1
|
Bakht MK, Beltran H. Biological determinants of PSMA expression, regulation and heterogeneity in prostate cancer. Nat Rev Urol 2024:10.1038/s41585-024-00900-z. [PMID: 38977769 DOI: 10.1038/s41585-024-00900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/10/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is an important cell-surface imaging biomarker and therapeutic target in prostate cancer. The PSMA-targeted theranostic 177Lu-PSMA-617 was approved in 2022 for men with PSMA-PET-positive metastatic castration-resistant prostate cancer. However, not all patients respond to PSMA-radioligand therapy, in part owing to the heterogeneity of PSMA expression in the tumour. The PSMA regulatory network is composed of a PSMA transcription complex, an upstream enhancer that loops to the FOLH1 (PSMA) gene promoter, intergenic enhancers and differentially methylated regions. Our understanding of the PSMA regulatory network and the mechanisms underlying PSMA suppression is evolving. Clinically, molecular imaging provides a unique window into PSMA dynamics that occur on therapy and with disease progression, although challenges arise owing to the limited resolution of PET. PSMA regulation and heterogeneity - including intertumoural and inter-patient heterogeneity, temporal changes, lineage dynamics and the tumour microenvironment - affect PSMA theranostics. PSMA response and resistance to radioligand therapy are mediated by a number of potential mechanisms, and complementary biomarkers beyond PSMA are under development. Understanding the biological determinants of cell surface target regulation and heterogeneity can inform precision medicine approaches to PSMA theranostics as well as other emerging therapies.
Collapse
Affiliation(s)
- Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Hazelton J, Kim S, Boerner JL, Podgorski I, Perk T, Cackowski F, Aoun HD, Heath EI. 18 F-sodium fluoride positron emission tomography quantitation of bone metastases in African American and non-African American men with metastatic prostate cancer. Prostate 2023; 83:1193-1200. [PMID: 37211866 PMCID: PMC10524638 DOI: 10.1002/pros.24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Bone is the most common site of metastases in men with prostate cancer. The objective of this study was to explore potential racial differences in the distribution of tumor metastases in the axial and appendicular skeleton. METHODS We conducted a retrospective review of patients with metastatic prostate cancer to the bone as detected by 18 F-sodium fluoride positron emission tomography/computed tomography (18 F-NaF PET/CT) scans. In addition to describing patients' demographics and clinical characteristics, the metastatic bone lesions, and healthy bone regions were detected and quantified volumetrically using a quantitative imaging platform (TRAQinform IQ, AIQ Solutions). RESULTS Forty men met the inclusion criteria with 17 (42%) identifying as African Americans and 23 (58%) identifying as non-African Americans. Most of the patients had axial (skull, ribcage, and spine) disease. The location and the number of lesions in the skeleton of metastatic prostate cancer patients with low disease burden were not different by race. CONCLUSIONS In low-disease burden patients with metastatic prostate cancer, there were no overall differences by race in the location and number of lesions in axial or appendicular skeleton. Therefore, given equal access to molecular imaging, African Americans might derive similar benefits. Whether this holds true for patients with a higher disease burden or for other molecular imaging techniques is a topic for further study.
Collapse
Affiliation(s)
- Julian Hazelton
- Karmanos Cancer Institute and Imaging Division, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Seongho Kim
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Julie L Boerner
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Izabela Podgorski
- Karmanos Cancer Institute and Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - Frank Cackowski
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Hussein D. Aoun
- Karmanos Cancer Institute and Imaging Division, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Elisabeth I. Heath
- Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
3
|
Hill S, Kassam F, Verma S, Sidana A. Traditional and novel imaging modalities for advanced prostate cancer: A critical review. Urol Ann 2023; 15:249-255. [PMID: 37664103 PMCID: PMC10471808 DOI: 10.4103/ua.ua_170_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/26/2021] [Indexed: 09/05/2023] Open
Abstract
Accurate detection of metastatic prostate cancer in the setting of preoperative staging as well as posttreatment recurrence is crucial to provide patients with appropriate and timely treatment of their disease. This has traditionally been accomplished with a combination of computed tomography, magnetic resonance imaging, and bone scan. Recently, more novel imaging techniques have been developed to help improve the detection of advanced and metastatic prostate cancer. This review discusses the efficacy of the traditional imaging modalities as well as the novel imaging techniques in detecting metastatic prostate cancer. Articles discussed were gathered through a formal PubMed search.
Collapse
Affiliation(s)
- Spencer Hill
- Department of Urology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Farzaan Kassam
- Department of Urology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sadhna Verma
- Department of Urology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Abhinav Sidana
- Department of Urology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
4
|
Tan Y, Fang Z, Tang Y, Liu K, Zhao H. Clinical advancement of precision theranostics in prostate cancer. Front Oncol 2023; 13:1072510. [PMID: 36816956 PMCID: PMC9932923 DOI: 10.3389/fonc.2023.1072510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Theranostic approaches with positron emission tomography/computed tomography (PET/CT) or PET/magnetic resonance imaging (PET/MRI) molecular imaging probes are being implemented clinically in prostate cancer (PCa) diagnosis and imaging-guided precision surgery. This review article provides a comprehensive summary of the rapidly expanding list of molecular imaging probes in this field, including their applications in early diagnosis of primary prostate lesions; detection of lymph node, skeletal and visceral metastases in biochemical relapsed patients; and intraoperative guidance for tumor margin detection and nerve preservation. Although each imaging probe shows preferred efficacy in some applications and limitations in others, the exploration and research efforts in this field will eventually lead to improved precision theranostics of PCa.
