1
|
Zhang T, Ma X, Xu M, Cai J, Cai J, Cao Y, Zhang Z, Ji X, He J, Cabrera GOF, Wu X, Zhao W, Wu Z, Xie J, Li Z. Chelator boosted tumor-retention and pharmacokinetic properties: development of 64Cu labeled radiopharmaceuticals targeting neurotensin receptor. Eur J Nucl Med Mol Imaging 2024; 51:3322-3333. [PMID: 38771516 PMCID: PMC11368631 DOI: 10.1007/s00259-024-06754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE Accumulating evidence suggests that neurotensin (NTS) and neurotensin receptors (NTSRs) play key roles in lung cancer progression by triggering multiple oncogenic signaling pathways. This study aims to develop Cu-labeled neurotensin receptor 1 (NTSR1)-targeting agents with the potential for both imaging and therapeutic applications. METHOD A series of neurotensin receptor antagonists (NRAs) with variable propylamine (PA) linker length and different chelators were synthesized, including [64Cu]Cu-CB-TE2A-iPA-NRA ([64Cu]Cu-4a-c, i = 1, 2, 3), [64Cu]Cu-NOTA-2PA-NRA ([64Cu]Cu-4d), [64Cu]Cu-DOTA-2PA-NRA ([64Cu]Cu-4e, also known as [64Cu]Cu-3BP-227), and [64Cu]Cu-DOTA-VS-2PA-NRA ([64Cu]Cu-4f). The series of small animal PET/CT were conducted in H1299 lung cancer model. The expression profile of NTSR1 was also confirmed by IHC using patient tissue samples. RESULTS For most of the compounds studied, PET/CT showed prominent tumor uptake and high tumor-to-background contrast, but the tumor retention was strongly influenced by the chelators used. For previously reported 4e, [64Cu]Cu-labeled derivative showed initial high tumor uptake accompanied by rapid tumor washout at 24 h. The newly developed [64Cu]Cu-4d and [64Cu]Cu-4f demonstrated good tumor uptake and tumor-to-background contrast at early time points, but were less promising in tumor retention. In contrast, our lead compound [64Cu]Cu-4b demonstrated 9.57 ± 1.35, 9.44 ± 2.38 and 9.72 ± 4.89%ID/g tumor uptake at 4, 24, and 48 h p.i., respectively. Moderate liver uptake (11.97 ± 3.85, 9.80 ± 3.63, and 7.72 ± 4.68%ID/g at 4, 24, and 48 h p.i.) was observed with low uptake in most other organs. The PA linker was found to have a significant effect on drug distribution. Compared to [64Cu]Cu-4b, [64Cu]Cu-4a had a lower background, including a greatly reduced liver uptake, while the tumor uptake was only moderately reduced. Meanwhile, [64Cu]Cu-4c showed increased uptake in both the tumor and the liver. The clinical relevance of NTSR1 was also demonstrated by the elevated tumor expression in patient tissue samples. CONCLUSIONS Through the side-by-side comparison, [64Cu]Cu-4b was identified as the lead agent for further evaluation based on its high and sustained tumor uptake and moderate liver uptake. It can not only be used to efficiently detect NTSR1 expression in lung cancer (for diagnosis, patient screening, and treatment monitoring), but also has the great potential to treat NTSR-positive lesions once chelating to the beta emitter 67Cu.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA.
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Transformation Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xinrui Ma
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, Raleigh, NC, North Carolina State University, NC 27599, USA
| | - Muyun Xu
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Jinghua Cai
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Jianhua Cai
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhihao Zhang
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Transformation Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Ji
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Transformation Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - German Oscar Fonseca Cabrera
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Xuedan Wu
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Weiling Zhao
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Zhanhong Wu
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA, 30602, USA.
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina , 27599, USA.
| |
Collapse
|
2
|
Fonseca Cabrera GO, Ma X, Lin W, Zhang T, Zhao W, Pan L, Li X, Barnhart TE, Aluicio-Sarduy E, Deng H, Wu X, Rakesh KP, Li Z, Engle JW, Wu Z. Synthesis of 64Cu-, 55Co-, and 68Ga-Labeled Radiopharmaceuticals Targeting Neurotensin Receptor-1 for Theranostics: Adjusting In Vivo Distribution Using Multiamine Macrocycles. J Nucl Med 2024; 65:1250-1256. [PMID: 38871388 PMCID: PMC11294072 DOI: 10.2967/jnumed.124.267469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
The development of theranostic radiotracers relies on their binding to specific molecular markers of a particular disease and the use of corresponding radiopharmaceutical pairs thereafter. This study reports the use of multiamine macrocyclic moieties (MAs), as linkers or chelators, in tracers targeting the neurotensin receptor-1 (NTSR-1). The goal is to achieve elevated tumor uptake, minimal background interference, and prolonged tumor retention in NTSR-1-positive tumors. Methods: We synthesized a series of neurotensin antagonists bearing MA linkers and metal chelators. The MA unit is hypothesized to establish a strong interaction with the cell membrane, and the addition of a second chelator may enhance water solubility, consequently reducing liver uptake. Small-animal PET/CT imaging of [64Cu]Cu-DOTA-SR-3MA, [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, [64Cu]Cu-NT-CB-DOTA, and [64Cu]Cu-NT-Sarcage was acquired at 1, 4, 24, and 48 h after injection using H1299 tumor models. [55Co]Co-NT-CB-NOTA was also tested in HT29 (high NTSR-1 expression) and Caco2 (low NTSR-1 expression) colorectal adenocarcinoma tumor models. Saturation binding assay and internalization of [55Co]Co-NT-CB-NOTA were used to test tracer specificity and internalization in HT29 cells. Results: In vivo PET imaging with [64Cu]Cu-NT-CB-NOTA, [68Ga]Ga-NT-CB-NOTA, and [55Co]Co-NT-CB-NOTA revealed high tumor uptake, high tumor-to-background contrast, and sustained tumor retention (≤48 h after injection) in NTSR-1-positive tumors. Tumor uptake of [64Cu]Cu-NT-CB-NOTA remained at 76.9% at 48 h after injection compared with uptake 1 h after injection in H1299 tumor models, and [55Co]Co-NT-CB-NOTA was retained at 60.2% at 24 h compared with uptake 1 h after injection in HT29 tumor models. [64Cu]Cu-NT-Sarcage also showed high tumor uptake with low background and high tumor retention 48 h after injection Conclusion: Tumor uptake and pharmacokinetic properties of NTSR-1-targeting radiopharmaceuticals were greatly improved when attached with different nitrogen-containing macrocyclic moieties. The study results suggest that NT-CB-NOTA labeled with either 64Cu/67Cu, 55Co/58mCo, or 68Ga (effect of 177Lu in tumor to be determined in future studies) and NT-Sarcage labeled with 64Cu/67Cu or 55Co/58mCo may be excellent diagnostic and therapeutic radiopharmaceuticals targeting NTSR-1-positive cancers. Also, the introduction of MA units to other ligands is warranted in future studies to test the generality of this approach.
