1
|
Gündel D, Toussaint M, Lai TH, Deuther-Conrad W, Cumming P, Schröder S, Teodoro R, Moldovan RP, Pan-Montojo F, Sattler B, Kopka K, Sabri O, Brust P. Quantitation of the A2A Adenosine Receptor Density in the Striatum of Mice and Pigs with [18F]FLUDA by Positron Emission Tomography. Pharmaceuticals (Basel) 2022; 15:ph15050516. [PMID: 35631343 PMCID: PMC9146919 DOI: 10.3390/ph15050516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
The cerebral expression of the A2A adenosine receptor (A2AAR) is altered in neurodegenerative diseases such as Parkinson’s (PD) and Huntington’s (HD) diseases, making these receptors an attractive diagnostic and therapeutic target. We aimed to further investigate the pharmacokinetic properties in the brain of our recently developed A2AAR–specific antagonist radiotracer [18F]FLUDA. For this purpose, we retrospectively analysed dynamic PET studies of healthy mice and rotenone–treated mice, and conducted dynamic PET studies with healthy pigs. We performed analysis of mouse brain time–activity curves to calculate the mean residence time (MRT) by non–compartmental analysis, and the binding potential (BPND) of [18F]FLUDA using the simplified reference tissue model (SRTM). For the pig studies, we performed a Logan graphical analysis to calculate the radiotracer distribution volume (VT) at baseline and under blocking conditions with tozadenant. The MRT of [18F]FLUDA in the striatum of mice was decreased by 30% after treatment with the A2AAR antagonist istradefylline. Mouse results showed the highest BPND (3.9 to 5.9) in the striatum. SRTM analysis showed a 20% lower A2AAR availability in the rotenone–treated mice compared to the control–aged group. Tozadenant treatment significantly decreased the VT (14.6 vs. 8.5 mL · g−1) and BPND values (1.3 vs. 0.3) in pig striatum. This study confirms the target specificity and a high BPND of [18F]FLUDA in the striatum. We conclude that [18F]FLUDA is a suitable tool for the non–invasive quantitation of altered A2AAR expression in neurodegenerative diseases such as PD and HD, by PET.
Collapse
Affiliation(s)
- Daniel Gündel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Correspondence: ; Tel.: +49-341-234179-4615
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
| | - Thu Hang Lai
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany;
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, 3010 Bern, Switzerland;
- School of Psychology and Counselling, Queensland University of Technology, Brisbane 4000, Australia
| | - Susann Schröder
- Department of Research and Development, ROTOP Pharmaka Ltd., 01328 Dresden, Germany;
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Department of Research and Development, Life Molecular Imaging GmbH, 13353 Berlin, Germany
| | - Rareş-Petru Moldovan
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
| | - Francisco Pan-Montojo
- Department of Psychiatry, University Hospital Munich, Ludwig–Maximilians–Universität (LMU) Munich, 80336 Munich, Germany;
- Department of Neurology, University Hospital Munich, Ludwig–Maximilians–Universität (LMU) Munich, 81377 Munich, Germany
| | - Bernhard Sattler
- Department for Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, Germany; (B.S.); (O.S.)
| | - Klaus Kopka
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069 Dresden, Germany
| | - Osama Sabri
- Department for Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, Germany; (B.S.); (O.S.)
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz–Zentrum Dresden–Rossendorf, 04308 Leipzig, Germany; (M.T.); (T.H.L.); (W.D.-C.); (R.T.); (R.-P.M.); (K.K.); (P.B.)
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig–Holstein, 23562 Lübeck, Germany
| |
Collapse
|
2
|
Non-Invasive Assessment of Locally Overexpressed Human Adenosine 2A Receptors in the Heart of Transgenic Mice. Int J Mol Sci 2022; 23:ijms23031025. [PMID: 35162950 PMCID: PMC8835051 DOI: 10.3390/ijms23031025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
A2A adenosine receptors (A2A-AR) have a cardio-protective function upon ischemia and reperfusion, but on the other hand, their stimulation could lead to arrhythmias. Our aim was to investigate the potential use of the PET radiotracer [18F]FLUDA to non-invasively determine the A2A-AR availability for diagnosis of the A2AR status. Therefore, we compared mice with cardiomyocyte-specific overexpression of the human A2A-AR (A2A-AR TG) with the respective wild type (WT). We determined: (1) the functional impact of the selective A2AR ligand FLUDA on the contractile function of atrial mouse samples, (2) the binding parameters (Bmax and KD) of [18F]FLUDA on mouse and human atrial tissue samples by autoradiographic studies, and (3) investigated the in vivo uptake of the radiotracer by dynamic PET imaging in A2A-AR TG and WT. After A2A-AR stimulation by the A2A-AR agonist CGS 21680 in isolated atrial preparations, antagonistic effects of FLUDA were found in A2A-AR-TG animals but not in WT. Radiolabelled [18F]FLUDA exhibited a KD of 5.9 ± 1.6 nM and a Bmax of 455 ± 78 fmol/mg protein in cardiac samples of A2A-AR TG, whereas in WT, as well as in human atrial preparations, only low specific binding was found. Dynamic PET studies revealed a significantly higher initial uptake of [18F]FLUDA into the myocardium of A2A-AR TG compared to WT. The hA2A-AR-specific binding of [18F]FLUDA in vivo was verified by pre-administration of the highly affine A2AAR-specific antagonist istradefylline. Conclusion: [18F]FLUDA is a promising PET probe for the non-invasive assessment of the A2A-AR as a marker for pathologies linked to an increased A2A-AR density in the heart, as shown in patients with heart failure.