Collapse
Affiliation(s)
- Yue Tan
- Hengyang Medical College, University of South China, Hengyang, Hunan, China,Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui Fang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Liu
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston TX, United States,Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Kai Liu, ; Hong Zhao,
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston TX, United States,*Correspondence: Kai Liu, ; Hong Zhao,
| |
Collapse
|
5
|
Bénard F, Harsini S, Wilson D, Zukotynski K, Abikhzer G, Turcotte E, Cossette M, Metser U, Romsa J, Martin M, Mar C, Saad F, Soucy JP, Eigl BJ, Black P, Krauze A, Burrell S, Nichol A, Tardif JC. Intra-individual comparison of 18F-sodium fluoride PET-CT and 99mTc bone scintigraphy with SPECT in patients with prostate cancer or breast cancer at high risk for skeletal metastases (MITNEC-A1): a multicentre, phase 3 trial. Lancet Oncol 2022; 23:1499-1507. [PMID: 36343655 DOI: 10.1016/s1470-2045(22)00642-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Detection of skeletal metastases in patients with prostate cancer or breast cancer remains a major clinical challenge. We aimed to compare the diagnostic performance of 99mTc-methylene diphosphonate (99mTc-MDP) single-photon emission CT (SPECT) and 18F-sodium fluoride (18F-NaF) PET-CT for the detection of osseous metastases in patients with high-risk prostate or breast cancer. METHODS MITNEC-A1 was a prospective, multicentre, single-cohort, phase 3 trial conducted in ten hospitals across Canada. Patients aged 18 years or older with breast or prostate cancer with a WHO performance status of 0-2 and with high risk or clinical suspicion for bone metastasis, but without previously documented bone involvement, were eligible. 18F-NaF PET-CT and 99mTc-MDP SPECT were done within 14 days of each other for each participant. Two independent reviewers interpreted each modality without knowledge of other imaging findings. The primary endpoint was the overall accuracy of 99mTc-MDP SPECT and 18F-NaF PET-CT scans for the detection of bone metastases in the per-protocol population. A combination of histopathological, clinical, and imaging follow-up for up to 24 months was used as the reference standard to assess the imaging results. Safety was assessed in all enrolled participants. This study is registered with ClinicalTrials.gov, NCT01930812, and is complete. FINDINGS Between July 11, 2014, and March 3, 2017, 290 patients were screened, 288 of whom were enrolled (64 participants with breast cancer and 224 with prostate cancer). 261 participants underwent both 18F-NaF PET-CT and 99mTc-MDP SPECT and completed the required follow-up for statistical analysis. Median follow-up was 735 days (IQR 727-750). Based on the reference methods used, 109 (42%) of 261 patients had bone metastases. In the patient-based analysis, 18F-NaF PET-CT was more accurate than 99mTc-MDP SPECT (84·3% [95% CI 79·9-88·7] vs 77·4% [72·3-82·5], difference 6·9% [95% CI 1·3-12·5]; p=0·016). No adverse events were reported for the 288 patients recruited. INTERPRETATION 18F-NaF has the potential to displace 99mTc-MDP as the bone imaging radiopharmaceutical of choice in patients with high-risk prostate or breast cancer. FUNDING Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- François Bénard
- BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| | - Sara Harsini
- BC Cancer Research Institute, Vancouver, BC, Canada
| | - Don Wilson
- BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Eric Turcotte
- Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Mariève Cossette
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Ur Metser
- University Health Network, Toronto, ON, Canada
| | - Jonathan Romsa
- Division of Nuclear Medicine, London Health Sciences Centre, London, ON, Canada; St Joseph's Health Care, London, ON, Canada; Western University, London, ON, Canada
| | - Montgomery Martin
- BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Colin Mar
- BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Fred Saad
- Division of Urology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Jean-Paul Soucy
- Department of Radiology, McGill University, Montreal, QC, Canada
| | | | - Peter Black
- Department of Urological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andra Krauze
- BC Cancer Research Institute, Vancouver, BC, Canada
| | - Steven Burrell
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Alan Nichol
- BC Cancer Research Institute, Vancouver, BC, Canada
| | | |
Collapse
|
6
|
Kairemo K, Kangasmäki A, Kappadath SC, Joensuu T, Macapinlac HA. A Retrospective Comparative Study of Sodium Fluoride Na 18F-PET/CT and 68Ga-PSMA-11 PET/CT in the Bone Metastases of Prostate Cancer Using a Volumetric 3-D Radiomic Analysis. Life (Basel) 2022; 12:1977. [PMID: 36556342 PMCID: PMC9788581 DOI: 10.3390/life12121977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Bone is the most common metastatic site in prostate cancer (PCa). 68Ga-PSMA-11 (or gozetotide) and sodium fluoride-18 (Na18F) are rather new radiopharmaceuticals for assessing PCa-associated bone metastases. Gozetotide uptake reflects cell membrane enzyme activity and the sodium fluoride uptake measures bone mineralization in advanced PCa. Here, we aim to characterize this difference and possibly provide a new method for patient selection in targeted therapies. Methods: The study consisted of 14 patients with advanced PCa (M group > 5 lesions), who had had routine PET/CT both with PSMA and NaF over consecutive days, and 12 PCa patients with no skeletal metastases (N). The bone regions in CT were used to coregister the two PET/CT scans. The whole skeleton volume(s) of interest (VOIs) were defined using the CT component of PET (HU > 150); similarly, the sclerotic/dense bone was defined as HU > 600. Additional VOIs were defined for PET, with pathological threshold values for PSMA (SUV > 3.0) and NaF (SUV > 10). Besides the pathological bone volumes measured with each technique (CT, NaF, and PSMA-PET) and their