10 years. Four topics for comparison were used: diagnostic accuracy, quantitative accuracy, logistics, and flexibility.
Results
There are a few studies directly comparing DAT-PET and DAT-SPECT. PET and SPECT both perform well in discriminating neurodegenerative from non-neurodegenerative parkinsonism. Clinical DAT-PET imaging seems feasible only recently, thanks to simplified DAT assessments and better availability of PET radioligands and systems. The higher resolution of PET makes more comprehensive assessments of disease progression in the basal ganglia possible. Additionally, it has the possibility of multimodal target assessment.
Conclusion
DAT-SPECT is established for differentiating degenerative from non-degenerative parkinsonism. For further differentiation within neurodegenerative Parkinsonian syndromes, DAT-PET has essential benefits. Nowadays, because of wider availability of PET systems and radioligand production centers, and the possibility to use simplified quantification methods, DAT-PET imaging is feasible for clinical use. Therefore, DAT-PET needs to be considered for a more active role in the clinic to take a step forward to a more comprehensive understanding and assessment of Parkinson’s disease.
Collapse
|
19
|
EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging 2020; 47:1885-1912. [PMID: 32388612 PMCID: PMC7300075 DOI: 10.1007/s00259-020-04817-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023]
Abstract
Purpose This joint practice guideline or procedure standard was developed collaboratively by the European Association of Nuclear Medicine (EANM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI). The goal of this guideline is to assist nuclear medicine practitioners in recommending, performing, interpreting, and reporting the results of dopaminergic imaging in parkinsonian syndromes. Methods Currently nuclear medicine investigations can assess both presynaptic and postsynaptic function of dopaminergic synapses. To date both EANM and SNMMI have published procedural guidelines for dopamine transporter imaging with single photon emission computed tomography (SPECT) (in 2009 and 2011, respectively). An EANM guideline for D2 SPECT imaging is also available (2009). Since the publication of these previous guidelines, new lines of evidence have been made available on semiquantification, harmonization, comparison with normal datasets, and longitudinal analyses of dopamine transporter imaging with SPECT. Similarly, details on acquisition protocols and simplified quantification methods are now available for dopamine transporter imaging with PET, including recently developed fluorinated tracers. Finally, [18F]fluorodopa PET is now used in some centers for the differential diagnosis of parkinsonism, although procedural guidelines aiming to define standard procedures for [18F]fluorodopa imaging in this setting are still lacking. Conclusion All these emerging issues are addressed in the present procedural guidelines for dopaminergic imaging in parkinsonian syndromes.
Collapse
|
20
|
The effect of dextromethorphan use in Parkinson's disease: A 6-hydroxydopamine rat model and population-based study. Eur J Pharmacol 2019; 862:172639. [DOI: 10.1016/j.ejphar.2019.172639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/19/2022]
|
21
|
Chalon S, Vercouillie J, Payoux P, Deloye JB, Malherbe C, Le Jeune F, Arlicot N, Salabert AS, Guilloteau D, Emond P, Ribeiro MJ. The Story of the Dopamine Transporter PET Tracer LBT-999: From Conception to Clinical Use. Front Med (Lausanne) 2019; 6:90. [PMID: 31131278 PMCID: PMC6509245 DOI: 10.3389/fmed.2019.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
The membrane dopamine transporter (DAT) is involved in a number of brain disorders and its exploration by positron emission tomography (PET) imaging is highly relevant for the early and differential diagnosis, follow-up and treatment assessment of these diseases. A number of carbon-11 and fluor-18 labeled tracers are to date available for this aim, the majority of them being derived from the chemical structure of cocaine. The development of such a tracer, from its conception to its use, is a long process, the expected result being to obtain the best radiopharmaceutical adapted for clinical protocols. In this context, the cocaine derivative (E)-N-(4-fluorobut-2-enyl)2β-carbomethoxy-3β-(4′-tolyl)nortropane, or LBT-999, has passed all the required stages of the development that makes it now a highly relevant imaging tool, particularly in the context of Parkinson's disease. This review describes the different steps of the development of LBT-999 which initially came from its non-fluorinated derivative (E)-N-(3-iodoprop-2-enyl)-2-carbomethoxy-3-(4-methylphenyl) nortropane, or PE2I, because of its high promising properties. [18F]LBT-999 has been extensively characterized in rodent and non-human primate models, in which it demonstrated its capability to explore in vivo the DAT localized at the dopaminergic nerve endings as well as at the mesencephalic cell bodies, in physiological conditions. In lesion-induced rat models of Parkinson's disease, [18F]LBT-999 was able to precisely quantify in vivo the dopaminergic neuron loss, and to assess the beneficial effects of therapeutic approaches such as pharmacological treatment and cell transplantation. Finally recent clinical data demonstrated the efficiency of [18F]LBT-999 in the diagnosis of Parkinson's disease.