Collapse
Affiliation(s)
- German O Fonseca Cabrera
- Biomedical Research Imaging Center, Department of Radiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xinrui Ma
- Biomedical Research Imaging Center, Department of Radiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Wilson Lin
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin; and
| | - Tao Zhang
- Biomedical Research Imaging Center, Department of Radiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Weiling Zhao
- Biomedical Research Imaging Center, Department of Radiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Liqin Pan
- Biomedical Research Imaging Center, Department of Radiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xiaomei Li
- Accunovo Biotechnologies, Inc., Chapel Hill, North Carolina
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin; and
| | | | - Huaifu Deng
- Biomedical Research Imaging Center, Department of Radiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kadalipura P Rakesh
- Biomedical Research Imaging Center, Department of Radiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;
| | - Jonathan W Engle
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina;
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;
| |
Collapse
|
3
|
Pomykala KL, Hadaschik BA, Sartor O, Gillessen S, Sweeney CJ, Maughan T, Hofman MS, Herrmann K. Next generation radiotheranostics promoting precision medicine. Ann Oncol 2023; 34:507-519. [PMID: 36924989 DOI: 10.1016/j.annonc.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Radiotheranostics is a field of rapid growth with some approved treatments including 131I for thyroid cancer, 223Ra for osseous metastases, 177Lu-DOTATATE for neuroendocrine tumors, and 177Lu-PSMA (prostate-specific membrane antigen) for prostate cancer, and several more under investigation. In this review, we will cover the fundamentals of radiotheranostics, the key clinical studies that have led to current success, future developments with new targets, radionuclides and platforms, challenges with logistics and reimbursement and, lastly, forthcoming considerations regarding dosimetry, identifying the right line of therapy, artificial intelligence and more.
Collapse
Affiliation(s)
- K L Pomykala
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| | - B A Hadaschik
- Department of Urology, University Hospital Essen, Essen, Germany
| | - O Sartor
- School of Medicine, Tulane University, New Orleans, USA
| | - S Gillessen
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - C J Sweeney
- Dana-Farber Cancer Institute, Boston, USA; Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - T Maughan
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - M S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - K Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
| |
Collapse
|
4
|
Chen G, Obal D. Detecting and measuring of GPCR signaling - comparison of human induced pluripotent stem cells and immortal cell lines. Front Endocrinol (Lausanne) 2023; 14:1179600. [PMID: 37293485 PMCID: PMC10244570 DOI: 10.3389/fendo.2023.1179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that play a major role in many physiological processes, and thus GPCR-targeted drug development has been widely promoted. Although research findings generated in immortal cell lines have contributed to the advancement of the GPCR field, the homogenous genetic backgrounds, and the overexpression of GPCRs in these cell lines make it difficult to correlate the results with clinical patients. Human induced pluripotent stem cells (hiPSCs) have the potential to overcome these limitations, because they contain patient specific genetic information and can differentiate into numerous cell types. To detect GPCRs in hiPSCs, highly selective labeling and sensitive imaging techniques are required. This review summarizes existing resonance energy transfer and protein complementation assay technologies, as well as existing and new labeling methods. The difficulties of extending existing detection methods to hiPSCs are discussed, as well as the potential of hiPSCs to expand GPCR research towards personalized medicine.
Collapse
Affiliation(s)
- Gaoxian Chen
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Detlef Obal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
5
|
Libanje F, Delille R, Young PA, Rolland S, Meyer-Losic F, Lewkowicz E, Klinz S. NTSR1 glycosylation and MMP dependent cleavage generate three distinct forms of the protein. Sci Rep 2023; 13:4663. [PMID: 36949141 PMCID: PMC10033925 DOI: 10.1038/s41598-023-31790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/17/2023] [Indexed: 03/24/2023] Open
Abstract
NTSR1 abnormal expression by cancer cells makes it a strategic target for antitumoral therapies, such as compounds that use NTSR1 binding probes to deliver cytotoxic agents to tumor cells. Success of these therapies relies on NTSR1 protein availability and accessibility; therefore, understanding the protein's biology is crucial. We studied NTSR1 protein in exogenously and endogenously expressing non-tumoral and tumoral cells. We found NTSR1 to be expressed as three distinct protein forms: the NTSR1-high form, a glycosylated protein; the NTSR1-low form, a N-terminally cleaved and de-glycosylated protein; and the NTSR1-LP protein with the MW size predicted by its NTSR1 amino acid sequence. We show that the NTSR1-high form is cleaved by MMPs to generate the NTSR1-low form, a process that is promoted by the Neurotensin (NTS) ligand. In addition, NTS induced the internalization of plasma membrane localized NTSR1 and degradation of NTSR1-low form via the proteasome. Importantly, we found NTSR1-low form to be the most abundant form in the tumoral cells and in PDAC Patient Derived Xenograft, demonstrating its physiopathological relevance. Altogether, our work provides important technical and experimental tools as well as new crucial insights into NTSR1 protein biology that are required to develop clinically relevant NTSR1 targeting anti-tumoral therapies.
Collapse
Affiliation(s)
- Fotine Libanje
- Translational Biomarkers and Pharmacology, IPSEN Innovation, Les Ulis, France.
| | - Raphael Delille
- Translational Biomarkers and Pharmacology, IPSEN Innovation, Les Ulis, France
| | - Pamela A Young
- Translational Biomarkers and Pharmacology, IPSEN Innovation, Les Ulis, France
| | - Sylvie Rolland
- Translational Biomarkers and Pharmacology, IPSEN Innovation, Les Ulis, France
| | | | - Elodie Lewkowicz
- Translational Biomarkers and Pharmacology, IPSEN Innovation, Les Ulis, France
| | - Stephan Klinz
- Early Development and Translational Sciences, IPSEN Bioscience, Cambridge, USA
| |
Collapse
|
6
|
Lin W, Aluicio-Sarduy E, Houson HA, Barnhart TE, Tekin V, Jeffery JJ, Weichmann AM, Barrett KE, Lapi SE, Engle JW. Theranostic cobalt-55/58m for neurotensin receptor-mediated radiotherapy in vivo: A pilot study with dosimetry. Nucl Med Biol 2023; 118-119:108329. [PMID: 36805869 PMCID: PMC10121947 DOI: 10.1016/j.nucmedbio.2023.108329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Neurotensin receptor 1 (NTSR1) can stimulate tumor proliferation through neurotensin (NTS) activation and are overexpressed by a variety of cancers. The high binding affinity of NTS/NTSR1 makes radiolabeled NTS derivatives interesting for cancer diagnosis and staging. Internalization of NTS/NTSR1 also suggests therapeutic application with high LET alpha particles and low energy electrons. We investigated the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo using murine models xenografted with NTSR1-positive HT29 human colorectal adenocarcinoma cells, and utilized [55Co]Co-NOTA-NT-20.3 for dosimetry. METHODS Targeting properties and cytotoxicity of [55/58mCo]Co-NOTA-NT-20.3 were assessed with HT29 cells. Female nude mice were xenografted with HT29 tumors and administered [55Co or 58mCo]Co-NOTA-NT-20.3 to evaluate pharmacokinetics or for therapy, respectively. Dosimetry calculations followed the Medical Internal Radiation Dose (MIRD) formalism and human absorbed dose rate per unit activity were obtained from OpenDose. The pilot therapy study consisted of two groups (each N = 3) receiving 110 ± 15 MBq and 26 ± 6 MBq [58mCo]Co-NOTA-NT-20.3 one week after tumor inoculation, and control (N = 3). Tumor sizes and masses were measured twice a week after therapy. Complete blood count and kidney histology were also performed to assess toxicity. RESULTS HPLC measured radiochemical purity of [55,58mCo]Co-NOTA-NT-20.3 > 99 %. Labeled compounds retained NTS targeting properties. [58mCo]Co-NOTA-NT-20.3 exhibited cytotoxicity for HT29 cells and was >15× more potent than [58mCo]CoCl2. Xenografted tumors responded modestly to administered doses, but mice showed no signs of radiotoxicity. Absorbed dose to tumor and kidney with 110 MBq [58mCo]Co-NOTA-NT-20.3 were 0.6 Gy and 0.8 Gy, respectively, and other organs received less than half of the absorbed dose to tumor. Off-target radiation dose from cobalt-58g was small but reduces the therapeutic window. CONCLUSION The enhanced in vitro cytotoxicity and high tumor-to-background led us to investigate the therapeutic efficacy of [58mCo]Co-NOTA-NT-20.3 in vivo. Although we were unable to induce tumor response commensurate with [177Lu]Lu-NT127 (NLys-Lys-Pro-Tyr-Tle-Leu) studies involving similar time-integrated activity, the absence of observed toxicity may constitute an opportunity for targeting vectors with improved uptake and/or retention to avoid the aftereffects of other high-LET radioactive emissions. Future studies with higher uptake, activity and/or multiple dosing regimens are warranted. The theranostic approach employed in this work was crucial for dosimetry analysis.
