1
|
Lu Y, Collins J, Lin KS, van Dam RM. Scalable droplet-based radiosynthesis of [ 18F]fluorobenzyltriphenylphosphonium cation ([ 18F]FBnTP) via a "numbering up" approach. LAB ON A CHIP 2024; 24:728-737. [PMID: 38240629 PMCID: PMC10869106 DOI: 10.1039/d3lc01068f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The [18F]fluorobenzyltriphenylphosphonium cation ([18F]FBnTP) has emerged as a highly promising positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI) due to its uniform distribution in the myocardium and favorable organ biodistribution demonstrated in preclinical studies. However, a complex and low-efficiency radiosynthesis procedure has significantly hindered its broader preclinical and clinical explorations. Recently, Zhang et al. developed a pinacolyl arylboronate precursor, enabling a one-step synthesis process that greatly streamlines the production of [18F]FBnTP. Building upon this progress, our group successfully adapted the approach to a microdroplet reaction format and demonstrated improved radiosynthesis performance in a preliminary optimization study. However, scaling up to clinical dose amounts was not explored. In this work, we demonstrate that scale-up can be performed in a straightforward manner using a "numbering up" strategy (i.e. performing multiple droplet reactions in parallel and pooling the crude products). The resulting radiochemical yield after purification and formulation was high, up to 66 ± 1% (n = 4) for a set of experiments involving pooling of 4 droplet reactions, accompanied by excellent radiochemical purity (>99%) and molar activity (339-710 GBq μmol-1). Notably, we efficiently achieved sufficient activity yield (0.76-1.84 GBq) for multiple clinical doses from 1.6 to 3.7 GBq of [18F]fluoride in just 37-47 min.
Collapse
Affiliation(s)
- Yingqing Lu
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
| | - Jeffrey Collins
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
- Department of Molecular & Medical Pharmacology, UCLA, Los Angeles, CA, USA
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA
| |
Collapse
|
2
|
Park JE, Ryu SH, Ito S, Song MK, Gu EJ, Shin H, Kim YH, Jeon J. Bioaccumulation and in vivo fate of toxic benzylalkyldimethylammonium chloride in rats via the radiotracer analysis. CHEMOSPHERE 2023; 338:139460. [PMID: 37437624 DOI: 10.1016/j.chemosphere.2023.139460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Benzylalkyldimethylammonium chloride (BAC), a quaternary ammonium compound (QAC), is utilized in industrial and biomedical applications for antimicrobial purposes. Since the coronavirus disease (COVID-19) outbreak, various types of BAC-containing household chemicals have been produced. BACs have several adverse effects; however, their biological uptake, translocation, and excretion in animal models (essential for better understanding in vivo behavior and toxicological impact) remain unclear. In this study, we performed the first biodistribution and whole-body imaging studies of BAC in male Sprague Dawley rats, using two different administration routes. Quantitative whole-body autoradiography (QWBA) data obtained for intranasal 14C-labeled BAC ([14C]C12-BAC) exposure showed substantial uptake values for the respiratory organs (e.g. 346 ng g-1 of lung at 3 h post administration) and the radiotracer was transported to other internal organs. The amount of radiotracer in the heart, adrenal gland, and pancreas were 198, 1410, and 186 ng g-1 tissue respectively at 168 h following exposure. Autoradiograms obtained after intravenous injection also showed high accumulation and slow excretion in these organs. The cumulative excretion analysis revealed that approximately 6.4% of the administered radioactivity remained in rats after a week. The results indicated that continuous inhalation exposure to BAC leads to potential toxic effects in extrapulmonary organs and the respiratory tract. Thus, the radiolabeling method utilized may help assess various synthetic QACs in living subjects.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Seung-Hun Ryu
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, 42 Hwangyong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Satoshi Ito
- Drug Development Solutions Center, Sekisui Medical Co., Ltd., 2117 Muramatsu, Tokai, Ibaraki, 319-1182, Japan
| | - Mi-Kyung Song
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Eun Ji Gu
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Hyunil Shin
- KRCC Co., Ltd, 193 Chenggyesan-ro, Seocho-gu, Seoul, 06802, Republic of Korea
| | - Young-Hee Kim
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, 42 Hwangyong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Jongho Jeon
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Xie Y, Wang Y, Pei W, Chen Y. Theranostic in GLP-1R molecular imaging: challenges and emerging opportunities. Front Mol Biosci 2023; 10:1210347. [PMID: 37780209 PMCID: PMC10540701 DOI: 10.3389/fmolb.2023.1210347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Theranostic in nuclear medicine combines diagnostic imaging and internal irradiation therapy using different therapeutic nuclear probes for visual diagnosis and precise treatment. GLP-1R is a popular receptor target in endocrine diseases, non-alcoholic steatohepatitis, tumors, and other areas. Likewise, it has also made breakthroughs in the development of molecular imaging. It was recognized that GLP-1R imaging originated from the study of insulinoma and afterwards was expanded in application including islet transplantation, pancreatic β-cell mass measurement, and ATP-dependent potassium channel-related endocrine diseases. Fortunately, GLP-1R molecular imaging has been involved in ischemic cardiomyocytes and neurodegenerative diseases. These signs illustrate the power of GLP-1R molecular imaging in the development of medicine. However, it is still limited to imaging diagnosis research in the current molecular imaging environment. The lack of molecular-targeted therapeutics related report hinders its radiology theranostic. In this article, the current research status, challenges, and emerging opportunities for GLP-1R molecular imaging are discussed in order to open a new path for theranostics and to promote the evolution of molecular medicine.