Collapse
|
3
|
Ataeinia B, Heidari P. Artificial Intelligence and the Future of Diagnostic and Therapeutic Radiopharmaceutical Development:: In Silico Smart Molecular Design. PET Clin 2021; 16:513-523. [PMID: 34364818 PMCID: PMC8453048 DOI: 10.1016/j.cpet.2021.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Novel diagnostic and therapeutic radiopharmaceuticals are increasingly becoming a central part of personalized medicine. Continued innovation in the development of new radiopharmaceuticals is key to sustained growth and advancement of precision medicine. Artificial intelligence has been used in multiple fields of medicine to develop and validate better tools for patient diagnosis and therapy, including in radiopharmaceutical design. In this review, we first discuss common in silico approaches and focus on their usefulness and challenges in radiopharmaceutical development. Next, we discuss the practical applications of in silico modeling in design of radiopharmaceuticals in various diseases.
Collapse
Affiliation(s)
- Bahar Ataeinia
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Wht 427, Boston, MA 02114, USA
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Wht 427, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Lai TH, Toussaint M, Teodoro R, Dukić-Stefanović S, Gündel D, Ludwig FA, Wenzel B, Schröder S, Sattler B, Moldovan RP, Falkenburger BH, Sabri O, Deuther-Conrad W, Brust P. Improved in vivo PET imaging of the adenosine A 2A receptor in the brain using [ 18F]FLUDA, a deuterated radiotracer with high metabolic stability. Eur J Nucl Med Mol Imaging 2021; 48:2727-2736. [PMID: 33532910 PMCID: PMC8263428 DOI: 10.1007/s00259-020-05164-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. METHODS [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. RESULTS [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72-180 GBq/μmol. Autoradiography proved A2A receptor-specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 μg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. CONCLUSIONS The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.
Collapse
Affiliation(s)
- Thu Hang Lai
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany.
- Department of Research and Development, ROTOP Pharmaka Ltd., Dresden, Germany.
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany.
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Sladjana Dukić-Stefanović
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Daniel Gündel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Susann Schröder
- Department of Research and Development, ROTOP Pharmaka Ltd., Dresden, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Rareş-Petru Moldovan
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | | | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig, Germany
| |
Collapse
|
5
|
Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol Imaging 2021; 19:1536012120927609. [PMID: 32539522 PMCID: PMC7297484 DOI: 10.1177/1536012120927609] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders.
Collapse
Affiliation(s)
- Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Prasad K, de Vries EFJ, Elsinga PH, Dierckx RAJO, van Waarde A. Allosteric Interactions between Adenosine A 2A and Dopamine D 2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci 2021; 22:ijms22041719. [PMID: 33572077 PMCID: PMC7915359 DOI: 10.3390/ijms22041719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, C.Heymanslaan 10, 9000 Gent, Belgium
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| |
Collapse
|
7
|
Sun MJ, Liu F, Zhao YF, Wu XA. In Vivo Positron Emission Tomography Imaging of Adenosine A 2A Receptors. Front Pharmacol 2020; 11:599857. [PMID: 33324226 PMCID: PMC7726429 DOI: 10.3389/fphar.2020.599857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023] Open
Abstract
As an invasive nuclear medical imaging technology, positron emission tomography (PET) possess the possibility to imaging the distribution as well as the density of selective receptors via specific PET tracers. Inspired by PET, the development of radio-chemistry has greatly promoted the progress of innovative imaging PET tracers for adenosine receptors, in particular adenosine A2A receptors (A2ARs). PET imaging of A2A receptors play import roles in the research of adenosine related disorders. Several radio-tracers for A2A receptors imaging have been evaluated in human studies. This paper reviews the recent research progress of PET tracers for A2A receptors imaging, and their applications in the diagnosis and treatment of related disease, such as cardiovascular diseases, autoimmune diseases, neurodegenerative and psychiatric disease. The future development of A2A PET tracers were also discussed.
