1
|
Mancini R, Mattioli P, Famà F, Giorgetti L, Calizzano F, Nikolic M, Frandsen R, Jennum P, Morbelli S, Pardini M, Arnaldi D. Automatic quantification of REM sleep without atonia reliably identifies patients with REM sleep behavior disorder: a possible screening tool? Neurol Sci 2024; 45:4837-4846. [PMID: 38775861 PMCID: PMC11422455 DOI: 10.1007/s10072-024-07532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND REM Sleep Behavior Disorder (RBD) is characterized by absence of physiological muscle atonia during REM sleep (REM sleep without atonia, RWA). Nigro-striatal dopaminergic impairment is a feature of Parkinson disease (PD) and can be identified in prodromal stages as well, such as idiopathic RBD (iRBD). Aims of this study are to explore the efficacy of an automatic RWA quantification in identifying RBD patients and the correlation between RWA and nigro-striatal dopaminergic function. METHODS Forty-five iRBD, 46 PD with RBD, 24 PD without RBD patients and 11 healthy controls were enrolled in the Genoa Center (group A) and 25 patients with iRBD (group B) were enrolled in the Danish Center. Group A underwent brain [123I]FP-CIT-SPECT and group B underwent brain [18F]PE2I-PET as measures of nigro-striatal dopaminergic function. Chin muscle activity was recorded in all subjects and analyzed by applying a published automatic algorithm. Correlations between RWA and nigro-striatal dopaminergic function were explored. RESULTS The automatic quantification of RWA significantly differentiated RBD from non-RBD subjects (AUC = 0.86), although with lower accuracy compared with conventional visual scoring (AUC = 0.99). No significant correlation was found between RWA and nigro-striatal dopaminergic function. CONCLUSION The automatic quantification of RWA is a reliable tool to identify subjects with RBD and may be used as a first-line screening tool, but without correlations with nigro-striatal dopaminergic functioning.
Collapse
Affiliation(s)
- Raffaele Mancini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.
- Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Francesco Famà
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Giorgetti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesco Calizzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Miki Nikolic
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Rune Frandsen
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Silvia Morbelli
- Nuclear Medicine Unit, AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Niu J, Zhong Y, Jin C, Cen P, Wang J, Cui C, Xue L, Cui X, Tian M, Zhang H. Positron Emission Tomography Imaging of Synaptic Dysfunction in Parkinson's Disease. Neurosci Bull 2024; 40:743-758. [PMID: 38483697 PMCID: PMC11178751 DOI: 10.1007/s12264-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/09/2023] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases with a complex pathogenesis. Aggregations formed by abnormal deposition of alpha-synuclein (αSyn) lead to synapse dysfunction of the dopamine and non-dopamine systems. The loss of dopaminergic neurons and concomitant alterations in non-dopaminergic function in PD constitute its primary pathological manifestation. Positron emission tomography (PET), as a representative molecular imaging technique, enables the non-invasive visualization, characterization, and quantification of biological processes at cellular and molecular levels. Imaging synaptic function with PET would provide insights into the mechanisms underlying PD and facilitate the optimization of clinical management. In this review, we focus on the synaptic dysfunction associated with the αSyn pathology of PD, summarize various related targets and radiopharmaceuticals, and discuss applications and perspectives of PET imaging of synaptic dysfunction in PD.
Collapse
Affiliation(s)
- Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chunyi Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Xingyue Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310014, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Laurencin C, Lancelot S, Brosse S, Mérida I, Redouté J, Greusard E, Lamberet L, Liotier V, Le Bars D, Costes N, Thobois S, Boulinguez P, Ballanger B. Noradrenergic alterations in Parkinson's disease: a combined 11C-yohimbine PET/neuromelanin MRI study. Brain 2024; 147:1377-1388. [PMID: 37787503 PMCID: PMC10994534 DOI: 10.1093/brain/awad338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Chloé Laurencin
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Sarah Brosse
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Inés Mérida
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Jérôme Redouté
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Elise Greusard
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Ludovic Lamberet
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | | | - Didier Le Bars
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Nicolas Costes
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Stéphane Thobois
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 69500 Bron, France
| | - Philippe Boulinguez
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Bénédicte Ballanger
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| |
Collapse
|
4
|
Nestor LJ, Luijten M, Ziauddeen H, Regenthal R, Sahakian BJ, Robbins TW, Ersche KD. The Modulatory Effects of Atomoxetine on Aberrant Connectivity During Attentional Processing in Cocaine Use Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:314-325. [PMID: 37619670 DOI: 10.1016/j.bpsc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Cocaine use disorder is associated with cognitive deficits that reflect dysfunctional processing across neural systems. Because there are currently no approved medications, treatment centers provide behavioral interventions that have only short-term efficacy. This suggests that behavioral interventions are not sufficient by themselves to lead to the maintenance of abstinence in patients with cocaine use disorder. Self-control, which includes the regulation of attention, is critical for dealing with many daily challenges that would benefit from medication interventions that can ameliorate cognitive neural disturbances. METHODS To address this important clinical gap, we conducted a randomized, double-blind, placebo-controlled, crossover design study in patients with cocaine use disorder (n = 23) and healthy control participants (n = 28). We assessed the modulatory effects of acute atomoxetine (40 mg) on attention and conflict monitoring and their associated neural activation and connectivity correlates during performance on the Eriksen flanker task. The Eriksen flanker task examines basic attentional processing using congruent stimuli and the effects of conflict monitoring and response inhibition using incongruent stimuli, the latter of which necessitates the executive control of attention. RESULTS We found that atomoxetine improved task accuracy only in the cocaine group but modulated connectivity within distinct brain networks in both groups during congruent trials. During incongruent trials, the cocaine group showed increased task-related activation in the right inferior frontal and anterior cingulate gyri, as well as greater network connectivity than the control group across treatments. CONCLUSIONS The findings of the current study support a modulatory effect of acute atomoxetine on attention and associated connectivity in cocaine use disorder.
Collapse
Affiliation(s)
- Liam J Nestor
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Fiona Stanley and Fremantle Hospital Group, Perth, Australia
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
5
|
Putyatin IA, Titova NV. [Neurochemical mechanisms of tremor in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:64-72. [PMID: 39690553 DOI: 10.17116/jnevro202412411164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Tremor is one of the main motor symptoms of Parkinson's disease, and its pathophysiology remains largely unknown. The clinical and pathomorphological heterogeneity of tremor and the not always response to therapy complicate the task of researchers and clinicians. This review discusses the specific degeneration of neurotransmitter systems driving the development of tremor, and the influence of neurotransmitters on specific anatomical entities according to current models explaining tremor. It is discusses how changes in neurotransmitter systems may influence the clinical diversity of tremor and differences in response to therapy. Data from clinical trials demonstrating the effect of the dopamine receptor agonist piribedil on tremor are presented.