Collapse
Affiliation(s)
- Yang Xie
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yudi Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Wenjie Pei
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Nekolla SG, Rischpler C, Higuchi T. Preclinical Imaging of Cardiovascular Disesase. Semin Nucl Med 2023; 53:586-598. [PMID: 37268498 DOI: 10.1053/j.semnuclmed.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/04/2023]
Abstract
Noninvasive imaging techniques, such as SPECT, PET, CT, echocardiography, or MRI, have become essential in cardiovascular research. They allow for the evaluation of biological processes in vivo without the need for invasive procedures. Nuclear imaging methods, such as SPECT and PET, offer numerous advantages, including high sensitivity, reliable quantification, and the potential for serial imaging. Modern SPECT and PET imaging systems, equipped with CT and MRI components in order to get access to morphological information with high spatial resolution, are capable of imaging a wide range of established and innovative agents in both preclinical and clinical settings. This review highlights the utility of SPECT and PET imaging as powerful tools for translational research in cardiology. By incorporating these techniques into a well-defined workflow- similar to those used in clinical imaging- the concept of "bench to bedside" can be effectively implemented.
Collapse
Affiliation(s)
- Stephan G Nekolla
- Nuklearmedizinische Klinik der TU München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | | | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Zhang X, Song W, Qin C, Lan X. Different displays of 13N-NH 3 myocardial perfusion and cardiac 68Ga-FAPI PET in immune checkpoint inhibitor-associated myocarditis-induced heart failure. Eur J Nucl Med Mol Imaging 2023; 50:964-965. [PMID: 36322188 DOI: 10.1007/s00259-022-06018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
6
|
KSNM60: The History of Radiopharmaceutical Sciences in Korea. Nucl Med Mol Imaging 2022; 56:114-126. [DOI: 10.1007/s13139-022-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/17/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022] Open
|
7
|
Synthesis and Evaluation of 18F-Labeled Fluoroalkyl Triphenylphosphonium Salts as Mitochondrial Voltage Sensors in PET Myocardial Imaging. Methods Mol Biol 2021. [PMID: 34118031 DOI: 10.1007/978-1-0716-1262-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We have previously reported that radiolabeled phosphonium cations accumulate in the mitochondria down a transmembrane potential gradient. We present an optimized procedure for synthesis of three [18F]-labeled fluoroalkyl triphenylphosphonium salts ([18F]FATPs) via two-step simple nucleophilic substitution reactions to develop new myocardial imaging agents for positron emission tomography (PET) . The total reaction time of [18F]FATPs was within 60 min, and the overall decay-corrected radiochemical yield was approximately 15-30% (decay corrected). Radiochemical purity was >98% according to analytical high-performance liquid chromatography (HPLC) . The specific activity of [18F]FATPs was >6.1 TBq/μmol. The [18F]FATPs exhibited higher first-pass extraction fraction values in isolated heart, higher uptake in the myocardium, and a more rapid clearance from the liver and lung than [13N]NH3 in normal rats. The images from rats with an occluded left coronary artery demonstrated sharply defined myocardial defects in the corresponding area of the myocardium. This imaging technology may enable high-throughput, multiple studies daily and wide distribution of PET myocardial studies in clinic.