Collapse
Affiliation(s)
- Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Johnny Vercouillie
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,University Hospital, Nuclear Medicine Unit, Toulouse, France
| | | | - Cécile Malherbe
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Florence Le Jeune
- University of Rennes 1, Rennes, France.,Department of Nuclear Medicine, Centre Eugène Marquis, Rennes, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,University Hospital, Nuclear Medicine Unit, Toulouse, France
| | - Denis Guilloteau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,CHRU Tours, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,CHRU Tours, Tours, France
| | - Maria-Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| |
Collapse
|
22
|
Sousa JM, Appel L, Engström M, Papadimitriou S, Nyholm D, Larsson EM, Ahlström H, Lubberink M. Evaluation of zero-echo-time attenuation correction for integrated PET/MR brain imaging-comparison to head atlas and 68Ge-transmission-based attenuation correction. EJNMMI Phys 2018; 5:20. [PMID: 30345471 PMCID: PMC6196145 DOI: 10.1186/s40658-018-0220-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/05/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND MRI does not offer a direct method to obtain attenuation correction maps as its predecessors (stand-alone PET and PET/CT), and bone visualisation is particularly challenging. Recently, zero-echo-time (ZTE) was suggested for MR-based attenuation correction (AC). The aim of this work was to evaluate ZTE- and atlas-AC by comparison to 68Ge-transmission scan-based AC. Nine patients underwent brain PET/MR and stand-alone PET scanning using the dopamine transporter ligand 11C-PE2I. For each of them, two AC maps were obtained from the MR images: an atlas-based, obtained from T1-weighted LAVA-FLEX imaging with cortical bone inserted using a CT-based atlas, and an AC map generated from proton-density-weighted ZTE images. Stand-alone PET 68Ge-transmission AC map was used as gold standard. PET images were reconstructed using the three AC methods and standardised uptake value (SUV) values for the striatal, limbic and cortical regions, as well as the cerebellum (VOIs) were compared. SUV ratio (SUVR) values normalised for the cerebellum were also assessed. Bias, precision and agreement were calculated; statistical significance was evaluated using Wilcoxon matched-pairs signed-rank test. RESULTS Both ZTE- and atlas-AC showed a similar bias of 6-8% in SUV values across the regions. Correlation coefficients with 68Ge-AC were consistently high for ZTE-AC (r 0.99 for all regions), whereas they were lower for atlas-AC, varying from 0.99 in the striatum to 0.88 in the posterior cortical regions. SUVR showed an overall bias of 2.9 and 0.5% for atlas-AC and ZTE-AC, respectively. Correlations with 68Ge-AC were higher for ZTE-AC, varying from 0.99 in the striatum to 0.96 in the limbic regions, compared to atlas-AC (0.99 striatum to 0.77 posterior cortex). CONCLUSIONS Absolute SUV values showed less variability for ZTE-AC than for atlas-AC when compared to 68Ge-AC, but bias was similar for both methods. This bias is largely caused by higher linear attenuation coefficients in atlas- and ZTE-AC image compared to 68Ge-images. For SUVR, bias was lower when using ZTE-AC than for atlas-AC. ZTE-AC shows to be a more robust technique than atlas-AC in terms of both intra- and inter-patient variability.
Collapse
Affiliation(s)
- João M Sousa
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
- PET Centre, Uppsala University Hospital, 75185, Uppsala, Sweden.