Collapse
Affiliation(s)
- Wilson Lin
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States.
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Volkan Tekin
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, United States
| | - Justin J Jeffery
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, United States
| | - Ashley M Weichmann
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, United States
| | - Kendall E Barrett
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States; Department of Radiology, University of Wisconsin, 600 Highland Ave., Madison, WI 53792, United States
| |
Collapse
|
7
|
Sun J, Huangfu Z, Yang J, Wang G, Hu K, Gao M, Zhong Z. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Adv Drug Deliv Rev 2022; 190:114538. [PMID: 36162696 DOI: 10.1016/j.addr.2022.114538] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Since the first introduction of sodium iodide I-131 for use with thyroid patients almost 80 years ago, more than 50 radiopharmaceuticals have reached the markets for a wide range of diseases, especially cancers. The nuclear medicine paradigm also shifts from solely molecular imaging or radionuclide therapy to imaging-guided radionuclide therapy, which is deemed a vital component of precision cancer therapy and an emerging medical modality for personalized medicine. The imaging-guided radionuclide therapy highlights the systematic integration of targeted nuclear diagnostics and radionuclide therapeutics. Regarding this, nuclear imaging serves to "visualize" the lesions and guide the therapeutic strategy, followed by administration of a precise patient specific dose of radiotherapeutics for treatment according to the absorbed dose to different organs and tumors calculated by dosimetry tools, and finally repeated imaging to predict the prognosis. This strategy leads to significantly enhanced therapeutic efficacy, improved patient outcomes, and manageable adverse events. In this review, we provide an overview of imaging-guided targeted radionuclide therapy for different tumors such as advanced prostate cancer and neuroendocrine tumors, with a focus on development of new radioligands and their preclinical and clinical results, and further discuss about challenges and future perspectives.
Collapse
Affiliation(s)
- Juan Sun
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenyuan Huangfu
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
8
|
Fan W, Zhang W, Allen S, Alshehri S, Muilenburg KM, Zheng C, Garrison JC. Examination of Charge Modifications of an Endolysosomal Trapping Inhibitor in an Antagonistic NTSR1-Targeted Construct for Colon Cancer. Bioconjug Chem 2022; 33:1363-1376. [PMID: 35793523 PMCID: PMC9941984 DOI: 10.1021/acs.bioconjchem.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many low-molecular weight targeted radiotherapeutics (TRTs) are capable of rapidly achieving exceptional tumor to non-target ratios shortly after administration. However, the low tumor residence time of many TRTs limits therapeutic dose delivery and has become the Achilles heel to their clinical translation. To combat the tumor efflux of these otherwise promising agents, we have previously presented a strategy of equipping low-molecular weight TRTs with irreversible cysteine cathepsin inhibitors (e.g., E-64 analogues). These inhibitors are capable of forming irreversible adducts with cysteine proteases within the endolysosomal compartments of cells. Using these endolysosomal trapping agents (ETs), the receptor-targeted constructs are able to increase tumor retention and, thus, deliverable therapeutic doses. In this study, we examine this approach in the development of agents targeting the neurotensin receptor subtype 1 (NTSR1), a receptor overexpressed in numerous cancers. Using an antagonistic NTSR1-targeting vector, we explore the impact of charge modification of the ETs on the in vitro and in vivo biological performance of the constructs using HT-29 colon cancer models. Four ETs (based on the epoxysuccinyl peptide E-64) with various charge states were synthesized and incorporated into the structures of the NTSR1-targeted antagonist. These four 177Lu-labeled, ET-enhanced, NTSR1-targeted agents (177Lu-NA-ET1-4), along with the structurally analogous 177Lu-3BP-227, currently in clinical trials, underwent a battery of in vitro assays using HT-29 xenograft colon cancer cells to examine their NTSR1 binding, internalization and efflux, inhibition, and adduct formation properties. The biodistribution profile of these constructs was studied in an HT-29 mouse model. Charge modification of the terminal carboxylic acid and arginine of the ETs had deleterious effects on inhibition kinetics and in vitro adduct formation. Contrastingly, deletion of the arginine resulted in a modest increase in inhibition kinetics. Incorporation of ETs into the NTSR1-targeted agents was well-tolerated with minimal impact on the in vivo NTSR1 targeting but resulted in increased renal uptake. This study demonstrates that the ETs can be successfully incorporated into antagonistic NTSR1-targeted constructs without compromising their adduct formation capabilities. Based on these results, further exploration of the endolysosomal trapping approach is warranted in NTSR1- and other receptor-targeted antagonistic constructs.
Collapse
Affiliation(s)
- Wei Fan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE
| | - Wenting Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE
| | - Sadie Allen
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE
| | - Sameer Alshehri
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE
| | - Kathryn M Muilenburg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE
| | - Cheng Zheng
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE
| | - Jered C. Garrison
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE,Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE,Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE,Corresponding Author Jered C. Garrison, Tel: +01 4025593453.
| |
Collapse
|
9
|
Abstract
Abstract
Theragnostics in nuclear medicine constitute an essential element of precision medicine. This notion integrates radionuclide diagnostics procedures and radionuclide therapies using appropriate radiopharmaceutics and treatment targeting specific biological pathways or receptors. The term theragnostics should also include another aspect of treatment: not only whether a given radioisotopic drug can be used, but also in what dose it ought to be used. Theragnostic procedures also allow predicting the effects of treatment based on the assessment of specific receptor density or the metabolic profile of neoplastic cells. The future of theragnostics depends not only on the use of new radiopharmaceuticals, but also on new gamma cameras. Modern theragnostics already require unambiguous pharmacokinetic and pharmacodynamic measurements based on absolute values. Only dynamic studies provide such a possibility. The introduction of the dynamic total-body PET-CT will enable this type of measurements characterizing metabolic processes and receptor expression on the basis of Patlak plot.