Collapse
|
8
|
Cho SG, Kong EJ, Kang WJ, Paeng JC, Bom HSH, Cho I. KSNM60 in Cardiology: Regrowth After a Long Pause. Nucl Med Mol Imaging 2021; 55:151-161. [PMID: 34422125 PMCID: PMC8322215 DOI: 10.1007/s13139-021-00702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Abstract
The Korean Society of Nuclear Medicine (KSNM) is celebrating its 60th anniversary in honor of the nuclear medicine professionals who have dedicated their efforts towards research, academics, and the more comprehensive clinical applications and uses of nuclear imaging modalities. Nuclear cardiology in Korea was at its prime time in the 1990s, but its growth was interrupted by a long pause. Despite the academic and practical challenges, nuclear cardiology in Korea now meets the second leap, attributed to the growth in molecular imaging tailored for many non-coronary diseases and the genuine values of nuclear myocardial perfusion imaging. In this review, we describe the trends, achievements, challenges, and perspectives of nuclear cardiology throughout the 60-year history of the KSNM.
Collapse
Affiliation(s)
- Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Eun Jung Kong
- Department of Nuclear Medicine, Yeungnam University Medical Center, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415 Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Yonsei University Severance Hospital, Seoul, Republic of Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hee-Seung Henry Bom
- 5Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea
| | - Ihnho Cho
- Department of Nuclear Medicine, Yeungnam University Medical Center, 170 Hyeonchung-ro, Nam-gu, Daegu, 42415 Republic of Korea
| |
Collapse
|
9
|
Figueiredo D, Fernandes C, Silva F, Palma E, Raposinho P, Belchior A, Vaz P, Paulo A. Synthesis and Biological Evaluation of 99mTc(I) Tricarbonyl Complexes Dual-Targeted at Tumoral Mitochondria. Molecules 2021; 26:441. [PMID: 33467760 PMCID: PMC7830118 DOI: 10.3390/molecules26020441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 12/04/2022] Open
Abstract
For effective Auger therapy of cancer, the Auger-electron emitters must be delivered to the tumor cells in close proximity to a radiosensitive cellular target. Nuclear DNA is considered the most relevant target of Auger electrons to have augmented radiotoxic effects and significant cell death. However, there is a growing body of evidence that other targets, such as the mitochondria, could be relevant subcellular targets in Auger therapy. Thus, we developed dual-targeted 99mTc(I) tricarbonyl complexes containing a triphenylphosphonium (TPP) moiety to promote accumulation of 99mTc in the mitochondria, and a bombesin peptide to provide specificity towards the gastrin releasing peptide receptor (GRPr) overexpressed in prostate cancer cells. The designed dual-targeted complex, 99mTc-TPP-BBN, is efficiently internalized by human prostate cancer PC3 cells through a specific GRPr-mediated mechanism of uptake. Moreover, the radioconjugate provided an augmented accumulation of 99mTc in the mitochondria of the target tumor cells, most probably following its intracellular cleavage by cathepsin B. In addition, 99mTc-TPP-BBN showed an enhanced ability to reduce the survival of PC3 cells, in a dose-dependent manner.
Collapse
Affiliation(s)
- Diogo Figueiredo
- C2TN Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal; (D.F.); (F.S.); (E.P.); (P.R.); (A.B.); (P.V.)
| | - Célia Fernandes
- C2TN Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal; (D.F.); (F.S.); (E.P.); (P.R.); (A.B.); (P.V.)
- DECN—Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Francisco Silva
- C2TN Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal; (D.F.); (F.S.); (E.P.); (P.R.); (A.B.); (P.V.)
| | - Elisa Palma
- C2TN Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal; (D.F.); (F.S.); (E.P.); (P.R.); (A.B.); (P.V.)
| | - Paula Raposinho
- C2TN Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal; (D.F.); (F.S.); (E.P.); (P.R.); (A.B.); (P.V.)
- DECN—Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Ana Belchior
- C2TN Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal; (D.F.); (F.S.); (E.P.); (P.R.); (A.B.); (P.V.)
| | - Pedro Vaz
- C2TN Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal; (D.F.); (F.S.); (E.P.); (P.R.); (A.B.); (P.V.)
- DECN—Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- C2TN Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal; (D.F.); (F.S.); (E.P.); (P.R.); (A.B.); (P.V.)