contemporaneous combinations, overlapping VOIs with the CT-based skeletal and sclerotic volumes were also recorded. Additionally, thresholds of 4.0, 6.0, and 10.0 were tested for SUVPSMA. Results: In group M, the skeletal VOI volumes were 8.77 ± 1.80 L, and the sclerotic bone volumes were 1.32 ± 0.50 L; in contrast, in group N, they were 8.73 ± 1.43 L (skeletal) and 1.23 ± 0.28 L (sclerosis). The total enzyme activity for PSMA was 2.21 ± 5.15 in the M group and 0.078 ± 0.053 in the N group (p < 0.0002). The total bone demineralization activity for NaF varied from 4.31 ± 6.17 in the M group and 0.24 ± 0.56 in group N (p < 0.0002). The pathological PSMA volume represented 0.44−132% of the sclerotic bone volume in group M and 0.55−2.3% in group N. The pathological NaF volume in those patients with multiple metastases represented 0.27−68% of the sclerotic bone volume, and in the control group, only 0.00−6.5% of the sclerotic bone volume (p < 0.0003). Conclusions: These results confirm our earlier findings that CT alone does not suit the evaluation of the extent of active skeletal metastases in PCa. PSMA and NaF images give complementary information about the extent of the active skeletal disease, which has a clinical impact and may change its management. The PSMA and NaF absolute volumes could be used for planning targeted therapies. A cut-off value 3.0 for SUVPSMA given here is the best correlation in the presentation of active metastatic skeletal disease.
Collapse
Affiliation(s)
- Kalevi Kairemo
- Department of Theragnostics, Docrates Cancer Center, 00180 Helsinki, Finland
- Department of Nuclear Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aki Kangasmäki
- Department of Medical Physics, Docrates Cancer Center, 00180 Helsinki, Finland
| | | | - Timo Joensuu
- Department of Medical Oncology and Radiotherapy, Docrates Cancer Center, 00180 Helsinki, Finland
| | - Homer A. Macapinlac
- Department of Nuclear Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Anderson PM, Subbiah V, Trucco MM. Current and future targeted alpha particle therapies for osteosarcoma: Radium-223, actinium-225, and thorium-227. Front Med (Lausanne) 2022; 9:1030094. [PMID: 36457575 PMCID: PMC9705365 DOI: 10.3389/fmed.2022.1030094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 07/30/2023] Open
Abstract
Osteosarcoma is a high-grade sarcoma characterized by osteoid formation, nearly universal expression of IGF1R and with a subset expressing HER-2. These qualities provide opportunities for the use of the alpha particle-emitting isotopes to provide targeted radiation therapy via alpha particles precisely to bone-forming tumors in addition to IFG1R or Her-2 expressing metastases. This review will detail experience using the alpha emitter radium-223 (223Ra, tradename Xofigo), that targets bone formation, in osteosarcoma, specifically related to patient selection, use of gemcitabine for radio-sensitization, and using denosumab to increasing the osteoblastic phenotype of these cancers. A case of an inoperable left upper lobe vertebral-paraspinal-mediastinal osteoblastic lesion treated successfully with 223Ra combined with gemcitabine is described. Because not all areas of osteosarcoma lesions are osteoblastic, but nearly all osteosarcoma cells overexpress IGF1R, and some subsets expressing Her-2, the anti-IGF1R antibody FPI-1434 linked to actinium-225 (225Ac) or the Her-2 antibody linked to thorium-227 (227Th) may become other means to provide targeted alpha particle therapy against osteosarcoma (NCT03746431 and NCT04147819).
Collapse
Affiliation(s)
- Peter M. Anderson
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s Hospital, Pediatric Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Vivek Subbiah
- Investigational Cancer Therapeutics, Cancer Medicine, Clinical Center for Targeted Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matteo M. Trucco
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s Hospital, Pediatric Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
8
|
Wang Y, Galante JR, Haroon A, Wan S, Afaq A, Payne H, Bomanji J, Adeleke S, Kasivisvanathan V. The future of PSMA PET and WB MRI as next-generation imaging tools in prostate cancer. Nat Rev Urol 2022; 19:475-493. [PMID: 35789204 DOI: 10.1038/s41585-022-00618-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
Radiolabelled prostate-specific membrane antigen (PSMA)-based PET-CT has been shown in numerous studies to be superior to conventional imaging in the detection of nodal or distant metastatic lesions. 68Ga-PSMA PET-CT is now recommended by many guidelines for the detection of biochemically relapsed disease after radical local therapy. PSMA radioligands can also function as radiotheranostics, and Lu-PSMA has been shown to be a potential new line of treatment for metastatic castration-resistant prostate cancer. Whole-body (WB) MRI has been shown to have a high diagnostic performance in the detection and monitoring of metastatic bone disease. Prospective, randomized, multicentre studies comparing 68Ga-PSMA PET-CT and WB MRI for pelvic nodal and metastatic disease detection are yet to be performed. Challenges for interpretation of PSMA include tracer trapping in non-target tissues and also urinary excretion of tracers, which confounds image interpretation at the vesicoureteral junction. Additionally, studies have shown how long-term androgen deprivation therapy (ADT) affects PSMA expression and could, therefore, reduce tracer uptake and visibility of PSMA+ lesions. Furthermore, ADT of short duration might increase PSMA expression, leading to the PSMA flare phenomenon, which makes the accurate monitoring of treatment response to ADT with PSMA PET challenging. Scan duration, detection of incidentalomas and presence of metallic implants are some of the major challenges with WB MRI. Emerging data support the wider adoption of PSMA PET and WB MRI for diagnosis, staging, disease burden evaluation and response monitoring, although their relative roles in the standard-of-care management of patients are yet to be fully defined.