Collapse
Affiliation(s)
- Leszek Królicki
- Department of Nuclear Medicine , Medical University of Warsaw , Warszawa , Poland
| | - Jolanta Kunikowska
- Department of Nuclear Medicine , Medical University of Warsaw , Warszawa , Poland
| |
Collapse
|
10
|
Renard E, Moreau M, Bellaye PS, Guillemin M, Collin B, Prignon A, Denat F, Goncalves V. Positron Emission Tomography Imaging of Neurotensin Receptor-Positive Tumors with 68Ga-Labeled Antagonists: The Chelate Makes the Difference Again. J Med Chem 2021; 64:8564-8578. [PMID: 34107209 DOI: 10.1021/acs.jmedchem.1c00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotensin receptor 1 (NTS1) is involved in the development and progression of numerous cancers, which makes it an interesting target for the development of diagnostic and therapeutic agents. A small molecule NTS1 antagonist, named [177Lu]Lu-IPN01087, is currently evaluated in phase I/II clinical trials for the targeted therapy of neurotensin receptor-positive cancers. In this study, we synthesized seven compounds based on the structure of NTS1 antagonists, bearing different chelating agents, and radiolabeled them with gallium-68 for PET imaging. These compounds were evaluated in vitro and in vivo in mice bearing a HT-29 xenograft. The compound [68Ga]Ga-bisNODAGA-16 showed a promising biodistribution profile with mainly signal in tumor (4.917 ± 0.776%ID/g, 2 h post-injection). Its rapid clearance from healthy tissues led to high tumor-to-organ ratios, resulting in highly contrasted PET images. These results were confirmed on subcutaneous xenografts of AsPC-1 tumor cells, a model of NTS1-positive human pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Emma Renard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | | | - Mélanie Guillemin
- Georges-François LECLERC Cancer Center - UNICANCER, Dijon 21000, France
| | - Bertrand Collin
- Georges-François LECLERC Cancer Center - UNICANCER, Dijon 21000, France
| | - Aurélie Prignon
- UMS28 Laboratoire d'Imagerie Moléculaire Positonique (LIMP), Sorbonne Université, Paris 75020, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Victor Goncalves
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB UMR CNRS 6302, Université Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|
11
|
Pei P, Liu T, Shen W, Liu Z, Yang K. Biomaterial-mediated internal radioisotope therapy. MATERIALS HORIZONS 2021; 8:1348-1366. [PMID: 34846446 DOI: 10.1039/d0mh01761b] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiation therapy (RT), including external beam radiotherapy (EBRT) and internal radioisotope therapy (RIT), has been an indispensable strategy for cancer therapy in clinical practice in recent years. Ionized atoms and free radicals emitted from the nucleus of radioisotopes can cleave a single strand of DNA, inducing the apoptosis of cancer cells. Thus far, nuclides used for RIT could be classified into three main types containing alpha (α), beta (β), and Auger particle emitters. In order to enhance the bioavailability and reduce the physiological toxicity of radioisotopes, various biomaterials have been utilized as multifunctional nanocarriers, including targeting molecules, macromolecular monoclonal antibodies, peptides, inorganic nanomaterials, and organic and polymeric nanomaterials. Therapeutic radioisotopes have been labeled onto these nanocarriers via different methods (chelating, chemical doping, encapsulating, displacement) to inhibit or kill cancer cells. With the continuous development of research in this respect, more promising biomaterials as well as novel therapeutic strategies have emerged to achieve the high-performance RIT of cancer. In this review article, we summarize recent advances in biomaterial-mediated RIT of cancer and provide guidance for non-experts to understand nuclear medicine and to conduct cancer radiotherapy.
Collapse
Affiliation(s)
- Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | |
Collapse
|
12
|
Clinical Perspectives of Theranostics. Molecules 2021; 26:molecules26082232. [PMID: 33924345 PMCID: PMC8070270 DOI: 10.3390/molecules26082232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Theranostics is a precision medicine which integrates diagnostic nuclear medicine and radionuclide therapy for various cancers throughout body using suitable tracers and treatment that target specific biological pathways or receptors. This review covers traditional theranostics for thyroid cancer and pheochromocytoma with radioiodine compounds. In addition, recent theranostics of radioimmunotherapy for non-Hodgkin lymphoma, and treatment of bone metastasis using bone seeking radiopharmaceuticals are described. Furthermore, new radiopharmaceuticals for prostatic cancer and pancreatic cancer have been added. Of particular, F-18 Fluoro-2-Deoxyglucose (FDG) Positron Emission Tomography (PET) is often used for treatment monitoring and estimating patient outcome. A recent clinical study highlighted the ability of alpha-radiotherapy with high linear energy transfer (LET) to overcome treatment resistance to beta--particle therapy. Theranostics will become an ever-increasing part of clinical nuclear medicine.
Collapse
|
13
|
Soave M, Stoddart LA, White CW, Kilpatrick LE, Goulding J, Briddon SJ, Hill SJ. Detection of genome-edited and endogenously expressed G protein-coupled receptors. FEBS J 2021; 288:2585-2601. [PMID: 33506623 PMCID: PMC8647918 DOI: 10.1111/febs.15729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and major targets for FDA-approved drugs. The ability to quantify GPCR expression and ligand binding characteristics in different cell types and tissues is therefore important for drug discovery. The advent of genome editing along with developments in fluorescent ligand design offers exciting new possibilities to probe GPCRs in their native environment. This review provides an overview of the recent technical advances employed to study the localisation and ligand binding characteristics of genome-edited and endogenously expressed GPCRs.
Collapse
Affiliation(s)
- Mark Soave
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Leigh A. Stoddart
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Carl W. White
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
- Harry Perkins Institute of Medical Research and Centre for Medical ResearchQEII Medical CentreThe University of Western AustraliaNedlandsAustralia
- Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Laura E. Kilpatrick
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
- Division of Biomolecular Science and Medicinal ChemistrySchool of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
| | - Joëlle Goulding
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Stephen J. Briddon
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| |
Collapse
|
14
|
Potential use of radiolabelled neurotensin in PET imaging and therapy of patients with pancreatic cancer. Nucl Med Commun 2021; 41:411-415. [PMID: 32168264 DOI: 10.1097/mnm.0000000000001172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death in both men and women. Neurotensin receptors are overexpressed in different malignancies, above all pancreatic cancer. On the other hand, neurotensin receptor expression in inflammation is quite low. This fact can probably solve the most important problem of F-FDG PET imaging - distinguishing malignant and inflammatory processes. The first therapeutic injection of radiolabelled neurotensin in human with pancreatic cancer has been successfully performed. Animal experiments are also very close to the first in human injection of radiolabelled neurotensin for diagnostic purposes. The purpose of this article is to provide an overview of radiolabelled neurotensin analogues that can be used in imaging and therapy in patients with pancreatic ductal adenocarcinoma.