- DECN—Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
10
|
Abstract
With the emergence of new therapeutic modalities, the diagnosis of melanoma at the earliest practicable stage has become more important for improving the survival of patients. We developed a positron emission tomography (PET) imaging probe, N-(2-(dimethylamino)ethyl)-5-[18F]fluoropicolinamide ([18F]DMPY2) and evaluated diagnostic performance in animal models. [18F]DMPY2 PET exhibited excellent performance in detecting primary and metastatic melanomas, demonstrating strong/prolonged tumoral uptake and rapid background clearance. This suggests that this radiotracer could be used as a novel PET imaging agent to obtain outstanding image quality in the diagnosis of melanoma. This is the pioneering report of pyridine-based benzamide derivative with reduced alkyl chains in the amine residue and ultrasensitive detection of melanoma lesions in living subjects compared to conventional PET imaging agents. Malignant melanoma has one of the highest mortality rates of any cancer because of its aggressive nature and high metastatic potential. Clinical staging of the disease at the time of diagnosis is very important for the prognosis and outcome of melanoma treatment. In this study, we designed and synthesized the 18F-labeled pyridine-based benzamide derivatives N-(2-(dimethylamino)ethyl)-5-[18F]fluoropicolinamide ([18F]DMPY2) and N-(2-(dimethylamino)ethyl)-6-[18F]fluoronicotinamide ([18F]DMPY3) to detect primary and metastatic melanoma at an early stage and evaluated their performance in this task. [18F]DMPY2 and [18F]DMPY3 were synthesized by direct radiofluorination of the bromo precursor, and radiochemical yields were ∼15–20%. Cell uptakes of [18F]DMPY2 and [18F]DMPY3 were >103-fold and 18-fold higher, respectively, in B16F10 (mouse melanoma) cells than in negative control cells. Biodistribution studies revealed strong tumor uptake and retention of [18F]DMPY2 (24.8% injected dose per gram of tissue [ID/g] at 60 min) and [18F]DMPY3 (11.7%ID/g at 60 min) in B16F10 xenografts. MicroPET imaging of both agents demonstrated strong tumoral uptake/retention and rapid washout, resulting in excellent tumor-to-background contrast in B16F10 xenografts. In particular, [18F]DMPY2 clearly visualized almost all metastatic lesions in lung and lymph nodes, with excellent image quality. [18F]DMPY2 demonstrated a significantly higher tumor-to-liver ratio than [18F]fluorodeoxyglucose ([18F]FDG) and the previously reported benzamide tracers N-[2-(diethylamino)-ethyl]-5-[18F]fluoropicolinamide ([18F]P3BZA) and N-[2-(diethylamino)-ethyl]-4-[18F]fluorobenzamide ([18F]FBZA) in B16F10-bearing or SK-MEL-3 (human melanoma)-bearing mice. In conclusion, [18F]DMPY2 might have strong potential for the diagnosis of early stage primary and metastatic melanoma using positron emission tomography (PET).
Collapse
|
11
|
Xiao T, Li D, Shi X, Shen M. PAMAM Dendrimer‐Based Nanodevices for Nuclear Medicine Applications. Macromol Biosci 2019; 20:e1900282. [DOI: 10.1002/mabi.201900282] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/03/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Xiao
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Du Li
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Xiangyang Shi
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| | - Mingwu Shen
- Key Laboratory of Science & Technology of Eco‐TextileMinistry of EducationCollege of ChemistryChemical Engineering and BiotechnologyDonghua University Shanghai 201620 P. R. China
| |
Collapse
|
12
|
Frank C, Winter G, Rensei F, Samper V, Brooks AF, Hockley BG, Henderson BD, Rensch C, Scott PJH. Development and implementation of ISAR, a new synthesis platform for radiopharmaceutical production. EJNMMI Radiopharm Chem 2019; 4:24. [PMID: 31659546 PMCID: PMC6751239 DOI: 10.1186/s41181-019-0077-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND PET radiopharmaceutical development and the implementation of a production method on a synthesis module is a complex and time-intensive task since new synthesis methods must be adapted to the confines of the synthesis platform in use. Commonly utilized single fluid bus architectures put multiple constraints on synthesis planning and execution, while conventional microfluidic solutions are limited by compatibility at the macro-to-micro interface. In this work we introduce the ISAR synthesis platform and custom-tailored fluid paths leveraging up to 70 individually addressable valves on a chip-based consumable. The ISAR synthesis platform replaces traditional stopcock valve manifolds with a fluidic chip that integrates all fluid paths (tubing) and valves into one consumable and enables channel routing without the single fluid bus constraint. ISAR can scale between the macro- (10 mL), meso- (0.5 mL) and micro- (≤0.05 mL) domain seamlessly, addressing the macro-to-micro interface challenge and enabling custom tailored fluid circuits for a given application. In this paper we demonstrate proof-of-concept by validating a single chip design to address the challenge of synthesizing multiple batches of [13N]NH3 for clinical use throughout the workday. RESULTS ISAR was installed at an academic PET Center and used to manufacture [13N]NH3 in > 96% radiochemical yield. Up to 9 batches were manufactured with a single consumable chip having parallel paths without the need to open the hot-cell. Quality control testing confirmed the ISAR-based [13N]NH3 met existing clinical release specifications, and utility was demonstrated by imaging a rodent with [13N]NH3 produced on ISAR. CONCLUSIONS ISAR represents a new paradigm in radiopharmaceutical production. Through a new system architecture, ISAR integrates the principles of microfluidics with the standard volumes and consumables established in PET Centers all over the world. Proof-of-concept has been demonstrated through validation of a chip design for the synthesis of [13N]NH3 suitable for clinical use.