Collapse
Affiliation(s)
- Yishen Wang
- School of Clinical Medicine, University of Cambridge, Cambridge, UK. .,Barking, Havering and Redbridge University Hospitals NHS Trust, Romford, UK.
| | - Joao R Galante
- Department of Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Athar Haroon
- Department of Nuclear Medicine, Barts Health NHS Trust, London, UK
| | - Simon Wan
- Institute of Nuclear Medicine, University College London, London, UK
| | - Asim Afaq
- Institute of Nuclear Medicine, University College London, London, UK.,Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Heather Payne
- Department of Oncology, University College London Hospitals, London, UK
| | - Jamshed Bomanji
- Institute of Nuclear Medicine, University College London, London, UK
| | - Sola Adeleke
- Department of Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK.,School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Veeru Kasivisvanathan
- Division of Surgery & Interventional Science, University College London, London, UK.,Department of Urology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Grus T, Lahnif H, Bausbacher N, Miederer M, Rösch F. DOTA Conjugate of Bisphosphonate and PSMA-Inhibitor: A Promising Combination for Therapy of Prostate Cancer Related Bone Metastases. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:892147. [PMID: 39354968 PMCID: PMC11440839 DOI: 10.3389/fnume.2022.892147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 10/03/2024]
Abstract
Prostate cancer (PCa) is one of the most common cancer types worldwide. 90% of men with late stage PCa will develop bone metastases. Since the expression level of PSMA (prostate-specific membrane antigen) in bone metastases can vary significantly, a compound is being searched for which accumulates in bone metastases independently of PSMA level. With DOTA-L-Lys(SA.Pam)-PSMA-617, we present a compound that, in addition to a PSMA inhibitor as a target vector, also contains a bisphosphonate that is established as a bone tracer and thus combines the advantages of PSMA targeting and bone targeting. This is a class of small molecules combining targeting of two different targets with the potential advantages for treatment of biologically heterogeneous bone metastasis from prostate cancer. The molecule can be labeled with lutetium-177 and used for the therapy of PCa-related bone metastases. DOTA-L-Lys(SA.Pam)-PSMA-617 was synthesized and radiolabelled in 1 M ammonium acetate buffer pH 5.5 at 95°C. Different amounts of precursor were evaluated. Complex stability was evaluated in three different media. LogD7.4 value was evaluated via the determination of the equilibrium distribution in a PBS/n-octanol mixture. A hydroxyapatite binding assay was used to evaluate the potential binding to bone metastases. In vitro affinity was determined and Ki value was evaluated. To evaluate the binding potential in mice, ex vivo biodistribution studies were carried out in LNCaP tumor-bearing Balb/c mice. [177Lu]Lu-labeling of DOTA-L-Lys(SA.Pam)-PSMA-617 showed quantitative RCY within 10 min and high complex stability over 14 days. The lipophilicity of the labeled compound was similar to the lipophilicity of the reference compound [177Lu]Lu-PSMA-617 and showed an excellent and selective HAP binding of 98.2 ± 0.11%. With a Ki of 42.3 ± 7.7 nM PSMA binding affinity is lower in comparison to [177Lu]Lu-PSMA-617. First ex vivo biodistribution studies with LNCaP tumor-bearing Balb/c mice showed a PSMA dependent tumor accumulation of 4.2 ± 0.7%ID/g and a femur accumulation of 3.4 ± 0.4%ID/g. [177Lu]Lu-DOTA-L-Lys(SA.Pam)-PSMA-617 is a promising compound for therapy of PCa related bone and tissue metastases. Accumulation on the bone metastases via two mechanisms also enables the treatment of bone metastases that show little or no PSMA expression.