| | - Lieuwe Appel
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | - Stergios Papadimitriou
- Department of Neurosciences, Uppsala University, Uppsala, Sweden
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
| | - Dag Nyholm
- Department of Neurosciences, Uppsala University, Uppsala, Sweden
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
23
|
Abstract
OBJECTIVE To evaluate the value of I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane (I-FP-CIT) dopamine transporter single photon emission computed tomography (DAT-SPECT) to change management strategies of patients suspected of parkinsonism. METHOD This was an institutional review board-approved, retrospective study. DAT-SPECT scans ordered by movement disorder specialist and neurologists from 2011-2014 were reviewed. Clinical data and radiological reports of 173 patients suspected of parkinsonism were reviewed. The DAT-SPECT scan results were correlated with clinical assessment and treatment changes. RESULTS A total of 173 patients (104 male and 69 female subjects; age, 64.4 ± 12.6 years) suspected of parkinsonism were included. Median duration of symptoms was 36 months (range, 1-480 months). Scans were most often requested when there was diagnostic uncertainty in clinical features (59.6%, 103/173) or to differentiate one other disease from parkinsonism such as Parkinson disease (PD) versus essential tremor (23.7%, 41/173), PD versus drug-induced parkinsonism (8.7%, 15/173), or PD versus psychogenic (6.4%, 11/173) or vascular (1.7%, 3/173) disorders. Patients were classified, according to the DAT-SPECT scanning results, as those with abnormal DAT-SPECT findings (59%, 102/173) and those with normal DAT-SPECT findings (41%, 71/173). In patients with normal DAT-SPECT findings, follow-up management data were available in 76.1% (54/71). The management changed in 39.4% (28/54) after DAT scan with starting a new appropriate medications or supportive therapy in 4.2% (3/28), withholding inappropriate dopaminergic treatment in 11.3% (8/28), or continuing observation in 23.9% (17/28). In patients with abnormal DAT-SPECT findings, follow-up management data were available in 78.4% (80/102). There was change in management of 37.3% (38/80), a new PD treatment was started in 89.5% (34/38). The dose of medication was adjusted in 5.3% (2/38), although the original treatment was not changed. Parkinson disease treatment was stopped in 2.6% (1/38) and discontinued in 2.6% (1/38) based on clinical decision of neurologists despite abnormal DAT-SPECT findings. CONCLUSIONS DAT-SPECT findings impacted treatment decisions in 44.7% of patients suspected of Parkinsonism.
Collapse
|
24
|
Kukk S, Järv J. Small Structural Changes at the N‐position of the Tropane Core Control the Mechanism of Nortropane Derivatives Binding to Dopamine Transporter. ChemistrySelect 2018. [DOI: 10.1002/slct.201801532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siim Kukk
- Department of Organic ChemistryInstitute of ChemistryUniversity of Tartu Ravila 14a 50411 Tartu, Estonia
- PharmaSynth AS Teaduspargi 7 51014 Tartu, Estonia
| | - Jaak Järv
- Department of Organic ChemistryInstitute of ChemistryUniversity of Tartu Ravila 14a 50411 Tartu, Estonia
- PharmaSynth AS Teaduspargi 7 51014 Tartu, Estonia
| |
Collapse
|
25
|
Langston JW, Wiley JC, Tagliati M. Optimizing Parkinson's disease diagnosis: the role of a dual nuclear imaging algorithm. NPJ PARKINSONS DISEASE 2018; 4:5. [PMID: 29507872 PMCID: PMC5824845 DOI: 10.1038/s41531-018-0041-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022]
Abstract
The diagnosis of Parkinson's disease (PD) currently relies almost exclusively on the clinical judgment of an experienced neurologist, ideally a specialist in movement disorders. However, such clinical diagnosis is often incorrect in a large percentage of patients, particularly in the early stages of the disease. A commercially available, objective and quantitative marker of nigrostriatal neurodegeneration was recently provided by 123-iodine 123I-ioflupane SPECT imaging, which is however unable to differentiate PD from a variety of other parkinsonian syndromes associated with striatal dopamine deficiency. There is evidence to support an algorithm utilizing a dual neuroimaging strategy combining 123I-ioflupane SPECT and the noradrenergic receptor ligand 123I-metaiodobenzylguanidine (MIBG), which assesses the post-ganglion peripheral autonomic nervous system. Evolving concepts regarding the synucleinopathy affecting the central and peripheral autonomic nervous systems as part of a multisystem disease are reviewed to sustain such strategy. Data are presented to show how MIBG deficits are a common feature of multisystem Lewy body disease and can be used as a unique feature to distinguish PD from atypical parkinsonisms. We propose that the combination of cardiac (MIBG) and cerebral 123I-ioflupane SPECT could satisfy one of the most significant unmet needs of current PD diagnosis and management, namely the early and accurate diagnosis of patients with typical Lewy body PD. Exemplary case scenarios will be described, highlighting how dual neuroimaging strategy can maximize diagnostic accuracy for patient care, clinical trials, pre-symptomatic PD screening, and special cases provided by specific genetic mutations associated with PD.