Collapse
Affiliation(s)
| | - Georg Winter
- GE Healthcare, Oskar-Schlemmer-Str. 11, 80807 Munich, Germany
| | | | | | - Allen F. Brooks
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | - Brian G. Hockley
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | - Bradford D. Henderson
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | | | - Peter J. H. Scott
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| |
Collapse
|
13
|
Park H, Kim HS, Hong YJ, Min JJ, Kim HB, Kim MC, Sim DS, Kim JH, Kim DY, Lee JS, Ahn Y, Jeong MH. Therapeutic Effect of Fimasartan in a Rat Model of Myocardial Infarction Evaluated by Cardiac Positron Emission Tomography with [ 18F]FPTP. Chonnam Med J 2019; 55:109-115. [PMID: 31161123 PMCID: PMC6536431 DOI: 10.4068/cmj.2019.55.2.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 11/06/2022] Open
Abstract
We evaluated the efficacy of fimasartan on perfusion defects and infarction size in an animal model of myocardial infarction (MI), with echocardiography and positron emission tomography (PET) using a 18F-labeled phosphonium cation (5-[18F]-fluoropentyl-triphenylphosphonium salt, [18F]FPTP) as a mitochondrial voltage sensor for myocardial imaging. We induced MI in 33 rats by ligation of the left coronary artery, and checked their cardiac PET image using [18F]FPTP for evaluation of myocardial perfusion. Rats were grouped into 3 groups according to their administered drugs: no drug (n=11), fimasartan 3 mg/kg (n=10), and fimasartan 10 mg/kg (n=12). Each designated drug was administered for 4 weeks, and follow-up PET and histologic examinations were done. In the PET analysis, a perfusion defect size was markedly improved in fimasartan 10 mg/kg group (35.9±7.0% to 28.4±6.9%, p<0.001), whereas treatment with fimasartan 3 mg/kg induced only an insignificant reduction of perfusion defect size (35.9±7.9% to 33.9±7.3%, p=0.095). Using 2, 3, 5-triphenyltetrazolium chloride staining, infarction size was the largest in the control group (36.5±8.3%), and was insignificantly lower in the fimasartan 3 mg/kg group (31.5±6.5%, p for the difference between the control group=0.146) and was significantly lower in the fimasartan 10 mg/kg group (26.3±7.6%, p for the difference between the control group=0.011). PET imaging using a 18F-labeled mitochondrial voltage sensor, [18F]FPTP, is useful in evaluation and monitoring of myocardial perfusion states, and treatment with fimasartan decreases the infarction size in animal MI model.