Collapse
Affiliation(s)
- I A Putyatin
- Pirogov Russian National Research Medical University (Pirogovsky University), Moscow, Russia
| | - N V Titova
- Pirogov Russian National Research Medical University (Pirogovsky University), Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| |
Collapse
|
6
|
Eijsvogel PP, Borghans LG, Prins S, Moss L, van Kraaij SJ, van Brummelen E, Klaassen E, Martin RS, Bautista E, Ford AP, Kremer PH, Groeneveld GJ, Vargas GA. Cognitive Effects of Three β-Adrenoceptor Acting Drugs in Healthy Volunteers and Patients with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1149-1161. [PMID: 39213090 PMCID: PMC11380312 DOI: 10.3233/jpd-240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Background Noradrenergic signaling declines in Parkinson's disease (PD) following locus coeruleus neurodegeneration. Epidemiologic studies demonstrate that β-acting drugs slow PD progression. Objective The primary objective was to compare the safety and effects of 3 β-adrenoceptor (β-AR) acting drugs on central nervous system (CNS) function after a single dose in healthy volunteers (HVs) and evaluate the effects of multiple doses of β-AR acting drugs in HVs and PD-patients. Methods In Part A, HVs received single doses of 32 mg salbutamol, 160μg clenbuterol, 60 mg pindolol and placebo administered in a randomized, 4-way cross-over study. In Part B (randomized cross-over) and Part C (parallel, 2:1 randomized), placebo and/or clenbuterol (20μg on Day 1, 40μg on Day 2, 80μg on Days 3-7) were administered. CNS functions were assessed using the NeuroCart test battery, including pupillometry, adaptive tracking and recall tests. Results Twenty-seven HVs and 12 PD-patients completed the study. Clenbuterol improved and pindolol reduced the adaptive tracking and immediate verbal recall performance. Clenbuterol and salbutamol increased and pindolol decreased pupil-to-iris ratios. Clenbuterol was selected for Parts B and C. In Part B, clenbuterol significantly increased performance in adaptive tracking with a tendency toward improved performance in immediate and delayed verbal recall. In Part C trends toward improved performance in immediate and delayed verbal recall were observed in PD-patients. Typical cardiovascular peripheral β2-AR effects were observed with clenbuterol. Conclusions This study demonstrates the pro-cognitive effects of clenbuterol in HVs with similar trends in PD-patients. The mechanism of action is likely activation of β2-ARs in the CNS.
Collapse
Affiliation(s)
- Pepijn P.N.M. Eijsvogel
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Samantha Prins
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Laurence Moss
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Sebastiaan J.W. van Kraaij
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | - Philip H.C. Kremer
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
7
|
Holmes S, Tinaz S. Neuroimaging Biomarkers in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2024; 40:617-663. [PMID: 39562459 DOI: 10.1007/978-3-031-69491-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Idiopathic Parkinson's disease (PD) is a neurodegenerative disorder that affects multiple systems in the body and is characterized by a variety of motor and non-motor (e.g., psychiatric, autonomic) symptoms. As the fastest growing neurological disorder expected to affect over 12 million people globally by 2040 (Dorsey, Bloem JAMA Neurol 75(1):9-10. https://doi.org/10.1001/jamaneurol.2017.3299 . PMID: 29131880, 2018), PD poses an enormous individual and public health burden. Currently, there are no therapies that can slow down the disease progression in PD, and existing therapies are limited to symptomatic treatment. Importantly, people in the prodromal phase who are at high risk of developing PD can now be identified, which makes disease prevention an achievable goal. An in-depth understanding of the pathological processes in PD is crucial for prevention and treatment development. Advanced multimodal neuroimaging techniques provide unique biomarkers that can further our understanding of PD at multiple levels ranging from neurotransmitters to neural networks. These neuroimaging biomarkers also have value in clinical application, for example, in the differential diagnosis of PD. As the field continues to advance, neuroimaging biomarkers are expected to become more specific, more widely accessible, and can be readily incorporated into translational research for treatment development in PD.
Collapse
Affiliation(s)
- Sophie Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Sule Tinaz
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Nerella SG, Michaelides M, Minamimoto T, Innis RB, Pike VW, Eldridge MAG. PET reporter systems for the brain. Trends Neurosci 2023; 46:941-952. [PMID: 37734962 PMCID: PMC10592100 DOI: 10.1016/j.tins.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Positron emission tomography (PET) can be used as a noninvasive method to longitudinally monitor and quantify the expression of proteins in the brain in vivo. It can be used to monitor changes in biomarkers of mental health disorders, and to assess therapeutic interventions such as stem cell and molecular genetic therapies. The utility of PET monitoring depends on the availability of a radiotracer with good central nervous system (CNS) penetration and high selectivity for the target protein. This review evaluates existing methods for the visualization of reporter proteins and/or protein function using PET imaging, focusing on engineered systems, and discusses possible approaches for future success in the development of high-sensitivity and high-specificity PET reporter systems for the brain.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Dirkx MF, Shine JM, Helmich RC. Integrative Brain States Facilitate the Expression of Parkinson's Tremor. Mov Disord 2023; 38:1615-1624. [PMID: 37363818 PMCID: PMC10947311 DOI: 10.1002/mds.29506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) rest tremor emerges from pathological activity in the basal ganglia and cerebello-thalamo-cortical circuits. A well-known clinical feature is the waxing and waning of PD tremor amplitude, but the mechanisms that drive this variability are unclear. Previous work has shown that arousal amplifies PD tremor by increasing between-network connectivity. Furthermore, brain states in PD are biased toward integration rather than segregation, a pattern that is also associated with increased arousal. OBJECTIVE The aim was to test the hypothesis that fluctuations in integrative brain states and/or arousal drive spontaneous fluctuations in PD rest tremor. METHODS We compared the temporal relationship between cerebral integration, the ascending arousal system, and tremor, both during cognitive load and in the resting state. In 40 tremor-dominant PD patients, we performed functional magnetic resonance imaging using concurrent tremor recordings and proxy measures of the ascending arousal system (pupil diameter, heart rate). We calculated whole-brain dynamic functional connectivity and used graph theory to determine a scan-by-scan measure of cerebral integration, which we related to the onset of tremor episodes. RESULTS Fluctuations in cerebral integration were time locked to spontaneous changes in tremor amplitude: cerebral integration increased 13 seconds before tremor onset and predicted the amplitude of subsequent increases in tremor amplitude. During but not before tremor episodes, pupil diameter and heart rate increased and correlated with tremor amplitude. CONCLUSIONS Integrative brain states are an important cerebral environment in which tremor-related activity emerges, which is then amplified by the ascending arousal system. New treatments focused on attenuating enhanced cerebral integration in PD may reduce tremor. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Michiel F. Dirkx
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
| | - James M. Shine
- Brain and Mind CenterThe University of SydneySydneyNew South WalesAustralia
| | - Rick C. Helmich
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
| |
Collapse
|
10
|
Ray Chaudhuri K, Leta V, Bannister K, Brooks DJ, Svenningsson P. The noradrenergic subtype of Parkinson disease: from animal models to clinical practice. Nat Rev Neurol 2023:10.1038/s41582-023-00802-5. [PMID: 37142796 DOI: 10.1038/s41582-023-00802-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 05/06/2023]
Abstract
Many advances in understanding the pathophysiology of Parkinson disease (PD) have been based on research addressing its motor symptoms and phenotypes. Various data-driven clinical phenotyping studies supported by neuropathological and in vivo neuroimaging data suggest the existence of distinct non-motor endophenotypes of PD even at diagnosis, a concept further strengthened by the predominantly non-motor spectrum of symptoms in prodromal PD. Preclinical and clinical studies support early dysfunction of noradrenergic transmission in both the CNS and peripheral nervous system circuits in patients with PD that results in a specific cluster of non-motor symptoms, including rapid eye movement sleep behaviour disorder, pain, anxiety and dysautonomia (particularly orthostatic hypotension and urinary dysfunction). Cluster analyses of large independent cohorts of patients with PD and phenotype-focused studies have confirmed the existence of a noradrenergic subtype of PD, which had been previously postulated but not fully characterized. This Review discusses the translational work that unravelled the clinical and neuropathological processes underpinning the noradrenergic PD subtype. Although some overlap with other PD subtypes is inevitable as the disease progresses, recognition of noradrenergic PD as a distinct early disease subtype represents an important advance towards the delivery of personalized medicine for patients with PD.