Collapse
|
15
|
Abstract
Introduction: Neurotensin is a gut-brain peptide hormone, a 13 amino acid neuropeptide found in the central nervous system and in the GI tract. The neurotensinergic system is implicated in various physiological and pathological processes related to neuropsychiatric and metabolic machineries, cancer growth, food, and drug intake. NT mediates its functions through its two G protein-coupled receptors: neurotensin receptor 1 (NTS1/NTSR1) and neurotensin receptor 2 (NTS2/NTSR2). Over the past decade, the role of NTS3/NTSR3/sortilin has also gained importance in human pathologies. Several approaches have appeared dealing with the discovery of compounds able to modulate the functions of this neuropeptide through its receptors for therapeutic gain.Areas covered: The article provides an overview of over four decades of research and details the drug discovery approaches and patented strategies targeting NTSR in the past decade.Expert opinion: Neurotensin is an important neurotransmitter that enables crosstalk with various neurotransmitter and neuroendocrine systems. While significant efforts have been made that have led to selective agonists and antagonists with promising in vitro and in vivo activities, the therapeutic potential of compounds targeting the neurotensinergic system is still to be fully harnessed for successful clinical translation of compounds for the treatment of several pathologies.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
16
|
Narayan V, Thompson EW, Demissei B, Ho JE, Januzzi JL, Ky B. Mechanistic Biomarkers Informative of Both Cancer and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 75:2726-2737. [PMID: 32466889 DOI: 10.1016/j.jacc.2020.03.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) and cancer are leading causes of morbidity and mortality worldwide. Although conventionally managed as separate disease processes, recent research has lent insight into compelling commonalities between CVD and cancer, including shared mechanisms for disease development and progression. In this review, the authors discuss several pathophysiological processes common to both CVD and cancer, such as inflammation, resistance to cell death, cellular proliferation, neurohormonal stress, angiogenesis, and genomic instability, in an effort to understand common mechanisms of both disease states. In particular, the authors highlight key circulating and genomic biomarkers associated with each of these processes, as well as their associations with risk and prognosis in both cancer and CVD. The purpose of this state-of-the-art review is to further our understanding of the potential mechanisms underlying cancer and CVD by contextualizing pathways and biomarkers common to both diseases.
Collapse
Affiliation(s)
- Vivek Narayan
- Division of Hematology/Medical Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth W Thompson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Biniyam Demissei
- Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer E Ho
- Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical Research, Boston, Massachusetts
| | - Bonnie Ky
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Cardiology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Deluigi M, Klipp A, Klenk C, Merklinger L, Eberle SA, Morstein L, Heine P, Mittl PRE, Ernst P, Kamenecka TM, He Y, Vacca S, Egloff P, Honegger A, Plückthun A. Complexes of the neurotensin receptor 1 with small-molecule ligands reveal structural determinants of full, partial, and inverse agonism. SCIENCE ADVANCES 2021; 7:7/5/eabe5504. [PMID: 33571132 PMCID: PMC7840143 DOI: 10.1126/sciadv.abe5504] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 05/15/2023]
Abstract
Neurotensin receptor 1 (NTSR1) and related G protein-coupled receptors of the ghrelin family are clinically unexploited, and several mechanistic aspects of their activation and inactivation have remained unclear. Enabled by a new crystallization design, we present five new structures: apo-state NTSR1 as well as complexes with nonpeptide inverse agonists SR48692 and SR142948A, partial agonist RTI-3a, and the novel full agonist SRI-9829, providing structural rationales on how ligands modulate NTSR1. The inverse agonists favor a large extracellular opening of helices VI and VII, undescribed so far for NTSR1, causing a constriction of the intracellular portion. In contrast, the full and partial agonists induce a binding site contraction, and their efficacy correlates with the ability to mimic the binding mode of the endogenous agonist neurotensin. Providing evidence of helical and side-chain rearrangements modulating receptor activation, our structural and functional data expand the mechanistic understanding of NTSR1 and potentially other peptidergic receptors.
Collapse
Affiliation(s)
- Mattia Deluigi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Alexander Klipp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Christoph Klenk
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lisa Merklinger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Stefanie A Eberle
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lena Morstein
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philipp Heine
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peer R E Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Theodore M Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Yuanjun He
- Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, FL 33458, USA
| | - Santiago Vacca
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Pascal Egloff
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Annemarie Honegger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
18
|
Fanelli R, Chastel A, Previti S, Hindié E, Vimont D, Zanotti-Fregonara P, Fernandez P, Garrigue P, Lamare F, Schollhammer R, Balasse L, Guillet B, Rémond E, Morgat C, Cavelier F. Silicon-Containing Neurotensin Analogues as Radiopharmaceuticals for NTS1-Positive Tumors Imaging. Bioconjug Chem 2020; 31:2339-2349. [DOI: 10.1021/acs.bioconjchem.0c00419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roberto Fanelli
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| | - Adrien Chastel
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Santo Previti
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| | - Elif Hindié
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Delphine Vimont
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | | | - Philippe Fernandez
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Philippe Garrigue
- Aix-Marseille University, INSERM, Institut National de la Recherche Agronomique, Centre de Recherche en Cardiovasculaire et Nutrition, Marseille 13385, France
- Aix-Marseille University, Centre Européen de Recherche en Imagerie Médicale, Marseille 13005, France
| | - Frédéric Lamare
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Romain Schollhammer
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Laure Balasse
- Aix-Marseille University, INSERM, Institut National de la Recherche Agronomique, Centre de Recherche en Cardiovasculaire et Nutrition, Marseille 13385, France
| | - Benjamin Guillet
- Aix-Marseille University, INSERM, Institut National de la Recherche Agronomique, Centre de Recherche en Cardiovasculaire et Nutrition, Marseille 13385, France
- Aix-Marseille University, Centre Européen de Recherche en Imagerie Médicale, Marseille 13005, France
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| | - Clément Morgat
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear Medicine Department, University Hospital of Bordeaux, Bordeaux F-33000, France
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| |
Collapse
|
19
|
Li D, Minnix M, Allen R, Bading J, Chea J, Wong P, Bowles N, Poku E, Shively JE. Preclinical PET Imaging of NTSR-1-Positive Tumors with 64Cu- and 68Ga-DOTA-Neurotensin Analogs and Therapy with an 225Ac-DOTA-Neurotensin Analog. Cancer Biother Radiopharm 2020; 36:651-661. [PMID: 32822229 DOI: 10.1089/cbr.2020.3926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Background: The aim of the study was to perform PET imaging and radiotherapy with a novel neurotensin derivative for neurotensin receptor 1 (NTSR-1)-positive tumors in an animal model. Materials and Methods: A di-DOTA analog of NT(6-13) with three unnatural amino acids was synthesized and radiolabeled with either 64Cu or 68Ga and tested for serum stability and tumor imaging in mice bearing NTSR-1-positive PC3, and HT29 xenografts. A dose-response therapy study was performed with 18.5, 37, and 74 kBq of 225Ac-di-DOTA-α,ɛ-Lys-NT(6-13). Results: 68Ga-di-DOTA-α,ɛ-Lys-NT(6-13) was >99% stable in serum for 48 h, had an IC50 of 5 nM using 125I labeled NT(8-13) for binding to HT-29 cells, and high uptake in tumor models expressing NTSR-1. 68Ga-di-DOTA-α,ɛ-Lys-NT(6-13) had an average %ID/g (n = 4) at 2 h of 4.0 for tumor, 0.5 for blood, 12.0 for kidney, and <1 for other tissues, resulting in a favorable T/B of 8. Mean survivals of tumor-bearing mice treated with 18.5 or 37 kBq of 225Ac-di-DOTA-α,ɛ-Lys-NT(6-13) were 81 and 93 d, respectively, versus 53 d for controls. Whole-body toxicity was seen for the 74 kBq dose. Conclusions: Based on the results of the animal model, di-DOTA-α,ɛ-Lys-NT(6-13) is a useful imaging agent for NTSR-1-positive tumors when radiolabeled with 68Ga, and when radiolabeled with 225Ac, a potent therapeutic agent.