Collapse
Affiliation(s)
- Meng-Juan Sun
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Fang Liu
- Department of Laboratory Pathology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Ya-Fei Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiao-Ai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Pyrazoles as Key Scaffolds for the Development of Fluorine-18-Labeled Radiotracers for Positron Emission Tomography (PET). Molecules 2020; 25:molecules25071722. [PMID: 32283680 PMCID: PMC7181023 DOI: 10.3390/molecules25071722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The need for increasingly personalized medicine solutions (precision medicine) and quality medical treatments, has led to a growing demand and research for image-guided therapeutic solutions. Positron emission tomography (PET) is a powerful imaging technique that can be established using complementary imaging systems and selective imaging agents—chemical probes or radiotracers—which are drugs labeled with a radionuclide, also called radiopharmaceuticals. PET has two complementary purposes: selective imaging for diagnosis and monitoring of disease progression and response to treatment. The development of selective imaging agents is a growing research area, with a high number of diverse drugs, labeled with different radionuclides, being reported nowadays. This review article is focused on the use of pyrazoles as suitable scaffolds for the development of 18F-labeled radiotracers for PET imaging. A brief introduction to PET and pyrazoles, as key scaffolds in medicinal chemistry, is presented, followed by a description of the most important [18F]pyrazole-derived radiotracers (PET tracers) that have been developed in the last 20 years for selective PET imaging, grouped according to their specific targets.
Collapse
|
9
|
Schröder S, Lai TH, Toussaint M, Kranz M, Chovsepian A, Shang Q, Dukić-Stefanović S, Deuther-Conrad W, Teodoro R, Wenzel B, Moldovan RP, Pan-Montojo F, Brust P. PET Imaging of the Adenosine A 2A Receptor in the Rotenone-Based Mouse Model of Parkinson's Disease with [ 18F]FESCH Synthesized by a Simplified Two-Step One-Pot Radiolabeling Strategy. Molecules 2020; 25:molecules25071633. [PMID: 32252340 PMCID: PMC7180622 DOI: 10.3390/molecules25071633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
The adenosine A2A receptor (A2AR) is regarded as a particularly appropriate target for non-dopaminergic treatment of Parkinson’s disease (PD). An increased A2AR availability has been found in the human striatum at early stages of PD and in patients with PD and dyskinesias. The aim of this small animal positron emission tomography/magnetic resonance (PET/MR) imaging study was to investigate whether rotenone-treated mice reflect the aspect of striatal A2AR upregulation in PD. For that purpose, we selected the known A2AR-specific radiotracer [18F]FESCH and developed a simplified two-step one-pot radiosynthesis. PET images showed a high uptake of [18F]FESCH in the mouse striatum. Concomitantly, metabolism studies with [18F]FESCH revealed the presence of a brain-penetrant radiometabolite. In rotenone-treated mice, a slightly higher striatal A2AR binding of [18F]FESCH was found. Nonetheless, the correlation between the increased A2AR levels within the proposed PD animal model remains to be further investigated.
Collapse
Affiliation(s)
- Susann Schröder
- ROTOP Pharmaka Ltd., Department of Research and Development, Dresden 01328, Germany
- Correspondence: ; Tel.: +49-341-234-179-4631
| | - Thu Hang Lai
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig 04318, Germany; (T.H.L.); (M.T.); (S.D.-S.); (W.D.-C.); (R.T.); (B.W.); (R.-P.M.); (P.B.)
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig 04318, Germany; (T.H.L.); (M.T.); (S.D.-S.); (W.D.-C.); (R.T.); (B.W.); (R.-P.M.); (P.B.)
| | - Mathias Kranz
- PET Imaging Center, University Hospital of North Norway (UNN), Tromsø 9009, Norway;
- Nuclear Medicine and Radiation Biology Research Group, The Arctic University of Norway, Tromsø 9009, Norway
| | - Alexandra Chovsepian
- University Hospital Munich, Department of Psychiatry, Ludwig-Maximilians-Universität (LMU) Munich, Munich 80336, Germany; (A.C.); (F.P.-M.)
| | - Qi Shang
- University Hospital Munich, Department of Neurology, Ludwig-Maximilians-Universität (LMU) Munich, Munich 81377, Germany;
- University Hospital Carl Gustav Carus, Clinic of Neurology, Technische Universität Dresden (TUD), Dresden 01307, Germany
| | - Sladjana Dukić-Stefanović
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig 04318, Germany; (T.H.L.); (M.T.); (S.D.-S.); (W.D.-C.); (R.T.); (B.W.); (R.-P.M.); (P.B.)
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig 04318, Germany; (T.H.L.); (M.T.); (S.D.-S.); (W.D.-C.); (R.T.); (B.W.); (R.-P.M.); (P.B.)
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig 04318, Germany; (T.H.L.); (M.T.); (S.D.-S.); (W.D.-C.); (R.T.); (B.W.); (R.-P.M.); (P.B.)