Collapse
Affiliation(s)
- K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK.
| | - Valentina Leta
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Kirsty Bannister
- Central Modulation of Pain Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - David J Brooks
- Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle, UK
- Department of Nuclear Medicine, Aarhus University, Aarhus, Denmark
| | - Per Svenningsson
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
Engels-Domínguez N, Koops EA, Prokopiou PC, Van Egroo M, Schneider C, Riphagen JM, Singhal T, Jacobs HIL. State-of-the-art imaging of neuromodulatory subcortical systems in aging and Alzheimer's disease: Challenges and opportunities. Neurosci Biobehav Rev 2023; 144:104998. [PMID: 36526031 PMCID: PMC9805533 DOI: 10.1016/j.neubiorev.2022.104998] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Primary prevention trials have shifted their focus to the earliest stages of Alzheimer's disease (AD). Autopsy data indicates that the neuromodulatory subcortical systems' (NSS) nuclei are specifically vulnerable to initial tau pathology, indicating that these nuclei hold great promise for early detection of AD in the context of the aging brain. The increasing availability of new imaging methods, ultra-high field scanners, new radioligands, and routine deep brain stimulation implants has led to a growing number of NSS neuroimaging studies on aging and neurodegeneration. Here, we review findings of current state-of-the-art imaging studies assessing the structure, function, and molecular changes of these nuclei during aging and AD. Furthermore, we identify the challenges associated with these imaging methods, important pathophysiologic gaps to fill for the AD NSS neuroimaging field, and provide future directions to improve our assessment, understanding, and clinical use of in vivo imaging of the NSS.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Elouise A Koops
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prokopis C Prokopiou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
12
|
Criaud M, Laurencin C, Poisson A, Metereau E, Redouté J, Thobois S, Boulinguez P, Ballanger B. Noradrenaline and Movement Initiation Disorders in Parkinson’s Disease: A Pharmacological Functional MRI Study with Clonidine. Cells 2022; 11:cells11172640. [PMID: 36078048 PMCID: PMC9454805 DOI: 10.3390/cells11172640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Slowness of movement initiation is a cardinal motor feature of Parkinson’s disease (PD) and is not fully reverted by current dopaminergic treatments. This trouble could be due to the dysfunction of executive processes and, in particular, of inhibitory control of response initiation, a function possibly associated with the noradrenergic (NA) system. The implication of NA in the network supporting proactive inhibition remains to be elucidated using pharmacological protocols. For that purpose, we administered 150 μg of clonidine to 15 healthy subjects and 12 parkinsonian patients in a double-blind, randomized, placebo-controlled design. Proactive inhibition was assessed by means of a Go/noGo task, while pre-stimulus brain activity was measured by event-related functional MRI. Acute reduction in noradrenergic transmission induced by clonidine enhanced difficulties initiating movements reflected by an increase in omission errors and modulated the activity of the anterior node of the proactive inhibitory network (dorsomedial prefrontal and anterior cingulate cortices) in PD patients. We conclude that NA contributes to movement initiation by acting on proactive inhibitory control via the α2-adrenoceptor. We suggest that targeting noradrenergic dysfunction may represent a new treatment approach in some of the movement initiation disorders seen in Parkinson’s disease.
Collapse
Affiliation(s)
- Marion Criaud
- Institute of Psychiatry Psychology & Neuroscience, Department Child & Adolescent Psychiatry, Kings College London, London SE24 9QR, UK
| | - Chloé Laurencin
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | - Alice Poisson
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | - Elise Metereau
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | | | - Stéphane Thobois
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
- CNRS UMR5229, Institute of Cognitive Science Marc Jeannerod, 69500 Bron, France
| | - Philippe Boulinguez
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
| | - Bénédicte Ballanger
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- Correspondence:
| |
Collapse
|
13
|
Pasquini J, Ceravolo R. The Molecular Neuroimaging of Tremor. Curr Neurol Neurosci Rep 2021; 21:74. [PMID: 34817737 PMCID: PMC8613162 DOI: 10.1007/s11910-021-01157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 11/28/2022]
Abstract
Purpose of Review Tremor is a hyperkinetic movement disorder most commonly encountered in essential tremor (ET) and Parkinson’s disease (PD). The purpose of this review is to summarize molecular neuroimaging studies with major implications on pathophysiological and clinical features of tremor. Recent Findings Oscillatory brain activity responsible for tremor manifestation is thought to originate in a cerebello-thalamo-cortical network. Molecular neuroimaging has helped clarify metabolic aspects and neurotransmitter influences on the main tremor network. In ET, recent positron emission tomography (PET) studies are built on previous knowledge and highlighted the possibility of investigating metabolic brain changes after treatments, in the attempt to establish therapeutic biomarkers. In PD, molecular neuroimaging has advanced the knowledge of non-dopaminergic determinants of tremor, providing insights into serotonergic and noradrenergic contributions. Summary Recent advances have greatly extended the knowledge of tremor pathophysiology and it is now necessary to translate such knowledge in more efficacious treatments for this symptom.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy. .,Clinical Ageing Research Unit, Newcastle University, Campus for Ageing & Vitality, Westgate Road, Newcastle upon Tyne, NE4 5PL, UK.
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Neurodegenerative Diseases Center, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| |
Collapse
|
14
|
Bidesi NSR, Vang Andersen I, Windhorst AD, Shalgunov V, Herth MM. The role of neuroimaging in Parkinson's disease. J Neurochem 2021; 159:660-689. [PMID: 34532856 PMCID: PMC9291628 DOI: 10.1111/jnc.15516] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Two hallmarks of PD are the accumulation of alpha-synuclein and the loss of dopaminergic neurons in the brain. There is no cure for PD, and all existing treatments focus on alleviating the symptoms. PD diagnosis is also based on the symptoms, such as abnormalities of movement, mood, and cognition observed in the patients. Molecular imaging methods such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) can detect objective alterations in the neurochemical machinery of the brain and help diagnose and study neurodegenerative diseases. This review addresses the application of functional MRI, PET, and SPECT in PD patients. We provide an overview of the imaging targets, discuss the rationale behind target selection, the agents (tracers) with which the imaging can be performed, and the main findings regarding each target's state in PD. Molecular imaging has proven itself effective in supporting clinical diagnosis of PD and has helped reveal that PD is a heterogeneous disorder, which has important implications for the development of future therapies. However, the application of molecular imaging for early diagnosis of PD or for differentiation between PD and atypical parkinsonisms has remained challenging. The final section of the review is dedicated to new imaging targets with which one can detect the PD-related pathological changes upstream from dopaminergic degeneration. The foremost of those targets is alpha-synuclein. We discuss the progress of tracer development achieved so far and challenges on the path toward alpha-synuclein imaging in humans.