Collapse
Affiliation(s)
- Hyukjin Park
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Hyeon Sik Kim
- Institute for Biomedical Science, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Young Joon Hong
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Han Byul Kim
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Min Chul Kim
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Doo Sun Sim
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Ju Han Kim
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
| | - Youngkeun Ahn
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| |
Collapse
|
14
|
Werner RA, Chen X, Rowe SP, Lapa C, Javadi MS, Higuchi T. Moving into the next era of PET myocardial perfusion imaging: introduction of novel 18F-labeled tracers. Int J Cardiovasc Imaging 2018; 35:569-577. [PMID: 30334228 PMCID: PMC6454078 DOI: 10.1007/s10554-018-1469-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023]
Abstract
The heart failure epidemic continues to rise with coronary artery disease as one of its main causes. Novel concepts for risk stratification to guide the referring cardiologist towards revascularization procedures are of significant value. Myocardial perfusion imaging using single-photon emission computed tomography (SPECT) agents has demonstrated high accuracy for the detection of clinically relevant stenoses. With positron emission tomography (PET) becoming more widely available, mainly due to its diagnostic performance in oncology, perfusion imaging with that modality is more practical than in the past and overcomes existing limitations of SPECT MPI. Advantages of PET include more reliable quantification of absolute myocardial blood flow, the routine use of computed tomography for attenuation correction, a higher spatiotemporal resolution and a higher count sensitivity. Current PET radiotracers such as rubidium-82 (half-life, 76 s), oxygen-15 water (2 min) or nitrogen-13 ammonia (10 min) are labeled with radionuclides with very short half-lives, necessitating that stress imaging is performed under pharmacological vasodilator stress instead of exercise testing. However, with the introduction of novel 18F-labeled MPI PET radiotracers (half-life, 110 min), the intrinsic advantages of PET can be combined with exercise testing. Additional advantages of those radiotracers include, but are not limited to: potentially improved cost-effectiveness due to the use of pre-existing delivery systems and superior imaging qualities, mainly due to the shortest positron range among available PET MPI probes. In the present review, widely used PET MPI radiotracers will be reviewed and potential novel 18F-labeled perfusion radiotracers will be discussed.
Collapse
Affiliation(s)
- Rudolf A Werner
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Nuclear Medicine, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Heart Failure Center, University of Wuerzburg, Oberduerrbacher Strasse 6, 97080, Wuerzburg, Germany
| | - Xinyu Chen
- Department of Nuclear Medicine, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Heart Failure Center, University of Wuerzburg, Oberduerrbacher Strasse 6, 97080, Wuerzburg, Germany
| | - Steven P Rowe
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Constantin Lapa
- Department of Nuclear Medicine, University of Wuerzburg, Wuerzburg, Germany
| | - Mehrbod S Javadi
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University of Wuerzburg, Wuerzburg, Germany. .,Comprehensive Heart Failure Center, University of Wuerzburg, Oberduerrbacher Strasse 6, 97080, Wuerzburg, Germany. .,Department of Biomedical Imaging, National Cardiovascular and Cerebral Center, Suita, Japan.
| |
Collapse
|
15
|
Kim DY, Cho SG, Bom HS. Emerging Tracers for Nuclear Cardiac PET Imaging. Nucl Med Mol Imaging 2018; 52:266-278. [PMID: 30100939 PMCID: PMC6066491 DOI: 10.1007/s13139-018-0521-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/05/2018] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Myocardial perfusion imaging using positron emission tomography (PET) has several advantages over single photon emission computed tomography (SPECT). The recent advances in SPECT technology have shown promise, but there is still a large need for PET in the clinical management of coronary artery disease (CAD). Especially, absolute quantification of myocardial blood flow (MBF) using PET is extremely important. In spite of considerable advances in the diagnosis of CAD, novel PET radiopharmaceuticals remain necessary for the diagnosis of CAD because clinical use of current cardiac radiotracers is limited by their physical characteristics, such as decay mode, emission energy, and half-life. Thus, the use of a radioisotope that has proper characteristics and a proper half-life to develop myocardial perfusion agents could overcome these limitations. In this review, the current state of cardiac PET and a general overview of novel 18F or 68Ga-labeled radiotracers, including their radiosynthesis, in vivo characterization, and evaluation, are provided. The future perspectives are discussed in terms of their potential usefulness based on new image analysis methods and hybrid imaging.
Collapse
Affiliation(s)
- Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro Hwasun-eup, Hwasun-gun, Jeollanam-do 58128 Republic of Korea
| | - Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro Hwasun-eup, Hwasun-gun, Jeollanam-do 58128 Republic of Korea
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro Hwasun-eup, Hwasun-gun, Jeollanam-do 58128 Republic of Korea
| |
Collapse
|
16
|
Gaitanis A, Kastis GA, Vlastou E, Bouziotis P, Verginis P, Anagnostopoulos CD. Investigation of Image Reconstruction Parameters of the Mediso nanoScan PC Small-Animal PET/CT Scanner for Two Different Positron Emitters Under NEMA NU 4-2008 Standards. Mol Imaging Biol 2018; 19:550-559. [PMID: 27995432 DOI: 10.1007/s11307-016-1035-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The Tera-Tomo 3D image reconstruction algorithm (a version of OSEM), provided with the Mediso nanoScan® PC (PET8/2) small-animal positron emission tomograph (PET)/x-ray computed tomography (CT) scanner, has various parameter options such as total level of regularization, subsets, and iterations. Also, the acquisition time in PET plays an important role. This study aims to assess the performance of this new small-animal PET/CT scanner for different acquisition times and reconstruction parameters, for 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and Ga-68, under the NEMA NU 4-2008 standards. PROCEDURES Various image quality metrics were calculated for different realizations of [18F]FDG and Ga-68 filled image quality (IQ) phantoms. RESULTS [18F]FDG imaging produced improved images over Ga-68. The best compromise for the optimization of all image quality factors is achieved for at least 30 min acquisition and image reconstruction with 52 iteration updates combined with a high regularization level. CONCLUSION A high regularization level at 52 iteration updates and 30 min acquisition time were found to optimize most of the figures of merit investigated.