Collapse
Affiliation(s)
| | - Jesse C Wiley
- 2Department of Comparative Medicine, University of Washington, 1959 NE Pacific Ave Seattle, Seattle, WA USA
| | - Michele Tagliati
- Department of Neurology, Cedar-Sinai Medical Center, 127 S San Vicente Blvd, AHSP 6600, Los Angeles, CA 90272 USA
| |
Collapse
|
26
|
Li X, Xing Y, Martin-Bastida A, Piccini P, Auer DP. Patterns of grey matter loss associated with motor subscores in early Parkinson's disease. Neuroimage Clin 2017; 17:498-504. [PMID: 29201638 PMCID: PMC5700824 DOI: 10.1016/j.nicl.2017.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/13/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
Classical motor symptoms of Parkinson's disease (PD) such as tremor, rigidity, bradykinesia, and axial symptoms are graded in the Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III. It is yet to be ascertained whether parkinsonian motor symptoms are associated with different anatomical patterns of neurodegeneration as reflected by brain grey matter (GM) alteration. This study aimed to investigate associations between motor subscores and brain GM at voxel level. High resolution structural MRI T1 scans from the Parkinson's Progression Markers Initiative (PPMI) repository were employed to estimate brain GM intensity of PD subjects. Correlations between GM intensity and total MDS-UPDRS III and its four subscores were computed. The total MDS-UPDRS III score was significantly negatively correlated bilaterally with putamen and caudate GM density. Lower anterior striatal GM intensity was significantly associated with higher rigidity subscores, whereas left-sided anterior striatal and precentral cortical GM reduction were correlated with severity of axial symptoms. No significant morphometric associations were demonstrated for tremor subscores. In conclusion, we provide evidence for neuroanatomical patterns underpinning motor symptoms in early PD.
Collapse
Affiliation(s)
- Xingfeng Li
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; NIHR Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK.
| | - Yue Xing
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Antonio Martin-Bastida
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Paola Piccini
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Dorothee P Auer
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; NIHR Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
27
|
Li W, Lao-Kaim NP, Roussakis AA, Martín-Bastida A, Valle-Guzman N, Paul G, Loane C, Widner H, Politis M, Foltynie T, Barker RA, Piccini P. 11 C-PE2I and 18 F-Dopa PET for assessing progression rate in Parkinson's: A longitudinal study. Mov Disord 2017; 33:117-127. [PMID: 29082547 DOI: 10.1002/mds.27183] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND 18 F-dopa PET measuring aromatic l-amino acid decarboxylase activity is regarded as the gold standard for evaluating dopaminergic function in Parkinson's disease. Radioligands for dopamine transporters are also used in clinical trials and for confirming PD diagnosis. Currently, it is not clear which imaging marker is more reliable for assessing clinical severity and rate of progression. The objective of this study was to directly compare 18 F-dopa with the highly selective dopamine transporter radioligand 11 C-PE2I for the assessment of motor severity and rate of progression in PD. METHODS Thirty-three mild-moderate PD patients underwent 18 F-dopa and 11 C-PE2I PET at baseline. Twenty-three were followed up for 18.8 ± 3.4 months. RESULTS Standard multiple regression at baseline indicated that 11 C-PE2I BPND predicted UPDRS-III and bradykinesia-rigidity scores (P < 0.05), whereas 18 F-dopa Ki did not make significant unique explanatory contributions. Voxel-wise analysis showed negative correlations between 11 C-PE2I BPND and motor severity across the whole striatum bilaterally. 18 F-Dopa Ki clusters were restricted to the most affected putamen and caudate. Longitudinally, negative correlations were found between striatal Δ11 C-PE2I BPND , ΔUPDRS-III, and Δbradykinesia-rigidity, whereas no significant associations were found for Δ18 F-dopa Ki . One cluster in the most affected putamen was identified in the longitudinal voxel-wise analysis showing a negative relationship between Δ11 C-PE2I BPND and Δbradykinesia-rigidity. CONCLUSIONS Striatal 11 C-PE2I appears to show greater sensitivity for detecting differences in motor severity than 18 F-dopa. Furthermore, dopamine transporter decline is closely associated with motor progression over time, whereas no such relationship was found with aromatic l-amino acid decarboxylase. 11 C-PE2I may be more effective for evaluating the efficacy of neuroprotective treatments in PD. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Weihua Li
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Nick P Lao-Kaim
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Andreas A Roussakis
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Antonio Martín-Bastida
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | | | - Gesine Paul
- Translational Neurology Group, Department of Clinical Sciences, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Clare Loane
- Memory Research Group, Nuffield Department of Clinical Neurosciences, Medical Science Division. University of Oxford, Oxford, UK
| | - Håkan Widner
- Division of Neurology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tom Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Paola Piccini
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
28
|
Heurling K, Leuzy A, Jonasson M, Frick A, Zimmer ER, Nordberg A, Lubberink M. Quantitative positron emission tomography in brain research. Brain Res 2017; 1670:220-234. [PMID: 28652218 DOI: 10.1016/j.brainres.2017.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
The application of positron emission tomography (PET) in brain research has increased substantially during the past 20years, and is still growing. PET provides a unique insight into physiological and pathological processes in vivo. In this article we introduce the fundamentals of PET, and the methods available for acquiring quantitative estimates of the parameters of interest. A short introduction to different areas of application is also given, including basic research of brain function and in neurology, psychiatry, drug receptor occupancy studies, and its application in diagnostics of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Our aim is to inform the unfamiliar reader of the underlying basics and potential applications of PET, hoping to inspire the reader into considering how the technique could be of benefit for his or her own research.