Collapse
Affiliation(s)
- Natasha S R Bidesi
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
Pérez-Santos I, Palomero-Gallagher N, Zilles K, Cavada C. Distribution of the Noradrenaline Innervation and Adrenoceptors in the Macaque Monkey Thalamus. Cereb Cortex 2021; 31:4115-4139. [PMID: 34003210 PMCID: PMC8328208 DOI: 10.1093/cercor/bhab073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Noradrenaline (NA) in the thalamus has important roles in physiological, pharmacological, and pathological neuromodulation. In this work, a complete characterization of NA axons and Alpha adrenoceptors distributions is provided. NA axons, revealed by immunohistochemistry against the synthesizing enzyme and the NA transporter, are present in all thalamic nuclei. The most densely innervated ones are the midline nuclei, intralaminar nuclei (paracentral and parafascicular), and the medial sector of the mediodorsal nucleus (MDm). The ventral motor nuclei and most somatosensory relay nuclei receive a moderate NA innervation. The pulvinar complex receives a heterogeneous innervation. The lateral geniculate nucleus (GL) has the lowest NA innervation. Alpha adrenoceptors were analyzed by in vitro quantitative autoradiography. Alpha-1 receptor densities are higher than Alpha-2 densities. Overall, axonal densities and Alpha adrenoceptor densities coincide; although some mismatches were identified. The nuclei with the highest Alpha-1 values are MDm, the parvocellular part of the ventral posterior medial nucleus, medial pulvinar, and midline nuclei. The nucleus with the lowest Alpha-1 receptor density is GL. Alpha-2 receptor densities are highest in the lateral dorsal, centromedian, medial and inferior pulvinar, and midline nuclei. These results suggest a role for NA in modulating thalamic involvement in consciousness, limbic, cognitive, and executive functions.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Carmen Cavada
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
16
|
Doppler CEJ, Kinnerup MB, Brune C, Farrher E, Betts M, Fedorova TD, Schaldemose JL, Knudsen K, Ismail R, Seger AD, Hansen AK, Stær K, Fink GR, Brooks DJ, Nahimi A, Borghammer P, Sommerauer M. Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson's disease. Brain 2021; 144:2732-2744. [PMID: 34196700 DOI: 10.1093/brain/awab236] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/06/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson's disease. We examined 93 subjects (40 healthy controls and 53 Parkinson's disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Parkinson's disease patients showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: p < 0.0001, p < 0.001; probabilistic map: p < 0.05), specifically on the clinically-defined most affected side (p < 0.05), and reduced locus coeruleus volume (p < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach-rostral: p = 0.48, middle: p < 0.0001, and caudal: p < 0.05; probabilistic map-rostral: p = 0.90, middle: p < 0.01, and caudal: p < 0.05). The noradrenaline transporter density was lower in Parkinson's disease patients in all examined regions (group effect p < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson's disease patients in all examined regions (group effect p < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson's disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson's disease, which may eventually direct research toward potential novel treatment approaches.
Collapse
Affiliation(s)
- Christopher E J Doppler
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Martin B Kinnerup
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Corinna Brune
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Matthew Betts
- German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, University of Magdeburg, D-39120 Magdeburg, Germany
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Jeppe L Schaldemose
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Rola Ismail
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Aline D Seger
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Kristian Stær
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - David J Brooks
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark.,Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK.,Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK
| | - Adjmal Nahimi
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Michael Sommerauer
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany.,Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| |
Collapse
|
17
|
Doppler CEJ, Smit JAM, Hommelsen M, Seger A, Horsager J, Kinnerup MB, Hansen AK, Fedorova TD, Knudsen K, Otto M, Nahimi A, Borghammer P, Sommerauer M. Microsleep disturbances are associated with noradrenergic dysfunction in Parkinson's disease. Sleep 2021; 44:6145123. [PMID: 33608699 DOI: 10.1093/sleep/zsab040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/30/2021] [Indexed: 01/08/2023] Open
Abstract
STUDY OBJECTIVES Parkinson's disease (PD) commonly involves degeneration of sleep-wake regulating brainstem nuclei; likewise, sleep-wake disturbances are highly prevalent in PD patients. As polysomnography macroparameters typically show only minor changes in PD, we investigated sleep microstructure, particularly cyclic alternating pattern (CAP), and its relation to alterations of the noradrenergic system in these patients. METHODS We analysed 27 PD patients and 13 healthy control (HC) subjects who underwent over-night polysomnography and 11C-MeNER positron emission tomography for evaluation of noradrenaline transporter density. Sleep macroparameters as well as CAP metrics were evaluated according to the consensus statement from 2001. Statistical analysis comprised group comparisons and correlation analysis of CAP metrics with clinical characteristics of PD patients as well as noradrenaline transporter density. RESULTS PD patients and HC subjects were comparable in demographic characteristics (age, sex, body mass index) and polysomnography macroparameters. CAP rate as well as A index differed significantly between groups, with PD patients having a lower CAP rate (46.7 ± 6.6% versus 38.0 ± 11.6%, p = 0.015) and lower A index (49.0 ± 8.7/hour versus 40.1 ± 15.4/hour, p = 0.042). In PD patients, both CAP metrics correlated significantly with diminished noradrenaline transporter density in arousal prompting brainstem nuclei (locus coeruleus, raphe nuclei) as well as arousal propagating brain structures like thalamus and bitemporal cortex. CONCLUSIONS Sleep microstructure is more severely altered than sleep macrostructure in PD patients and is associated with widespread dysfunction of the noradrenergic arousal system.
Collapse
Affiliation(s)
- Christopher E J Doppler
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany.,Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Julia A M Smit
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany
| | - Maximilian Hommelsen
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Aline Seger
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany.,Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Jacob Horsager
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Martin B Kinnerup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Marit Otto
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Adjmal Nahimi
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany.,Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.,Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Frey KA, Bohnen NILJ. Molecular Imaging of Neurodegenerative Parkinsonism. PET Clin 2021; 16:261-272. [PMID: 33589385 DOI: 10.1016/j.cpet.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Advances in molecular PET imaging of neurodegenerative parkinsonism are reviewed with focus on neuropharmacologic radiotracers depicting terminals of selectively vulnerable neurons in these conditions. Degeneration and losses of dopamine, norepinephrine, serotonin, and acetylcholine imaging markers thus far do not differentiate among the parkinsonian conditions. Recent studies performed with [18F]fluorodeoxyglucose PET are limited by the need for automated image analysis tools and by lack of routine coverage for this imaging indication in the United States. Ongoing research engages use of novel molecular modeling and in silico methods for design of imaging ligands targeting these specific proteinopathies.