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig 04318, Germany; (T.H.L.); (M.T.); (S.D.-S.); (W.D.-C.); (R.T.); (B.W.); (R.-P.M.); (P.B.)
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig 04318, Germany; (T.H.L.); (M.T.); (S.D.-S.); (W.D.-C.); (R.T.); (B.W.); (R.-P.M.); (P.B.)
| | - Francisco Pan-Montojo
- University Hospital Munich, Department of Psychiatry, Ludwig-Maximilians-Universität (LMU) Munich, Munich 80336, Germany; (A.C.); (F.P.-M.)
- University Hospital Munich, Department of Neurology, Ludwig-Maximilians-Universität (LMU) Munich, Munich 81377, Germany;
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig 04318, Germany; (T.H.L.); (M.T.); (S.D.-S.); (W.D.-C.); (R.T.); (B.W.); (R.-P.M.); (P.B.)
| |
Collapse
|
10
|
Tracers for non-invasive radionuclide imaging of immune checkpoint expression in cancer. EJNMMI Radiopharm Chem 2019; 4:29. [PMID: 31696402 PMCID: PMC6834817 DOI: 10.1186/s41181-019-0078-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract Immunotherapy with checkpoint inhibitors demonstrates impressive improvements in the treatment of several types of cancer. Unfortunately, not all patients respond to therapy while severe immune-related adverse effects are prevalent. Currently, patient stratification is based on immunotherapy marker expression through immunohistochemical analysis on biopsied material. However, expression can be heterogeneous within and between tumor lesions, amplifying the sampling limitations of biopsies. Analysis of immunotherapy target expression by non-invasive quantitative molecular imaging with PET or SPECT may overcome this issue. In this review, an overview of tracers that have been developed for preclinical and clinical imaging of key immunotherapy targets, such as programmed cell death-1, programmed cell death ligand-1, IDO1 and cytotoxic T lymphocyte-associated antigen-4 is presented. We discuss important aspects to consider when developing such tracers and outline the future perspectives of molecular imaging of immunotherapy markers. Graphical abstract Current techniques in immune checkpoint imaging and its potential for future applications ![]()
Collapse
|
11
|
Li J, Hong X, Li G, Conti PS, Zhang X, Chen K. PET Imaging of Adenosine Receptors in Diseases. Curr Top Med Chem 2019; 19:1445-1463. [PMID: 31284861 DOI: 10.2174/1568026619666190708163407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/26/2019] [Accepted: 02/02/2019] [Indexed: 01/08/2023]
Abstract
Adenosine receptors (ARs) are a class of purinergic G-protein-coupled receptors (GPCRs). Extracellular adenosine is a pivotal regulation molecule that adjusts physiological function through the interaction with four ARs: A1R, A2AR, A2BR, and A3R. Alterations of ARs function and expression have been studied in neurological diseases (epilepsy, Alzheimer's disease, and Parkinson's disease), cardiovascular diseases, cancer, and inflammation and autoimmune diseases. A series of Positron Emission Tomography (PET) probes for imaging ARs have been developed. The PET imaging probes have provided valuable information for diagnosis and therapy of diseases related to alterations of ARs expression. This review presents a concise overview of various ARs-targeted radioligands for PET imaging in diseases. The most recent advances in PET imaging studies by using ARs-targeted probes are briefly summarized.
Collapse
Affiliation(s)
- Jindian Li
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xingfang Hong
- Laboratory of Pathogen Biology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Guoquan Li
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| | - Peter S Conti
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| |
Collapse
|
12
|
Högel H, Rissanen E, Vuorimaa A, Airas L. Positron emission tomography imaging in evaluation of MS pathology in vivo. Mult Scler 2018; 24:1399-1412. [DOI: 10.1177/1352458518791680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood–brain barrier–penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.
Collapse
Affiliation(s)
- Heidi Högel
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
13
|
Tronel C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Dupont AC, Arlicot N. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations. Int J Mol Sci 2017; 18:ijms18040802. [PMID: 28398245 PMCID: PMC5412386 DOI: 10.3390/ijms18040802] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of microglia has matured over the last 20 years, through the development of radiopharmaceuticals targeting several molecular biomarkers of microglial activation and, among these, mainly the translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals’ binding affinity, or similar expression in activated microglia regardless of its polarization (pro- or anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors (purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors, adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus on their respective contribution for the understanding of microglial involvement in neurodegenerative diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding their selectivity for microglia expression and polarization, in relation to the mechanisms by which microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then take into account current clinicians’ expectations.
Collapse
Affiliation(s)
- Claire Tronel
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Denis Guilloteau
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Anne-Claire Dupont
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Nicolas Arlicot
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| |
Collapse
|