Collapse
Affiliation(s)
- Tilmann Grus
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| | - Hanane Lahnif
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| | - Nicole Bausbacher
- Department of Nuclear Medicine, University Medical Center Mainz, Mainz, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Medical Center Mainz, Mainz, Germany
| | - Frank Rösch
- Department of Chemistry-TRIGA Site, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
10
|
Chen Z, Chen X, Wang R. Application of SPECT and PET / CT with computer-aided diagnosis in bone metastasis of prostate cancer: a review. Cancer Imaging 2022; 22:18. [PMID: 35428360 PMCID: PMC9013072 DOI: 10.1186/s40644-022-00456-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/04/2022] [Indexed: 01/05/2023] Open
Abstract
AbstractBone metastasis has a significant influence on the prognosis of prostate cancer(PCa) patients. In this review, we discussed the current application of PCa bone metastasis diagnosis with single-photon emission computed tomography (SPECT) and positron emission tomography/computed tomography (PET/CT) computer-aided diagnosis(CAD) systems. A literature search identified articles concentrated on PCa bone metastasis and PET/CT or SPECT CAD systems using the PubMed database. We summarized the previous studies focused on CAD systems and manual quantitative markers calculation, and the coincidence rate was acceptable. We also analyzed the quantification methods, advantages, and disadvantages of CAD systems. CAD systems can detect abnormal lesions of PCa patients’ 99mTc-MDP-SPECT, 18F-FDG-PET/CT, 18F-NaF-PET/CT, and 68 Ga-PSMA PET/CT images automated or semi-automated. CAD systems can also calculate the quantitative markers, which can quantify PCa patients’ whole-body bone metastasis tumor burden accurately and quickly and give a standardized and objective result. SPECT and PET/CT CAD systems are potential tools to monitor and quantify bone metastasis lesions of PCa patients simply and accurately, the future clinical application of CAD systems in diagnosing PCa bone metastasis lesions is necessary and feasible.
Collapse
|
11
|
Regula N, Kostaras V, Johansson S, Trampal C, Lindström E, Lubberink M, Iyer V, Velikyan I, Sörensen J. Comparison of 68Ga-PSMA PET/CT with fluoride PET/CT for detection of bone metastatic disease in prostate cancer. Eur J Hybrid Imaging 2022; 6:5. [PMID: 35229224 PMCID: PMC8885936 DOI: 10.1186/s41824-022-00127-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background 18F-NaF positron emission tomography/computed tomography (fluoride PET/CT) is considered the most sensitive technique to detect bone metastasis in prostate cancer (PCa). 68Ga-PSMA-11 (PSMA) PET/CT is increasingly used for staging of PCa. This study primarily aimed to compare the diagnostic performance of fluoride PET/CT and gallium-based PSMA PET/CT in identifying bone metastasis followed by a comparison of PSMA PET/CT with contrast-enhanced CT (CE-CT) in identifying soft tissue lesions as a secondary objective. Methods Twenty-eight PCa patients with high suspicion of disseminated disease following curative treatment were prospectively evaluated. PET/CT examinations using fluoride and PSMA were performed. All suspicious bone lesions were counted, and the tracer uptake was measured as standardized uptake values (SUV) for both tracers. In patients with multiple findings, ten bone lesions with highest SUVmax were selected from which identical lesions from both scans were considered for direct comparison of SUVmax. Soft tissue findings of local and lymph node lesions from CE-CT were compared with PSMA PET/CT. Results Both scans were negative for bone lesions in 7 patients (25%). Of 699 lesions consistent with skeletal metastasis in 21 patients on fluoride PET/CT, PSMA PET/CT identified 579 lesions (83%). In 69 identical bone lesions fluoride PET/CT showed significantly higher uptake (mean SUVmax: 73.1 ± 36.8) compared to PSMA PET/CT (34.5 ± 31.4; p < 0.001). Compared to CE-CT, PSMA PET/CT showed better diagnostic performance in locating local (96% vs 61%, p = 0.004) and lymph node (94% vs 46%, p < 0.001) metastasis. Conclusion In this prospective comparative study, PSMA PET/CT detected the majority of bone lesions that were positive on fluoride PET/CT. Further, this study indicates better diagnostic performance of PSMA PET/CT to locate soft tissue lesions compared to CE-CT. Supplementary Information The online version contains supplementary material available at 10.1186/s41824-022-00127-4.
Collapse
|
12
|
Kairemo K, Macapinlac HA. Oncology, bone metastases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Roy J, White ME, Basuli F, Opina ACL, Wong K, Riba M, Ton AT, Zhang X, Jansson KH, Edmondson E, Butcher D, Lin FI, Choyke PL, Kelly K, Jagoda EM. Monitoring PSMA Responses to ADT in Prostate Cancer Patient-Derived Xenograft Mouse Models Using [ 18F]DCFPyL PET Imaging. Mol Imaging Biol 2021; 23:745-755. [PMID: 33891265 PMCID: PMC9910584 DOI: 10.1007/s11307-021-01605-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE PSMA overexpression has been associated with aggressive prostate cancer (PCa). However, PSMA PET imaging has revealed highly variable changes in PSMA expression in response to ADT treatment ranging from increases to moderate decreases. To better understand these PSMA responses and potential relationship to progressive PCa, the PET imaging agent, [18F]DCFPyL, was used to assess changes in PSMA expression in response to ADT using genomically characterized LuCaP patient-derived xenograft mouse models (LuCaP-PDXs) which were found to be sensitive to ADT (LuCaP73 and LuCaP136;CS) or resistant (LuCaP167;CR). METHODS [18F]DCFPyL (2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid) was used to assess PSMA in vitro (saturation assays) in LuCaP tumor membrane homogenates and in vivo (imaging/biodistribution) in LuCaP-PDXs. Control and ADT-treated LuCaPs were imaged before ADT (0 days) and 2-, 7-, 14-, and 21-days post-ADT from which tumor:muscle ratios (T:Ms) were determined and concurrently tumor volumes were measured (caliper). After the 21-day imaging, biodistributions and histologic/genomic (PSMA, AR) analysis were done. RESULTS [18F]DCFPyL exhibited high affinity for PSMA and distinguished different levels of PSMA in LuCaP tumors. Post-ADT CS LuCaP73 and LuCaP136 tumor volumes significantly decreased at day 7 or 14 respectively vs controls, whereas the CR LuCaP167 tumor volumes were minimally changed. [18F]DCFPyL imaging T:Ms were increased 3-5-fold in treated LuCaP73 tumors vs controls, while treated LuCaP136 T:Ms remained unchanged which was confirmed by day 21 biodistribution results. For treated LuCaP167, T:Ms were decreased (~ 45 %) vs controls but due to low T:M values (<2) may not be indicative of PSMA level changes. LuCaP73 tumor PSMA histologic/genomic results were comparable to imaging/biodistribution results, whereas the results for other tumor types varied. CONCLUSION Tumor responses to ADT varied from sensitive to resistant among these LuCaP PDXs, while only the high PSMA expressing LuCaP model exhibited an increase in PSMA levels in response to ADT. These models may be useful in understanding the clinical relevance of PSMA PET responses to ADT and potentially the relationship to disease progression as it may relate to the genomic signature.