Collapse
Affiliation(s)
- Kirk A Frey
- Department of Radiology (Nuclear Medicine and Molecular Imaging), University of Michigan, 1500 East Medical Center Drive, Room B1-G505 UH, Ann Arbor, MI 48109-5028, USA; Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Room B1-G505 UH, Ann Arbor, MI 48109-5028, USA.
| | - Nicolaas I L J Bohnen
- Department of Radiology (Nuclear Medicine and Molecular Imaging), University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI 48105, USA; Department of Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI 48105, USA; Ann Arbor Veterans Administration Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Jiang YF, Liu J, Yang J, Guo Y, Hu W, Zhang J, La XM, Xie W, Wang HS, Zhang L. Involvement of the Dorsal Hippocampus 5-HT1A Receptors in the Regulation of Depressive-Like Behaviors in Hemiparkinsonian Rats. Neuropsychobiology 2021; 79:198-207. [PMID: 31940619 DOI: 10.1159/000505212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Depression is one of the most common neuropsychiatric disturbances in Parkinson's disease (PD), but its pathophysiology is not definite. Lines of evidence have indicated that the hippocampus and serotonin 1A (5-HT1A) receptors are related to the regulation of depression. OBJECTIVE The purpose of the present study was to observe the effect of 5-HT1A receptors in the dorsal hippocampus (dHIP) on PD-related depression in rats. METHODS Unilateral 6-hydroxydopamine lesioning of the medial forebrain bundle (MFB) was used to establish the hemiparkinsonian rat model. The effects of intra-dHIP injection of the 5-HT1A receptor -agonist 8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) or antagonist WAY-100635 on depressive-like behaviors were observed in sucrose preference and forced swim tests in control and lesioned rats. Monoamine levels including dopamine (DA), 5-HT, and noradrenaline (NA) in depression-related brain regions were determined by a neurochemical method in all groups. RESULTS Behavioral results showed that MFB lesions induced depressive-like behaviors. Intra-dHIP injection of 8-OH-DPAT produced antidepressant effects, while WAY-100635 induced or increased the depressive-like behaviors in both control and the lesioned rats. Neurochemical results found that intra-dHIP injection of 8-OH-DPAT significantly increased DA and 5-HT levels in the medial prefrontal cortex (mPFC), lateral habenula (LHb), ventral hippocampus and amygdala in the lesioned group and decreased NA levels in the mPFC and LHb in the control group. Moreover, after injection of WAY-100635, NA levels in all these regions of the lesioned group were significantly increased. CONCLUSIONS These findings suggest that hippocampal 5-HT1A receptors regulate depression and PD-related depression by neurochemical mechanisms.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Clinical Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wei Hu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Clinical Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jin Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xue-Mei La
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Stomatology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wen Xie
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hui-Sheng Wang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China,
| |
Collapse
|
20
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|
21
|
Kelberman M, Keilholz S, Weinshenker D. What's That (Blue) Spot on my MRI? Multimodal Neuroimaging of the Locus Coeruleus in Neurodegenerative Disease. Front Neurosci 2020; 14:583421. [PMID: 33122996 PMCID: PMC7573566 DOI: 10.3389/fnins.2020.583421] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
The locus coeruleus (LC) has long been underappreciated for its role in the pathophysiology of Alzheimer’s disease (AD), Parkinson’s disease (PD), and other neurodegenerative disorders. While AD and PD are distinct in clinical presentation, both are characterized by prodromal protein aggregation in the LC, late-stage degeneration of the LC, and comorbid conditions indicative of LC dysfunction. Many of these early studies were limited to post-mortem histological techniques due to the LC’s small size and location deep in the brainstem. Thus, there is a growing interest in utilizing in vivo imaging of the LC as a predictor of preclinical neurodegenerative processes and biomarker of disease progression. Simultaneously, neuroimaging in animal models of neurodegenerative disease holds promise for identifying early alterations to LC circuits, but has thus far been underutilized. While still in its infancy, a handful of studies have reported effects of single gene mutations and pathology on LC function in disease using various neuroimaging techniques. Furthermore, combining imaging and optogenetics or chemogenetics allows for interrogation of network connectivity in response to changes in LC activity. The purpose of this article is twofold: (1) to review what magnetic resonance imaging (MRI) and positron emission tomography (PET) have revealed about LC dysfunction in neurodegenerative disease and its potential as a biomarker in humans, and (2) to explore how animal models can be used to test hypotheses derived from clinical data and establish a mechanistic framework to inform LC-focused therapeutic interventions to alleviate symptoms and impede disease progression.
Collapse
Affiliation(s)
- Michael Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
22
|
Galet B, Cheval H, Ravassard P. Patient-Derived Midbrain Organoids to Explore the Molecular Basis of Parkinson's Disease. Front Neurol 2020; 11:1005. [PMID: 33013664 PMCID: PMC7500100 DOI: 10.3389/fneur.2020.01005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cell-derived organoids offer an unprecedented access to complex human tissues that recapitulate features of architecture, composition and function of in vivo organs. In the context of Parkinson's Disease (PD), human midbrain organoids (hMO) are of significant interest, as they generate dopaminergic neurons expressing markers of Substantia Nigra identity, which are the most vulnerable to degeneration. Combined with genome editing approaches, hMO may thus constitute a valuable tool to dissect the genetic makeup of PD by revealing the effects of risk variants on pathological mechanisms in a representative cellular environment. Furthermore, the flexibility of organoid co-culture approaches may also enable the study of neuroinflammatory and neurovascular processes, as well as interactions with other brain regions that are also affected over the course of the disease. We here review existing protocols to generate hMO, how they have been used so far to model PD, address challenges inherent to organoid cultures, and discuss applicable strategies to dissect the molecular pathophysiology of the disease. Taken together, the research suggests that this technology represents a promising alternative to 2D in vitro models, which could significantly improve our understanding of PD and help accelerate therapeutic developments.
Collapse
Affiliation(s)
- Benjamin Galet
- Molecular Pathophysiology of Parkinson's Disease Group, Paris Brain Institute (ICM), INSERM U, CNRS UMR 7225, Sorbonne University, Paris, France
| | | | | |
Collapse
|
23
|
Andersen KB, Hansen AK, Sommerauer M, Fedorova TD, Knudsen K, Vang K, Van Den Berge N, Kinnerup M, Nahimi A, Pavese N, Brooks DJ, Borghammer P. Altered sensorimotor cortex noradrenergic function in idiopathic REM sleep behaviour disorder – A PET study. Parkinsonism Relat Disord 2020; 75:63-69. [DOI: 10.1016/j.parkreldis.2020.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/27/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
|
24
|
Atomoxetine Does Not Improve Complex Attention in Idiopathic Parkinson's Disease Patients with Cognitive Deficits: A Meta-Analysis. PARKINSONS DISEASE 2020; 2020:4853590. [PMID: 32211146 PMCID: PMC7049416 DOI: 10.1155/2020/4853590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Objectives To evaluate the effects of atomoxetine on complex attention and other neurocognitive domains in idiopathic Parkinson's disease (PD). Methods Interventional trials reporting changes in complex attention and other neurocognitive functions (Diagnostic and Statistical Manual of Mental Disorders-5) following administration of atomoxetine for at least 8 weeks in adults with idiopathic PD were included. Effect sizes (Cohen's d), the standardized mean difference in the scores of each cognitive domain, were compared using a random-effects model (MetaXL version 5.3). Results Three studies were included in the final analysis. For a change in complex attention in PD with mild cognitive impairment (MCI), the estimated effect size was small and nonsignificant (0.16 (95% CI: −0.09, 0.42), n = 42). For changes in executive function, perceptual-motor function, language, social cognition, and learning and memory, the estimated effect sizes were small and medium, but nonsignificant. A deteriorative trend in executive function was observed after atomoxetine treatment in PD with MCI. For a change in global cognitive function in PD without MCI, the estimated effect size was large and significant. Conclusion In idiopathic PD with MCI, atomoxetine does not improve complex attention. Also, a deteriorative trend in the executive function was noted.