Collapse
Affiliation(s)
- Anastasios Gaitanis
- PET/CT Department and Small Animal PET/CT Unit, Centre for Clinical Research, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.
| | - George A Kastis
- Research Center of Mathematics, Academy of Athens, Athens, Greece
- Radiochemical Studies Laboratory, Institute of Nuclear and Radiological Sciences & Technology, Energy & Safety (I.N.RA.S.T.E.S.), N.C.S.R. "Demokritos", Athens, Greece
| | - Elena Vlastou
- PET/CT Department and Small Animal PET/CT Unit, Centre for Clinical Research, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Penelope Bouziotis
- Radiochemical Studies Laboratory, Institute of Nuclear and Radiological Sciences & Technology, Energy & Safety (I.N.RA.S.T.E.S.), N.C.S.R. "Demokritos", Athens, Greece
| | - Panayotis Verginis
- Division of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, Athens, Greece
| | - Constantinos D Anagnostopoulos
- PET/CT Department and Small Animal PET/CT Unit, Centre for Clinical Research, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| |
Collapse
|
17
|
PET myocardial perfusion quantification: anatomy of a spreading functional technique. Clin Transl Imaging 2018. [DOI: 10.1007/s40336-018-0263-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Alpert NM, Guehl N, Ptaszek L, Pelletier-Galarneau M, Ruskin J, Mansour MC, Wooten D, Ma C, Takahashi K, Zhou Y, Shoup TM, Normandin MD, El Fakhri G. Quantitative in vivo mapping of myocardial mitochondrial membrane potential. PLoS One 2018; 13:e0190968. [PMID: 29338024 PMCID: PMC5770041 DOI: 10.1371/journal.pone.0190968] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mitochondrial membrane potential (ΔΨm) arises from normal function of the electron transport chain. Maintenance of ΔΨm within a narrow range is essential for mitochondrial function. Methods for in vivo measurement of ΔΨm do not exist. We use 18F-labeled tetraphenylphosphonium (18F-TPP+) to measure and map the total membrane potential, ΔΨT, as the sum of ΔΨm and cellular (ΔΨc) electrical potentials. METHODS Eight pigs, five controls and three with a scar-like injury, were studied. Pigs were studied with a dynamic PET scanning protocol to measure 18F-TPP+ volume of distribution, VT. Fractional extracellular space (fECS) was measured in 3 pigs. We derived equations expressing ΔΨT as a function of VT and the volume-fractions of mitochondria and fECS. Seventeen segment polar maps and parametric images of ΔΨT were calculated in millivolts (mV). RESULTS In controls, mean segmental ΔΨT = -129.4±1.4 mV (SEM). In pigs with segmental tissue injury, ΔΨT was clearly separated from control segments but variable, in the range -100 to 0 mV. The quality of ΔΨT maps was excellent, with low noise and good resolution. Measurements of ΔΨT in the left ventricle of pigs agree with previous in in-vitro measurements. CONCLUSIONS We have analyzed the factors affecting the uptake of voltage sensing tracers and developed a minimally invasive method for mapping ΔΨT in left ventricular myocardium of pigs. ΔΨT is computed in absolute units, allowing for visual and statistical comparison of individual values with normative data. These studies demonstrate the first in vivo application of quantitative mapping of total tissue membrane potential, ΔΨT.