Collapse
Affiliation(s)
- Jyoti Roy
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| | - Margaret E. White
- Laboratory of Genitourinary Cancer Pathogenesis NCI/NIH, Bethesda, MD, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, NHLBI/NIH, Rockville, MD, USA
| | | | - Karen Wong
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| | - Morgan Riba
- Laboratory of Genitourinary Cancer Pathogenesis NCI/NIH, Bethesda, MD, USA
| | - Anita T. Ton
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| | - Xiang Zhang
- Chemistry and Synthesis Center, NHLBI/NIH, Rockville, MD, USA
| | - Keith H. Jansson
- Laboratory of Genitourinary Cancer Pathogenesis NCI/NIH, Bethesda, MD, USA
| | - Elijah Edmondson
- Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos, Inc./Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, USA
| | - Frank I. Lin
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis NCI/NIH, Bethesda, MD, USA
| | - Elaine M. Jagoda
- Molecular Imaging Program, NCI/NIH, Center for Cancer Research, National Cancer Institute, Building 10, Room B3B406, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Is there a utility of adding skeletal imaging to 68-Ga-prostate-specific membrane antigen-PET/computed tomography in initial staging of patients with high-risk prostate cancer? Nucl Med Commun 2021; 41:1183-1188. [PMID: 32796451 DOI: 10.1097/mnm.0000000000001268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Both bone-scan and cross-sectional imaging are indicated in the staging of high-risk prostate cancer (PCa). However, 68Ga-prostate-specific membrane antigen (PSMA)-PET/computed tomography (CT) has proven to be an excellent tracer for detection of skeletal metastases. The aim of this study was to assess if adding skeletal imaging (with 18F-Fluoride-PET/CT) to 68-Ga-PSMA-PET/CT had any impact on high-risk PCa staging. METHOD Fifty treatment-naive, histopathologically proven, high-risk (European Association of Urology) PCa patients underwent both 68-Ga-PSMA-PET/CT and 18F-Fluoride-PET/CT for staging. RESULTS Fluoride-PET/CT detected significantly a higher number of skeletal metastases/patient than PSMA-PET/CT (median 4.5/patient vs 3.0; Wilcoxan-signed-rank-test, P = 0.060) and there was a significantly higher proportion of only Fluoride-avid than only PSMA-avid lesions (McNemar-test P < 0.001). No significant advantage was seen in patient-wise metrics. Most lesions missed by PSMA-PET/CT were in flat bones (25/33). serum prostate specific antigen (S.PSA) showed positive correlation with both, the number of lesions [r(PSMA)-0.555 (P = 0.006) and r(Fluoride)-0.622 (P = 0.001)] as well as tumor to background ratio (TBR) [[r-0.706 (P < 0.001) and 0.516 (P = 0.010)]. Median TBR was significantly higher in PSMA-PET/CT (22.77 vs 16.30; P < 0.001). All three patients with only Fluoride-avid lesions (also not identified in bone-scan) showed biochemical response with additional therapy. CONCLUSION Though, Fluoride-PET/CT detected a higher absolute number of lesions than PSMA-PET/CT, no significant advantage was seen in patient-wise metrics. Fluoride-PET/CT added second-line management in only 3/50 patients, which could have been reduced to 1/50, with more sensitive evaluation of flat bones in PSMA-PET-CT. Therefore, additional skeletal imaging is not needed with 68-Ga-PSMA-PET/CT in initial staging of high-risk PCa.