Collapse
|
25
|
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21:103-115. [DOI: 10.1038/s41583-019-0257-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
26
|
Rosqvist K, Odin P, Hagell P, Iwarsson S, Nilsson MH, Storch A. Dopaminergic Effect on Non-Motor Symptoms in Late Stage Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2019; 8:409-420. [PMID: 30056433 DOI: 10.3233/jpd-181380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-motor symptoms (NMS) are common in late stage Parkinson's disease (PD), as the frequency and severity of most of these symptoms increase with advancing disease. OBJECTIVE To assess effect of dopaminergic therapy on NMS in late stage PD and to investigate relationships between dopaminergic effect on NMS and on motor function. METHOD Thirty PD patients in Hoehn and Yahr (HY) stages IV and V in "on" were included. Dopaminergic effect on non-motor symptomatology was assessed by the modified version of the Non-Motor Symptoms Scale (NMSS) in the "off" and the "on" state during a standardized L-dopa test, in parallel also assessing motor function. RESULTS NMS were common and many of the symptoms occurred in >80% of the individuals. The highest NMSS scores were seen within the NMSS domains 3: mood/apathy and 7: urinary in both the "off" and the "on" state. There was a statistically significant (p < 0.001) improvement in the modified NMSS total score (median) from 79 in "off" to 64 in "on". There were statistically significant differences between the "off" and the "on" state for domains 2: sleep/fatigue, 3: mood/apathy, 5: attention/memory, 6: gastrointestinal and 7: urinary. The differences in the NMSS score between the "off" and the "on" state were in general larger for motor responders than for motor non-responders. In motor non-responders, differences of the NMSS score between the "off" and the "on" state were found for the total score, domain 3: mood/apathy and its item 11-flat moods. CONCLUSION There is an effect of dopaminergic medication on NMS in late stage PD, to some extent also for those with a non-significant response on motor function during L-dopa test. It is therefore of importance to optimize dopaminergic therapy in order to give the most effective symptomatic treatment possible.
Collapse
|
27
|
Oertel WH, Henrich MT, Janzen A, Geibl FF. The locus coeruleus: Another vulnerability target in Parkinson's disease. Mov Disord 2019; 34:1423-1429. [DOI: 10.1002/mds.27785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
| | | | - Annette Janzen
- Department of Neurology Philipps University Marburg Marburg Germany
| | - Fanni F. Geibl
- Department of Neurology Philipps University Marburg Marburg Germany
| |
Collapse
|
28
|
Spay C, Albares M, Lio G, Thobois S, Broussolle E, Lau B, Ballanger B, Boulinguez P. Clonidine modulates the activity of the subthalamic-supplementary motor loop: evidence from a pharmacological study combining deep brain stimulation and electroencephalography recordings in Parkinsonian patients. J Neurochem 2019; 146:333-347. [PMID: 29675956 DOI: 10.1111/jnc.14447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022]
Abstract
Clonidine is an anti-hypertensive medication which acts as an alpha-adrenergic receptor agonist. As the noradrenergic system is likely to support cognitive functions including attention and executive control, other clinical uses of clonidine have recently gained popularity for the treatment of neuropsychiatric disorders like attention-deficit hyperactivity disorder or Tourette syndrome, but the mechanism of action is still unclear. Here, we test the hypothesis that the noradrenergic system regulates the activity of subthalamo-motor cortical loops, and that this influence can be modulated by clonidine. We used pharmacological manipulation of clonidine in a placebo-controlled study in combination with subthalamic nucleus-deep brain stimulation (STN-DBS) in 16 Parkinson's disease patients performing a reaction time task requiring to refrain from reacting (proactive inhibition). We recorded electroencephalographical activity of the whole cortex, and applied spectral analyses directly at the source level after advanced blind source separation. We found only one cortical source localized to the supplementary motor area (SMA) that supported an interaction of pharmacological and subthalamic stimulation. Under placebo, STN-DBS reduced proactive alpha power in the SMA, a marker of local inhibitory activity. This effect was associated with the speeding-up of movement initiation. Clonidine substantially increased proactive alpha power from the SMA source, and canceled out the benefits of STN-DBS on movement initiation. These results provide the first direct neural evidence in humans that the tonic inhibitory activity of the subthalamocortical loops underlying the control of movement initiation is coupled to the noradrenergic system, and that this activity can be targeted by pharmacological agents acting on alpha-adrenergic receptors.
Collapse
Affiliation(s)
- Charlotte Spay
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, France
| | - Marion Albares
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France.,Sorbonne Universités, UPMC Université Pierre et Marie Curie Paris 06, UMR 7225, Paris, France.,INSERM UMR 1127, Institut du cerveau et de la moelle épinière, ICM, Paris, France.,CNRS, UMR 7225, Institut du cerveau et de la moelle épinière, ICM, Paris, France
| | - Guillaume Lio
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France
| | - Stephane Thobois
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France.,Hospices civils de Lyon, hôpital neurologique Pierre Wertheimer, Bron, France
| | - Emmanuel Broussolle
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France.,Hospices civils de Lyon, hôpital neurologique Pierre Wertheimer, Bron, France
| | - Brian Lau
- Sorbonne Universités, UPMC Université Pierre et Marie Curie Paris 06, UMR 7225, Paris, France.,INSERM UMR 1127, Institut du cerveau et de la moelle épinière, ICM, Paris, France.,CNRS, UMR 7225, Institut du cerveau et de la moelle épinière, ICM, Paris, France
| | - Benedicte Ballanger
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, France
| | - Philippe Boulinguez
- Université de Lyon, Lyon, France.,Université Lyon 1, Villeurbanne, France.,INSERM, U 1028, Lyon Neuroscience Research Center, Lyon, France.,CNRS, UMR 5292, Lyon Neuroscience Research Center, Lyon, France
| |
Collapse
|
29
|
Sancandi M, Schul EV, Economides G, Constanti A, Mercer A. Structural Changes Observed in the Piriform Cortex in a Rat Model of Pre-motor Parkinson's Disease. Front Cell Neurosci 2018; 12:479. [PMID: 30618629 PMCID: PMC6296349 DOI: 10.3389/fncel.2018.00479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of Parkinson’s disease (PD) offers perhaps, the most promising route to a successful clinical intervention, and the use of an animal model exhibiting symptoms comparable to those observed in PD patients in the early stage of the disease, may facilitate screening of novel therapies for delaying the onset of more debilitating motor and behavioral abnormalities. In this study, a rat model of pre-motor PD was used to study the etiology of hyposmia, a non-motor symptom linked to the early stage of the disease when the motor symptoms have yet to be experienced. The study focussed on determining the effect of a partial reduction of both dopamine and noradrenaline levels on the olfactory cortex. Neuroinflammation and striking structural changes were observed in the model. These changes were prevented by treatment with a neuroprotective drug, a glucagon-like peptide-1 (GLP1) receptor agonist, exendin-4 (EX-4).