Collapse
Affiliation(s)
- Daneng Li
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Megan Minnix
- Deparment of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Rebecca Allen
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - James Bading
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Junie Chea
- Radiopharmacy, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Patty Wong
- Deparment of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Nicole Bowles
- Radiopharmacy, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Erasmus Poku
- Radiopharmacy, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - John E Shively
- Deparment of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
20
|
Characterisation of the Expression of Neurotensin and Its Receptors in Human Colorectal Cancer and Its Clinical Implications. Biomolecules 2020; 10:biom10081145. [PMID: 32764278 PMCID: PMC7464404 DOI: 10.3390/biom10081145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction: Colorectal Cancer (CRC) accounts for 9% of cancer deaths globally. Hormonal pathways play important roles in some cancers. This study investigated the association of CRC expression of neurotensin (NTS), NTS receptors 1 and 3 (NTSR1 and NTSR3) and clinical outcomes. Methods: A prospective cohort study which quantifies the protein expression of NTS, NTSR1 and NTSR3 in human CRCs using immunohistochemistry. Expression levels were then compared with clinico-pathological outcome including histological grade, overall survival (OS) and disease-free survival (DFS). Results: Sixty-four patients were enrolled with median follow-up of 44.0 months. There was significantly higher expression of NTS in cancer tissue in CRC with higher T stages (p < 0.01), N stages (p = 0.03), and AJCC clinical stages (p = 0.04). There was significantly higher expression of NTS, NTSR1 and NTSR3 in cancer tissue compared to surrounding normal epithelium (median H-score 163.5 vs 97.3, p < 0.01). There was significantly shorter DFS in individuals with CRC with high levels of NTS compared to lower levels of NTS (35.8 months 95% CI 28.7–42.8 months vs 46.4 months 95% CI 42.2–50.5 months, respectively, p = 0.02). Above median NTS expression in cancer tissue was a significant risk factor for disease recurrence (HR 4.10, 95% CI 1.14–14.7, p = 0.03). Discussion: The expression of NTS and its receptors has the potential to be utilised as a predictive and prognostic marker in colorectal cancer for postoperative selection for adjuvant therapy and identify individuals for novel therapies targeting the neurotensinergic pathways. Conclusions: High NTS expression appears to be associated with more advanced CRC and worse DFS.
Collapse
|
21
|
Bicak M, Lückerath K, Kalidindi T, Phelps ME, Strand SE, Morris MJ, Radu CG, Damoiseaux R, Peltola MT, Peekhaus N, Ho A, Veach D, Malmborg Hager AC, Larson SM, Lilja H, McDevitt MR, Klein RJ, Ulmert D. Genetic signature of prostate cancer mouse models resistant to optimized hK2 targeted α-particle therapy. Proc Natl Acad Sci U S A 2020; 117:15172-15181. [PMID: 32532924 PMCID: PMC7334567 DOI: 10.1073/pnas.1918744117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hu11B6 is a monoclonal antibody that internalizes in cells expressing androgen receptor (AR)-regulated prostate-specific enzyme human kallikrein-related peptidase 2 (hK2; KLK2). In multiple rodent models, Actinium-225-labeled hu11B6-IgG1 ([225Ac]hu11B6-IgG1) has shown promising treatment efficacy. In the present study, we investigated options to enhance and optimize [225Ac]hu11B6 treatment. First, we evaluated the possibility of exploiting IgG3, the IgG subclass with superior activation of complement and ability to mediate FC-γ-receptor binding, for immunotherapeutically enhanced hK2 targeted α-radioimmunotherapy. Second, we compared the therapeutic efficacy of a single high activity vs. fractionated activity. Finally, we used RNA sequencing to analyze the genomic signatures of prostate cancer that progressed after targeted α-therapy. [225Ac]hu11B6-IgG3 was a functionally enhanced alternative to [225Ac]hu11B6-IgG1 but offered no improvement of therapeutic efficacy. Progression-free survival was slightly increased with a single high activity compared to fractionated activity. Tumor-free animals succumbing after treatment revealed no evidence of treatment-associated toxicity. In addition to up-regulation of canonical aggressive prostate cancer genes, such as MMP7, ETV1, NTS, and SCHLAP1, we also noted a significant decrease in both KLK3 (prostate-specific antigen ) and FOLH1 (prostate-specific membrane antigen) but not in AR and KLK2, demonstrating efficacy of sequential [225Ac]hu11B6 in a mouse model.
Collapse
Affiliation(s)
- Mesude Bicak
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genome Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Katharina Lückerath
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Michael E Phelps
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095;
| | - Sven-Erik Strand
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, 223 81 Lund, Sweden
| | - Michael J Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
| | - Mari T Peltola
- Department of Biochemistry-Biotechnology, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Norbert Peekhaus
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
| | - Austin Ho
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
| | - Darren Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Radiochemistry and Imaging Sciences Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Diaprost AB, 223 63 Lund, Sweden
| | | | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065
| | - Hans Lilja
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Translational Medicine, Lund University, 221 00 Lund, Sweden
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, OX3 7DQ Oxford, United Kingdom
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Michael R McDevitt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genome Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| | - David Ulmert
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095;
- Ahmanson Translational Imaging Division, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095
| |
Collapse
|
22
|
Langbein T, Weber WA, Eiber M. Future of Theranostics: An Outlook on Precision Oncology in Nuclear Medicine. J Nucl Med 2020; 60:13S-19S. [PMID: 31481583 DOI: 10.2967/jnumed.118.220566] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/24/2019] [Indexed: 01/13/2023] Open
Abstract
Molecular alterations in malignant disease result in the expression or upregulations of various targets that can be used for imaging and treatment with radiopharmaceuticals. This theranostic principle has acquired greater importance in personalized medicine in recent years, particularly in oncology, where advanced tumors can be treated effectively with low side effects. Since the pioneering use of 131I in differentiated thyroid cancer in the 1940s, remarkable achievements in nuclear medicine endoradiotherapy have been demonstrated, mainly in the treatment of neuroendocrine neoplasms by using 177Lu-labeled somatostatin analogs or in the treatment of advanced prostate cancer using prostate-specific membrane antigen-directed radionuclide therapy. Besides that, this review focuses on promising novel radiopharmaceuticals and describes their preclinical and clinical status. Radiolabeled antibodies, such as 131I-omburtamab directed against the B7-H3 protein on the surface of neuroblastoma cells; HuMab-5B1, a 89Zr/177Lu-labeled antibody for the treatment of CA19-9-expressing malignancies; and 177Lu-lilotomab, a CD37 antibody for the treatment of B-cell lymphomas, are being highlighted. The neurotensin receptor ligand 111In/177Lu-3B-227 has demonstrated high potential in imaging and therapy for several malignancies (e.g., pancreatic adenocarcinomas). Targeting of the fibroblast activation protein is currently being explored for different tumor entities using PET imaging with the fibroblast activation protein inhibitor (FAPI) 68Ga-FAPI-04, and the first therapeutic applications of 90Y-FAPI-04 have been applied. After 2 decades of rapid development in theranostics, a variety of new targets are available for further clinical investigation.