Collapse
|
15
|
Hyväkkä A, Virtanen V, Kemppainen J, Grönroos TJ, Minn H, Sundvall M. More Than Meets the Eye: Scientific Rationale behind Molecular Imaging and Therapeutic Targeting of Prostate-Specific Membrane Antigen (PSMA) in Metastatic Prostate Cancer and Beyond. Cancers (Basel) 2021; 13:cancers13092244. [PMID: 34067046 PMCID: PMC8125679 DOI: 10.3390/cancers13092244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Prostate-specific membrane antigen (PSMA) is a transmembrane protein that is overexpressed in prostate cancer and correlates with the aggressiveness of the disease. PSMA is a promising target for imaging and therapeutics in prostate cancer patients validated in prospective trials. However, the role of PSMA in prostate cancer progression is poorly understood. In this review, we discuss the biology and scientific rationale behind the use of PSMA and other targets in the detection and theranostics of metastatic prostate cancer. Abstract Prostate cancer is the second most common cancer type in men globally. Although the prognosis for localized prostate cancer is good, no curative treatments are available for metastatic disease. Better diagnostic methods could help target therapies and improve the outcome. Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein that is overexpressed on malignant prostate tumor cells and correlates with the aggressiveness of the disease. PSMA is a clinically validated target for positron emission tomography (PET) imaging-based diagnostics in prostate cancer, and during recent years several therapeutics have been developed based on PSMA expression and activity. The expression of PSMA in prostate cancer can be very heterogeneous and some metastases are negative for PSMA. Determinants that dictate clinical responses to PSMA-targeting therapeutics are not well known. Moreover, it is not clear how to manipulate PSMA expression for therapeutic purposes and develop rational treatment combinations. A deeper understanding of the biology behind the use of PSMA would help the development of theranostics with radiolabeled compounds and other PSMA-based therapeutic approaches. Along with PSMA several other targets have also been evaluated or are currently under investigation in preclinical or clinical settings in prostate cancer. Here we critically elaborate the biology and scientific rationale behind the use of PSMA and other targets in the detection and therapeutic targeting of metastatic prostate cancer.
Collapse
Affiliation(s)
- Anniina Hyväkkä
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
| | - Verneri Virtanen
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
- Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, FI-20520 Turku, Finland
| | - Jukka Kemppainen
- Turku PET Centre, University of Turku, FI-20521 Turku, Finland;
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, FI-20521 Turku, Finland
- Docrates Cancer Center, FI-00180 Helsinki, Finland
| | - Tove J. Grönroos
- Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, FI-20520 Turku, Finland;
| | - Heikki Minn
- Department of Oncology, FICAN West Cancer Center, University of Turku and Turku University Hospital, FI-20521 Turku, Finland;
| | - Maria Sundvall
- Institute of Biomedicine, Cancer Research Unit, FICAN West Cancer Center Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (A.H.); (V.V.)
- Department of Oncology, FICAN West Cancer Center, University of Turku and Turku University Hospital, FI-20521 Turku, Finland;
- Correspondence:
| |
Collapse
|
16
|
Kesler M, Druckmann I, Levine C, Kuten J, Yossepowitch O, Even-Sapir E. 68Ga-PSMA-11 PET/CT Follow-Up of Patients with Prostate Cancer with Bone Metastases Who Had Reduced Bone Density after Androgen Deprivation Therapy. Diagnostics (Basel) 2021; 11:diagnostics11020277. [PMID: 33578990 PMCID: PMC7916801 DOI: 10.3390/diagnostics11020277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022] Open
Abstract
Bone metastases from prostate cancer (PCa) often show an increase in density on computed tomography (CT) after successful androgen deprivation therapy (ADT). Density may be reduced, however, as the disease progresses or, contrarily, when disease is no longer active. The current study investigated the role of 68Ga-PSMA-11 positron emission tomography/computed tomography (PET/CT) in differentiating between these two conditions. Methods: The study cohort included 15 PCa patients with sclerotic/blastic bone metastasis in whom reduction in bone density of metastasis was noted on follow-up 68Ga-PSMA-11 PET/CT after ADT. Each patient had two PET/CT scans. Prior to the first scan, six patients were castration naïve and nine patients were already treated. All patients had ADT between the two PET/CT scans. PET parameters (SUVmax and tumor-to-background ratio), and CT parameters (HUmax) were determined and compared for each lesion on both scans. Patient’s response was based on prostate-specific antigen (PSA) levels and appearance of new lesions. The Kolmogorov–Smirnov test was used to evaluate normal distribution of the continuous variables. Results: Post-ADT reduction in bone density was identified in 37 lesions. The mean HUmax was 883.9 ± 175.1 on the first scan and 395.6 ± 157.1 on the second scan (p < 0.001). Twenty-one of the 37 lesions showed no increased tracer uptake on the second PET/CT scan raising the likelihood of a response. The other 16 lesions were associated with increased uptake suggestive of an active resistant disease. Bone density was not different in lesions that no longer showed an increased uptake as compared with those that did. Seven of the study patients responded to therapy, and none of the 16 lesions found in these patients showed increased 68Ga-PSMA-11 uptake. In eight patients with progressive disease, all 12 lesions in five of them showed increased 68Ga-PSMA-11 uptake, there was mixed response in two patients (having two lesions with increased uptake and one without) and although all three lesions no longer showed an increased uptake, new lesions were detected in the eighth patient. Conclusion: A decrease in density of bone lesions may reflect clinical progression, or contrarily, a response to therapy in patients with PCa and skeletal involvement treated with ADT. Uptake of 68Ga-PSMA-11 may separate between these two vastly opposing conditions.