Collapse
|
30
|
Lillethorup TP, Glud AN, Alstrup AKO, Noer O, Nielsen EHT, Schacht AC, Landeck N, Kirik D, Orlowski D, Sørensen JCH, Doudet DJ, Landau AM. Longitudinal monoaminergic PET imaging of chronic proteasome inhibition in minipigs. Sci Rep 2018; 8:15715. [PMID: 30356172 PMCID: PMC6200778 DOI: 10.1038/s41598-018-34084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023] Open
Abstract
Impairment of the ubiquitin proteasome system has been implicated in Parkinson’s disease. We used positron emission tomography to investigate longitudinal effects of chronic intracerebroventricular exposure to the proteasome inhibitor lactacystin on monoaminergic projections and neuroinflammation. Göttingen minipigs were implanted in the cisterna magna with a catheter connected to a subcutaneous injection port. Minipigs were imaged at baseline and after cumulative doses of 200 and 400 μg lactacystin, respectively. Main radioligands included [11C]-DTBZ (vesicular monoamine transporter type 2) and [11C]-yohimbine (α2-adrenoceptor). [11C]-DASB (serotonin transporter) and [11C]-PK11195 (activated microglia) became available later in the study and we present their results in a smaller subset of animals for information purposes only. Striatal [11C]-DTBZ binding potentials decreased significantly by 16% after 200 μg compared to baseline, but the decrease was not sustained after 400 μg (n = 6). [11C]-yohimbine volume of distribution increased by 18–25% in the pons, grey matter and the thalamus after 200 μg, which persisted at 400 μg (n = 6). In the later subset of minipigs, we observed decreased [11C]-DASB (n = 5) and increased [11C]-PK11195 (n = 3) uptake after 200 μg. These changes may mimic monoaminergic changes and compensatory responses in early Parkinson’s disease.
Collapse
Affiliation(s)
- Thea P Lillethorup
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Andreas N Glud
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Aage K O Alstrup
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Ove Noer
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Erik H T Nielsen
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Anna C Schacht
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Natalie Landeck
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Dariusz Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Christian H Sørensen
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Doris J Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark. .,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
31
|
Strafella AP, Bohnen NI, Pavese N, Vaillancourt DE, van Eimeren T, Politis M, Tessitore A, Ghadery C, Lewis S. Imaging Markers of Progression in Parkinson's Disease. Mov Disord Clin Pract 2018; 5:586-596. [PMID: 30637278 DOI: 10.1002/mdc3.12673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson's disease (PD) is the second-most common neurodegenerative disorder after Alzheimer's disease; however, to date, there is no approved treatment that stops or slows down disease progression. Over the past decades, neuroimaging studies, including molecular imaging and MRI are trying to provide insights into the mechanisms underlying PD. Methods This work utilized a literature review. Results It is now becoming clear that these imaging modalities can provide biomarkers that can objectively detect brain changes related to PD and monitor these changes as the disease progresses, and these biomarkers are required to establish a breakthrough in neuroprotective or disease-modifying therapeutics. Conclusions Here, we provide a review of recent observations deriving from PET, single-positron emission tomography, and MRI studies exploring PD and other parkinsonian disorders.
Collapse
Affiliation(s)
- Antonio P Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN University of Toronto Toronto Ontario Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
| | - Nico I Bohnen
- Department of Radiology & Neurology University of Michigan Ann Arbor Michigan USA.,Veterans Administration Ann Arbor Healthcare System Ann Arbor Michigan USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research University of Michigan Ann Arbor Michigan USA
| | - Nicola Pavese
- Newcastle Magnetic Resonance Centre & Positron Emission Tomography Centre Newcastle University, Campus for Ageing & Vitality Newcastle upon Tyne United Kingdom
| | - David E Vaillancourt
- Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology University of Florida Gainesville Florida USA
| | - Thilo van Eimeren
- Department of Nuclear Medicine and Department of Neurology University of Cologne Cologne Germany.,Institute for Cognitive Neuroscience, Jülich Research Centre Jülich Germany.,German Center for Neurodegenerative Diseases (DZNE) Bonn-Cologne Bonn Germany
| | - Marios Politis
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London London United Kingdom
| | - Alessandro Tessitore
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences-MRI Research Center SUN-FISM University of Campania "Luigi Vanvitelli" Naples Italy
| | - Christine Ghadery
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada.,Division of Brain, Imaging and Behaviour-Systems Neuroscience, Krembil Research Institute, UHN University of Toronto Toronto Ontario Canada.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
| | - Simon Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre University of Sydney Sydney NSW Australia
| | | |
Collapse
|
32
|
Brumberg J, Tran-Gia J, Lapa C, Isaias IU, Samnick S. PET imaging of noradrenaline transporters in Parkinson's disease: focus on scan time. Ann Nucl Med 2018; 33:69-77. [PMID: 30293197 PMCID: PMC6373329 DOI: 10.1007/s12149-018-1305-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE In subjects with idiopathic Parkinson's disease (PD) the functional state of the locus coeruleus and the subtle derangements in the finely tuned dopamine-noradrenaline interplay are largely unknown. The PET ligand (S,S)-[11C]-O-methylreboxetine (C-11 MRB) has been described to reliably bind noradrenaline transporters but long scanning protocols might hamper its use, especially in patients with PD. We aimed to assess the feasibility of reducing C-11 MRB scans to 30 min. METHODS Ten patients with idiopathic PD underwent dynamic C-11 MRB PET (120 min duration) and brain magnetic resonance imaging. Model-based (i.e., simplified and multilinear reference tissue model 2) non-displaceable binding potentials (BP) of selected brain regions were analyzed for a 90 min scan protocol and compared with BP derived from static 30-min data with different starting times (30, 40, 50 and 60 min) after C-11 MRB injection. Intraclass correlation coefficient and linear regression analysis were used to explore the association between BP of different scan durations. Spearman's ρ served to describe the correlation of BP with demographic and clinical parameters. RESULTS With respect to kinetic models, BP50-80 and BP60-90 showed the best correlation in several brain areas (R2 range 0.95-98; p < 0.001). The thalamus showed the highest BP on average. No correlation between BP, clinical and demographic characteristics was observed. CONCLUSIONS An acquisition time of 30 min, starting 50 or 60 min after C-11 MRB injection, allows a reliable estimation of noradrenaline transporter binding values in Parkinsonian people. A short acquisition time can significantly reduce the discomfort of Parkinsonian patients and facilitate PET studies, especially in the medication-off-state.