Collapse
Affiliation(s)
- Thomas Langbein
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
23
|
The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020. [DOI: 10.3390/ijms21103494
expr 969553959 + 931886332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Colorectal cancer (CRC), classified as the third most prevalent cancer worldwide, remains to be a clinical and research challenge. It is estimated that ~50% of CRC patients die from distant metastases, with treatment of this complication still posing significant difficulties. While liver metastasis (LM) cascade is known in the literature, its mechanisms are still unclear and remain studied in different research models. A connection is suggested between nervous system dysfunctions and a range of Neurotransmitters (Nts) (including Neuropeptides, NPs), Neurotrophins (Ntt) and their receptors (Rs) in CRC liver metastasis development. Studies on the role of NP/NP-Rs in the progression and metastasis of CRC, show the complexity of brain–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). Many stages of LM are connected to the activity of pro-inflammatory, e.g., Corticotropin-releasing Hormone Receptor 1 (CRHR1), Neuropeptide Y (NPY) and Neurotensin (NT), anti-inflammatory, e.g., Calcitonin Gene-related Peptide (CGRP), CRHR2 and Vasoactive Intestinal Polypeptide (VIP) or dual role neuropeptides, e.g., Substance P (SP). The regulation of the local immunological profile (e.g., CRH/CRHRs), dysfunctions of enteroprotective role of NPs on epithelial cells (e.g., NT/NT-R), as well as structural-functional changes in enteric nervous system innervation of the tumor are also important. More research is needed to understand the exact mechanisms of communication between the neurons and tumor cells. The knowledge on the mechanisms regulating tumor growth and different stages of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. To obtain the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well to develop a range of broad-spectrum antagonists. This review aims to summarize the current knowledge on the importance of neuroactive molecules in the promotion of the invasion-metastasis cascade in CRC, as well as the improvements of clinical management of CRC liver metastasis.
Collapse
|
24
|
The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int J Mol Sci 2020; 21:ijms21103494. [PMID: 32429087 PMCID: PMC7279011 DOI: 10.3390/ijms21103494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), classified as the third most prevalent cancer worldwide, remains to be a clinical and research challenge. It is estimated that ~50% of CRC patients die from distant metastases, with treatment of this complication still posing significant difficulties. While liver metastasis (LM) cascade is known in the literature, its mechanisms are still unclear and remain studied in different research models. A connection is suggested between nervous system dysfunctions and a range of Neurotransmitters (Nts) (including Neuropeptides, NPs), Neurotrophins (Ntt) and their receptors (Rs) in CRC liver metastasis development. Studies on the role of NP/NP-Rs in the progression and metastasis of CRC, show the complexity of brain–tumor interactions, caused by their different forms of release to the extracellular environment (endocrine, autocrine, paracrine and neurocrine). Many stages of LM are connected to the activity of pro-inflammatory, e.g., Corticotropin-releasing Hormone Receptor 1 (CRHR1), Neuropeptide Y (NPY) and Neurotensin (NT), anti-inflammatory, e.g., Calcitonin Gene-related Peptide (CGRP), CRHR2 and Vasoactive Intestinal Polypeptide (VIP) or dual role neuropeptides, e.g., Substance P (SP). The regulation of the local immunological profile (e.g., CRH/CRHRs), dysfunctions of enteroprotective role of NPs on epithelial cells (e.g., NT/NT-R), as well as structural-functional changes in enteric nervous system innervation of the tumor are also important. More research is needed to understand the exact mechanisms of communication between the neurons and tumor cells. The knowledge on the mechanisms regulating tumor growth and different stages of metastasis, as well as effects of the action of a numerous group of Nts/NPs/Ntt as growth factors, have implications for future therapeutic strategies. To obtain the best treatment outcomes, it is important to use signaling pathways common for many NPs, as well to develop a range of broad-spectrum antagonists. This review aims to summarize the current knowledge on the importance of neuroactive molecules in the promotion of the invasion-metastasis cascade in CRC, as well as the improvements of clinical management of CRC liver metastasis.
Collapse
|
25
|
Nikolaou S, Qiu S, Fiorentino F, Simillis C, Rasheed S, Tekkis P, Kontovounisios C. The role of Neurotensin and its receptors in non-gastrointestinal cancers: a review. Cell Commun Signal 2020; 18:68. [PMID: 32336282 PMCID: PMC7183616 DOI: 10.1186/s12964-020-00569-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neurotensin, originally isolated in 1973 has both endocrine and neuromodulator activity and acts through its three main receptors. Their role in promoting tumour cell proliferation, migration, DNA synthesis has been studied in a wide range of cancers. Expression of Neurotensin and its receptors has also been correlated to prognosis and prediction to treatment. Main body The effects of NT are mediated through mitogen-activated protein kinases, epidermal growth factor receptors and phosphatidylinositol-3 kinases amongst others. This review is a comprehensive summary of the molecular pathways by which Neurotensin and its receptors act in cancer cells. Conclusion Identifying the role of Neurotensin in the underlying molecular mechanisms in various cancers can give way to developing new agnostic drugs and personalizing treatment according to the genomic structure of various cancers. Video abstract
Collapse
Affiliation(s)
- Stella Nikolaou
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Shengyang Qiu
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Francesca Fiorentino
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Constantinos Simillis
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK
| | - Shahnawaz Rasheed
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Paris Tekkis
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK. .,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK. .,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK.
| |
Collapse
|
26
|
Zhang J, Singh A, Kulkarni HR, Schuchardt C, Müller D, Wester HJ, Maina T, Rösch F, van der Meulen NP, Müller C, Mäcke H, Baum RP. From Bench to Bedside-The Bad Berka Experience With First-in-Human Studies. Semin Nucl Med 2019; 49:422-437. [PMID: 31470935 DOI: 10.1053/j.semnuclmed.2019.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Precision oncology is being driven by rapid advances in novel diagnostics and therapeutic interventions, with treatments targeted to the needs of individual patients on the basis of genetic, biomarker, phenotypic, or psychosocial characteristics that distinguish a given patient from other patients with similar clinical presentations. Inherent in the theranostics paradigm is the assumption that diagnostic test results can precisely determine whether an individual is likely to benefit from a specific treatment. As part and integral in the current era of precision oncology, theranostics in the context of nuclear medicine aims to identify the appropriate molecular targets in neoplasms (diagnostic tool), so that the optimal ligands and radionuclides (therapeutic tool) with favorable labeling chemistry can be selected for personalized management of a specific disease, taking into consideration the specific patient, and subsequently monitor treatment response. Over the past two decades, the use of gallium-68 labeled peptides for somatostatin receptor (SSTR)-targeted PET/CT (or PET/MRI) imaging followed by lutetium-177 and yttrium-90 labeled SSTR-agonist for peptide receptor radionuclide therapy has demonstrated remarkable success in the management of neuroendocrine neoplasms, and paved the way to other indications of theranostics. Rapid advances are being made in the development of other peptide-based radiopharmaceuticals, small molecular-weight ligands and with newer radioisotopes with more favorable kinetics, potentially useful for theranostics strategies for the clinical application. The present review features the Bad Berka experience with first-in-human studies of new radiopharmaceuticals, for example, prostate-specific membrane antigen ligand, gastrin-releasing peptide receptor, neurotensin receptor 1 ligand, novel SSTR-targeting peptides and nonpeptide, and bone-seeking radiopharmaceuticals. Also new radioisotopes, for example, actinium (225Ac), copper (64Cu), scandium (44Sc), and terbium (152Tb/161Tb) will be discussed briefly demonstrating the development from basic science to precision oncology in the clinical setting.