Collapse
Affiliation(s)
- Nathaniel M. Alpert
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicolas Guehl
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leon Ptaszek
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthieu Pelletier-Galarneau
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeremy Ruskin
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Moussa C. Mansour
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dustin Wooten
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kazue Takahashi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yun Zhou
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Timothy M. Shoup
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
19
|
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
20
|
Kim JW, Seo S, Kim HS, Kim DY, Lee HY, Kang KW, Lee DS, Bom HS, Min JJ, Lee JS. Comparative evaluation of the algorithms for parametric mapping of the novel myocardial PET imaging agent 18F-FPTP. Ann Nucl Med 2017; 31:469-479. [PMID: 28444503 PMCID: PMC5486518 DOI: 10.1007/s12149-017-1171-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/16/2017] [Indexed: 02/05/2023]
Abstract
Objective (18F-fluoropentyl)triphenylphosphonium salt (18F-FPTP) is a new promising myocardial PET imaging tracer. It shows high accumulation in cardiomyocytes and rapid clearance from liver. We performed compartmental analysis of 18F-FPTP PET images in rat and evaluated two linear analyses: linear least-squares (LLS) and a basis function method (BFM) for generating parametric images. The minimum dynamic scan duration for kinetic analysis was also investigated and computer simulation undertaken. Methods 18F-FPTP dynamic PET (18 min) and CT images were acquired from rats with myocardial infarction (MI) (n = 12). Regions of interest (ROIs) were on the left ventricle, normal myocardium, and MI region. Two-compartment (K1 and k2; 2C2P) and three-compartment (K1–k3; 3C3P) models with irreversible uptake were compared for goodness-of-fit. Partial volume and spillover correction terms (Va and α = 1 − Va) were also incorporated. LLS and BFM were applied to ROI- and voxel-based kinetic parameter estimations. Results were compared with the standard ROI-based nonlinear least-squares (NLS) results of the corresponding compartment model. A simulation explored statistical properties of the estimation methods. Results The 2C2P model was most suitable for describing 18F-FPTP kinetics. Average K1, k2, and Va values were, respectively, 6.8 (ml/min/g), 1.1 (min−1), and 0.44 in normal myocardium and 1.4 (ml/min/g), 1.1 (min−1), and 0.32, in MI tissue. Ten minutes of data was sufficient for the estimation. LLS and BFM estimations correlated well with NLS values for the ROI level (K1: y = 1.06x + 0.13, r2 = 0.96 and y = 1.13x + 0.08, r2 = 0.97) and voxel level (K1: y = 1.22x − 0.30, r2 = 0.90 and y = 1.26x + 0.00, r2 = 0.92). Regional distribution of kinetic parametric images (αK1, K1, k2, Va) was physiologically relevant. LLS and BFM showed more robust characteristics than NLS in the simulation. Conclusions Fast kinetics and highly specific uptake of 18F-FPTP by myocardium enabled quantitative analysis with the 2C2P model using only the initial 10 min of data. LLS and BFM were feasible for estimating voxel-wise parameters. These two methods will be useful for quantitative evaluation of 18F-FPTP distribution in myocardium and in further studies with different conditions, disease models, and species. Electronic supplementary material The online version of this article (doi:10.1007/s12149-017-1171-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji Who Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Seongho Seo
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Hyeon Sik Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul, 08826, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea. .,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea.
| |
Collapse
|
21
|
Research Progress on 18F-Labeled Agents for Imaging of Myocardial Perfusion with Positron Emission Tomography. Molecules 2017; 22:molecules22040562. [PMID: 28358340 PMCID: PMC6154634 DOI: 10.3390/molecules22040562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death in the world. Myocardial perfusion imaging (MPI) plays a significant role in non-invasive diagnosis and prognosis of CAD. However, neither single-photon emission computed tomography nor positron emission tomography clinical MPI agents can absolutely satisfy the demands of clinical practice. In the past decades, tremendous developments happened in the field of 18F-labeled MPI tracers. This review summarizes the current state of 18F-labeled MPI tracers, basic research data of those tracers, and the future direction of MPI tracer research.
Collapse
|
22
|
Radiolabeled Phosphonium Salts as Mitochondrial Voltage Sensors for Positron Emission Tomography Myocardial Imaging Agents. Nucl Med Mol Imaging 2016; 50:185-95. [PMID: 27540422 DOI: 10.1007/s13139-016-0397-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 02/02/2023] Open
Abstract
Despite substantial advances in the diagnosis of cardiovascular disease, (18)F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenylphosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed.
Collapse
|
23
|
Brunken RC. Promising New 18F-Labeled Tracers for PET Myocardial Perfusion Imaging. J Nucl Med 2015; 56:1478-9. [DOI: 10.2967/jnumed.115.161661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/10/2015] [Indexed: 11/16/2022] Open
|