Collapse
Affiliation(s)
- Kerstin Heurling
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Antoine Leuzy
- Department Neurobiology, Care Sciences and Society, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - My Jonasson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Andreas Frick
- Department of Psychology, Uppsala University, Uppsala, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo R Zimmer
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Agneta Nordberg
- Department Neurobiology, Care Sciences and Society, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden; Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
29
|
Prefrontal Markers and Cognitive Performance Are Dissociated during Progressive Dopamine Lesion. PLoS Biol 2016; 14:e1002576. [PMID: 27824858 PMCID: PMC5100991 DOI: 10.1371/journal.pbio.1002576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/12/2016] [Indexed: 11/19/2022] Open
Abstract
Dopamine is thought to directly influence the neurophysiological mechanisms of both performance monitoring and cognitive control-two processes that are critically linked in the production of adapted behaviour. Changing dopamine levels are also thought to induce cognitive changes in several neurological and psychiatric conditions. But the working model of this system as a whole remains untested. Specifically, although many researchers assume that changing dopamine levels modify neurophysiological mechanisms and their markers in frontal cortex, and that this in turn leads to cognitive changes, this causal chain needs to be verified. Using longitudinal recordings of frontal neurophysiological markers over many months during progressive dopaminergic lesion in non-human primates, we provide data that fail to support a simple interaction between dopamine, frontal function, and cognition. Feedback potentials, which are performance-monitoring signals sometimes thought to drive successful control, ceased to differentiate feedback valence at the end of the lesion, just before clinical motor threshold. In contrast, cognitive control performance and beta oscillatory markers of cognitive control were unimpaired by the lesion. The differing dynamics of these measures throughout a dopamine lesion suggests they are not all driven by dopamine in the same way. These dynamics also demonstrate that a complex non-linear set of mechanisms is engaged in the brain in response to a progressive dopamine lesion. These results question the direct causal chain from dopamine to frontal physiology and on to cognition. They imply that biomarkers of cognitive functions are not directly predictive of dopamine loss.
Collapse
|
30
|
Weingarten CP, Sundman MH, Hickey P, Chen NK. Neuroimaging of Parkinson's disease: Expanding views. Neurosci Biobehav Rev 2015; 59:16-52. [PMID: 26409344 PMCID: PMC4763948 DOI: 10.1016/j.neubiorev.2015.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Advances in molecular and structural and functional neuroimaging are rapidly expanding the complexity of neurobiological understanding of Parkinson's disease (PD). This review article begins with an introduction to PD neurobiology as a foundation for interpreting neuroimaging findings that may further lead to more integrated and comprehensive understanding of PD. Diverse areas of PD neuroimaging are then reviewed and summarized, including positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy and imaging, transcranial sonography, magnetoencephalography, and multimodal imaging, with focus on human studies published over the last five years. These included studies on differential diagnosis, co-morbidity, genetic and prodromal PD, and treatments from L-DOPA to brain stimulation approaches, transplantation and gene therapies. Overall, neuroimaging has shown that PD is a neurodegenerative disorder involving many neurotransmitters, brain regions, structural and functional connections, and neurocognitive systems. A broad neurobiological understanding of PD will be essential for translational efforts to develop better treatments and preventive strategies. Many questions remain and we conclude with some suggestions for future directions of neuroimaging of PD.
Collapse
Affiliation(s)
- Carol P Weingarten
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, United States.
| | - Mark H Sundman
- Brain Imaging and Analysis Center, Duke University Medical Center, United States
| | - Patrick Hickey
- Department of Neurology, Duke University School of Medicine, United States
| | - Nan-kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, United States; Department of Radiology, Duke University School of Medicine, United States
| |
Collapse
|