Collapse
Affiliation(s)
- Jingjing Zhang
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Aviral Singh
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Harshad R Kulkarni
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Christiane Schuchardt
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Dirk Müller
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Hans-J Wester
- Institute for Radiopharmaceutical Chemistry, Technische Universität München, Garching, Germany
| | - Theodosia Maina
- Molecular Radiopharmacy, INRASTES, NCSR "Demokritos", Athens, Greece
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland; (
- )Laboratory of Radiochemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Helmut Mäcke
- Department of Nuclear Medicine, University Hospital of Freiburg, Freiburg, Germany
| | - Richard P Baum
- THERANOSTICS Center for Molecular Radiotherapy and Precision Oncology, Zentralklinik Bad Berka, Bad Berka, Germany.
| |
Collapse
|
27
|
Neurotensin Receptor-1 Expression in Human Prostate Cancer: A Pilot Study on Primary Tumors and Lymph Node Metastases. Int J Mol Sci 2019; 20:ijms20071721. [PMID: 30959962 PMCID: PMC6479796 DOI: 10.3390/ijms20071721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
Neurotensin and its high-affinity receptor, NTR1, are involved in the growth of various tumors. Few data are available regarding NTR1 expression in normal and tumoral human prostate tissue samples. NTR1 expression was assessed using immunohistochemistry in 12 normal prostate tissues, 11 benign prostatic hyperplasia (BPH), 44 prostate cancers, and 15 related metastatic lymph nodes (one per patient, when available). NTR1-staining was negative in normal prostate and BPH samples. NTR1 was overexpressed in four out of 44 (9.1%) primary tumors. There was no clear association between NTR1 overexpression and age, PSA-values, Gleason score, pT-status, nodal-status, or margin. NTR1 was expressed at a high level of five out of 15 (33.3%) metastatic lymph nodes. NTR1 overexpression was thus more frequent in metastatic lymph nodes than in primary tumors (p = 0.038). In this limited series of samples, NTR1 overexpression was observed in few primary prostate cancers. Upregulation was more frequent in related lymph nodes. The presence of this target in metastatic lymph nodes may open new perspectives for imaging and radionuclide therapy of prostate cancer. Factors driving NTR1 expression in primary prostate cancer and in nodal and distant metastases still need to be characterized.
Collapse
|
28
|
Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: Design, development strategies, and medical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Franco Machado J, Silva RD, Melo R, G Correia JD. Less Exploited GPCRs in Precision Medicine: Targets for Molecular Imaging and Theranostics. Molecules 2018; 24:E49. [PMID: 30583594 PMCID: PMC6337414 DOI: 10.3390/molecules24010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Precision medicine relies on individually tailored therapeutic intervention taking into account individual variability. It is strongly dependent on the availability of target-specific drugs and/or imaging agents that recognize molecular targets and patient-specific disease mechanisms. The most sensitive molecular imaging modalities, Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET), rely on the interaction between an imaging radioprobe and a target. Moreover, the use of target-specific molecular tools for both diagnostics and therapy, theranostic agents, represent an established methodology in nuclear medicine that is assuming an increasingly important role in precision medicine. The design of innovative imaging and/or theranostic agents is key for further accomplishments in the field. G-protein-coupled receptors (GPCRs), apart from being highly relevant drug targets, have also been largely exploited as molecular targets for non-invasive imaging and/or systemic radiotherapy of various diseases. Herein, we will discuss recent efforts towards the development of innovative imaging and/or theranostic agents targeting selected emergent GPCRs, namely the Frizzled receptor (FZD), Ghrelin receptor (GHSR-1a), G protein-coupled estrogen receptor (GPER), and Sphingosine-1-phosphate receptor (S1PR). The pharmacological and clinical relevance will be highlighted, giving particular attention to the studies on the synthesis and characterization of targeted molecular imaging agents, biological evaluation, and potential clinical applications in oncology and non-oncology diseases. Whenever relevant, supporting computational studies will be also discussed.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rúben D Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
30
|
Moody TW, Ramos-Alvarez I, Jensen RT. Neuropeptide G Protein-Coupled Receptors as Oncotargets. Front Endocrinol (Lausanne) 2018; 9:345. [PMID: 30008698 PMCID: PMC6033971 DOI: 10.3389/fendo.2018.00345] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
Neuropeptide G protein-coupled receptors (GPCRs) are overexpressed on numerous cancer cells. In a number of tumors, such as small cell lung cancer (SCLC), bombesin (BB) like peptides and neurotensin (NTS) function as autocrine growth factors whereby they are secreted from tumor cells, bind to cell surface receptors and stimulate growth. BB-drug conjugates and BB receptor antagonists inhibit the growth of a number of cancers. Vasoactive intestinal peptide (VIP) increases the secretion rate of BB-like peptide and NTS from SCLC leading to increased proliferation. In contrast, somatostatin (SST) inhibits the secretion of autocrine growth factors from neuroendocrine tumors (NETs) and decreases proliferation. SST analogs such as radiolabeled octreotide can be used to localize tumors, is therapeutic for certain cancer patients and has been approved for four different indications in the diagnosis/treatment of NETs. The review will focus on how BB, NTS, VIP, and SST receptors can facilitate the early detection and treatment of cancer.
Collapse
Affiliation(s)
- Terry W. Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Research, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| | - Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States
| |
Collapse
|
31
|
Maschauer S, Prante O. Radiopharmaceuticals for imaging and endoradiotherapy of neurotensin receptor-positive tumors. J Labelled Comp Radiopharm 2018; 61:309-325. [DOI: 10.1002/jlcr.3581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/13/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Simone Maschauer
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine; Friedrich Alexander University Erlangen-Nürnberg (FAU); Erlangen Germany
| | - Olaf Prante
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine; Friedrich Alexander University Erlangen-Nürnberg (FAU); Erlangen Germany
| |
Collapse
|
32
|
Baum RP, Singh A, Schuchardt C, Kulkarni HR, Klette I, Wiessalla S, Osterkamp F, Reineke U, Smerling C. 177Lu-3BP-227 for Neurotensin Receptor 1-Targeted Therapy of Metastatic Pancreatic Adenocarcinoma: First Clinical Results. J Nucl Med 2017; 59:809-814. [PMID: 29025990 DOI: 10.2967/jnumed.117.193847] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/27/2017] [Indexed: 11/16/2022] Open
Abstract
Neurotensin receptor 1 (NTR1) is overexpressed in ductal pancreatic adenocarcinoma, which is still one of the deadliest cancers, with a very poor prognosis. Eligible patients were offered salvage radiopharmaceutical therapy with the novel NTR1 antagonist 177Lu-3BP-227. Methods: Six patients with confirmed ductal pancreatic adenocarcinoma who had exhausted all other treatment options received 177Lu-3BP-227 for evaluation of NTR1 expression in vivo. Three patients received treatment activities of 5.1-7.5 GBq. Results: Administration of 177Lu-3BP-227 was well tolerated by all patients. The kidneys were identified as the dose-limiting organ. The most severe adverse event was reversible grade 2 anemia. One patient achieved a partial response and experienced significant improvement of symptoms and quality of life. This patient survived 13 mo from diagnosis and 11 mo from the start of 177Lu-3BP-227 therapy. Conclusion: This initial report provides clinical evidence of the feasibility of treatment of ductal pancreatic adenocarcinoma using 177Lu-3BP-227.
Collapse
Affiliation(s)
- Richard P Baum
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany; and
| | - Aviral Singh
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany; and
| | - Christiane Schuchardt
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany; and
| | - Harshad R Kulkarni
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany; and
| | - Ingo Klette
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany; and
| | - Stefan Wiessalla
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany; and
| | | | | | | |
Collapse
|
33
|
Fendler WP, Baum RP. NTR Is the New SSTR? Perspective for Neurotensin Receptor 1 (NTR)–Directed Theranostics. J Nucl Med 2017; 58:934-935. [DOI: 10.2967/jnumed.117.191528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022] Open
|