Collapse
Affiliation(s)
- Joachim Brumberg
- Department of Nuclear Medicine, University Hospital and Julius-Maximilians-University, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital and Julius-Maximilians-University, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital and Julius-Maximilians-University, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Ioannis U Isaias
- Department of Neurology, University Hospital and Julius-Maximilians-University, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital and Julius-Maximilians-University, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| |
Collapse
|
33
|
|
34
|
Knudsen K, Fedorova TD, Hansen AK, Sommerauer M, Otto M, Svendsen KB, Nahimi A, Stokholm MG, Pavese N, Beier CP, Brooks DJ, Borghammer P. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurol 2018; 17:618-628. [PMID: 29866443 DOI: 10.1016/s1474-4422(18)30162-5] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/26/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Accumulating evidence suggests that α-synuclein aggregates-a defining pathology of Parkinson's disease-display cell-to-cell transmission. α-synuclein aggregation is hypothesised to start in autonomic nerve terminals years before the appearance of motor symptoms, and subsequently spread via autonomic nerves to the spinal cord and brainstem. To assess this hypothesis, we investigated sympathetic, parasympathetic, noradrenergic, and dopaminergic innervation in patients with idiopathic rapid eye movement (REM) sleep behaviour disorder, a prodromal phenotype of Parkinson's disease. METHODS In this prospective, case-control study, we recruited patients with idiopathic REM sleep behaviour disorder, confirmed by polysomnography, without clinical signs of parkinsonism or dementia, via advertisement and through sleep clinics in Denmark. We used 11C-donepezil PET and CT to assess cholinergic (parasympathetic) gut innervation, 123I-metaiodobenzylguanidine (MIBG) scintigraphy to measure cardiac sympathetic innervation, neuromelanin-sensitive MRI to measure integrity of pigmented neurons of the locus coeruleus, 11C-methylreboxetine (MeNER) PET to assess noradrenergic nerve terminals originating in the locus coeruleus, and 18F-dihydroxyphenylalanine (DOPA) PET to assess nigrostriatal dopamine storage capacity. For each imaging modality, we compared patients with idiopathic REM sleep behaviour disorder with previously published reference data of controls without neurological disorders or cognitive impairment and with symptomatic patients with Parkinson's disease. We assessed imaging data using one-way ANOVA corrected for multiple comparisons. FINDINGS Between June 3, 2016, and Dec 19, 2017, we recruited 22 consecutive patients with idiopathic REM sleep behaviour disorder to the study. Compared with controls, patients with idiopathic REM sleep behaviour disorder had decreased colonic 11C-donepezil uptake (-0·322, 95% CI -0·112 to -0·531; p=0·0020), 123I-MIBG heart:mediastinum ratio (-0·508, -0·353 to -0·664; p<0·0001), neuromelanin-sensitive MRI locus coeruleus:pons ratio (-0·059, -0·019 to -0·099; p=0·0028), and putaminal 18F-DOPA uptake (Ki; -0·0023, -0·0009 to -0·0037; p=0·0013). No between-group differences were detected between idiopathic REM sleep behaviour disorder and Parkinson's disease groups with respect to 11C-donepezil (p=0·39), 123I-MIBG (p>0·99), neuromelanin-sensitive MRI (p=0·96), and 11C-MeNER (p=0·56). By contrast, 15 (71%) of 21 patients with idiopathic REM sleep behaviour disorder had 18F-DOPA Ki values within normal limits, whereas all patients with Parkinson's disease had significantly decreased 18F-DOPA Ki values when compared with patients with idiopathic REM sleep behaviour disorder (p<0·0001). INTERPRETATION Patients with idiopathic REM sleep behaviour disorder had fully developed pathology in the peripheral autonomic nervous system and the locus coeruleus, equal to that in diagnosed Parkinson's disease. These patients also showed noradrenergic thalamic denervation, but most had normal putaminal dopaminergic storage capacity. This caudorostral gradient of dysfunction supports the hypothesis that α-synuclein pathology in Parkinson's disease initially targets peripheral autonomic nerves and then spreads rostrally to the brainstem. FUNDING Lundbeck Foundation, Jascha Foundation, and the Swiss National Foundation.
Collapse
Affiliation(s)
- Karoline Knudsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Marit Otto
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Adjmal Nahimi
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Morten G Stokholm
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Nicola Pavese
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Division of Neuroscience, Department of Medicine, Imperial College London, London, UK; Division of Neuroscience, Newcastle University, Newcastle, UK
| | - Christoph P Beier
- Southern University of Denmark, Department of Neurology, Odense, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark; Division of Neuroscience, Department of Medicine, Imperial College London, London, UK; Division of Neuroscience, Newcastle University, Newcastle, UK
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
35
|
Sommerauer M, Hansen AK, Parbo P, Fedorova TD, Knudsen K, Frederiksen Y, Nahimi A, Barbe MT, Brooks DJ, Borghammer P. Decreased noradrenaline transporter density in the motor cortex of Parkinson's disease patients. Mov Disord 2018; 33:1006-1010. [DOI: 10.1002/mds.27411] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Michael Sommerauer
- Aarhus University Hospital, Department of Nuclear Medicine and PET Centre; Aarhus Denmark
- Department of Neurology; University Hospital Cologne; Cologne Germany
| | - Allan K Hansen
- Aarhus University Hospital, Department of Nuclear Medicine and PET Centre; Aarhus Denmark
| | - Peter Parbo
- Aarhus University Hospital, Department of Nuclear Medicine and PET Centre; Aarhus Denmark
| | - Tatyana D. Fedorova
- Aarhus University Hospital, Department of Nuclear Medicine and PET Centre; Aarhus Denmark
| | - Karoline Knudsen
- Aarhus University Hospital, Department of Nuclear Medicine and PET Centre; Aarhus Denmark
| | - Yoon Frederiksen
- Aarhus University, Department of Clinical Medicine & Department of Psychology; Aarhus Denmark
| | - Adjmal Nahimi
- Aarhus University Hospital, Department of Nuclear Medicine and PET Centre; Aarhus Denmark
| | - Michael T. Barbe
- Department of Neurology; University Hospital Cologne; Cologne Germany
| | - David J. Brooks
- Aarhus University Hospital, Department of Nuclear Medicine and PET Centre; Aarhus Denmark
- Division of Neuroscience, Department of Medicine; Imperial College London; London UK
- Division of Neuroscience; Newcastle University; Newcastle UK
| | - Per Borghammer
- Aarhus University Hospital, Department of Nuclear Medicine and PET Centre; Aarhus Denmark
| |
Collapse
|
36
|
Molecular Imaging of the Noradrenergic System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:251-274. [DOI: 10.1016/bs.irn.2018.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Sommerauer M, Fedorova TD, Hansen AK, Knudsen K, Otto M, Jeppesen J, Frederiksen Y, Blicher JU, Geday J, Nahimi A, Damholdt MF, Brooks DJ, Borghammer P. Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain 2017; 141:496-504. [DOI: 10.1093/brain/awx348] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 11/13/2022] Open
|