Collapse
Affiliation(s)
- Mikhail Kesler
- Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv 6423906, Israel; (M.K.); (C.L.); (J.K.)
| | - Ido Druckmann
- Department of Radiology—Musculoskeletal Imaging Unit, Imaging Division, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel;
| | - Charles Levine
- Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv 6423906, Israel; (M.K.); (C.L.); (J.K.)
| | - Jonathan Kuten
- Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv 6423906, Israel; (M.K.); (C.L.); (J.K.)
| | - Ofer Yossepowitch
- Department of Urology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel;
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Einat Even-Sapir
- Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv 6423906, Israel; (M.K.); (C.L.); (J.K.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence:
| |
Collapse
|
17
|
Bilusic M, Einstein DJ, Karzai FH, Dahut WL, Gulley JL, Aragon-Ching JB, Madan RA. The Potential Role for Immunotherapy in Biochemically Recurrent Prostate Cancer. Urol Clin North Am 2020; 47:457-467. [PMID: 33008496 PMCID: PMC8177734 DOI: 10.1016/j.ucl.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biochemically recurrent prostate cancer represents a stage of prostate cancer where conventional (continued on next page) computed tomography and technetium Tc 99m bone scan imaging are unable to detect disease after curative intervention despite rising prostate-specific antigen. There is no clear standard of care and no systemic therapy has been shown to improve survival. Immunotherapy-based treatments potentially are attractive options relative to androgen deprivation therapy due to the generally more favorable side-effect profile. Biochemically recurrent prostate cancer patients have a low tumor burden and likely lymph node-based disease, which may make them more likely to respond to immunotherapy.
Collapse
Affiliation(s)
- Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, 13n240b, Bethesda, MD 20892, USA
| | - David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Fatima H Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, 13n240b, Bethesda, MD 20892, USA
| | - William L Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, 13n240b, Bethesda, MD 20892, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, 13n240b, Bethesda, MD 20892, USA
| | | | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, 13n240b, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Miyahira AK, Pienta KJ, Babich JW, Bander NH, Calais J, Choyke P, Hofman MS, Larson SM, Lin FI, Morris MJ, Pomper MG, Sandhu S, Scher HI, Tagawa ST, Williams S, Soule HR. Meeting report from the Prostate Cancer Foundation PSMA theranostics state of the science meeting. Prostate 2020; 80:1273-1296. [PMID: 32865839 PMCID: PMC8442561 DOI: 10.1002/pros.24056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The Prostate Cancer Foundation (PCF) convened a PCF prostate-specific membrane antigen (PSMA) Theranostics State of the Science Meeting on 18 November 2019, at Weill Cornell Medicine, New York, NY. METHODS The meeting was attended by 22 basic, translational, and clinical researchers from around the globe, with expertise in PSMA biology, development and use of PSMA theranostics agents, and clinical trials. The goal of this meeting was to discuss the current state of knowledge, the most important biological and clinical questions, and critical next steps for the clinical development of PSMA positron emission tomography (PET) imaging agents and PSMA-targeted radionuclide agents for patients with prostate cancer. RESULTS Several major topic areas were discussed including the biology of PSMA, the role of PSMA-targeted PET imaging in prostate cancer, the physics and performance of different PSMA-targeted PET imaging agents, the current state of clinical development of PSMA-targeted radionuclide therapy (RNT) agents, the role of dosimetry in PSMA RNT treatment planning, barriers and challenges in PSMA RNT clinical development, optimization of patient selection for PSMA RNT trials, and promising combination treatment approaches with PSMA RNT. DISCUSSION This article summarizes the presentations from the meeting for the purpose of globally disseminating this knowledge to advance the use of PSMA-targeted theranostic agents for imaging and treatment of patients with prostate cancer.
Collapse
Affiliation(s)
- Andrea K. Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| | - Kenneth J. Pienta
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John W. Babich
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Neil H. Bander
- Laboratory of Urologic Oncology, Department of Urology and Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Peter Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michael S. Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Steven M. Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Frank I. Lin
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michael J. Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin G. Pomper
- Department of Urology, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shahneen Sandhu
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Howard I. Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Scott T. Tagawa
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Scott Williams
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Australia
| | - Howard R. Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California
| |
Collapse
|
19
|
Jadvar H, Ballas LK, Choyke PL, Fanti S, Gulley JL, Herrmann K, Hope TA, Klitzke AK, Oldan JD, Pomper MG, Rowe SP, Subramaniam RM, Taneja SS, Vargas HA, Ahuja S. Appropriate Use Criteria for Imaging Evaluation of Biochemical Recurrence of Prostate Cancer After Definitive Primary Treatment. J Nucl Med 2020; 61:552-562. [PMID: 32238495 DOI: 10.2967/jnumed.119.240929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hossein Jadvar
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | - Leslie K Ballas
- American Society for Radiation Oncology, Arlington, Virginia
| | - Peter L Choyke
- American Society of Clinical Oncology, Alexandria, Virginia
| | - Stefano Fanti
- European Association of Nuclear Medicine, Vienna, Austria
| | - James L Gulley
- American College of Physicians, Philadelphia, Pennsylvania
| | - Ken Herrmann
- European Association of Nuclear Medicine, Vienna, Austria
| | - Thomas A Hope
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | | | - Jorge D Oldan
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia.,American Society of Clinical Oncology, Alexandria, Virginia
| | | | - Steven P Rowe
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | - Rathan M Subramaniam
- American College of Nuclear Medicine, Reston, Virginia.,American College of Radiology, Reston, Virginia; and
| | - Samir S Taneja
- American Urological Association, Linthicum Heights, Maryland
| | | | - Sukhjeet Ahuja
- Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| |
Collapse
|
20
|
Kyriakopoulos CE, Heath EI, Ferrari A, Sperger JM, Singh A, Perlman SB, Roth AR, Perk TG, Modelska K, Porcari A, Duggan W, Lang JM, Jeraj R, Liu G. Exploring Spatial-Temporal Changes in 18F-Sodium Fluoride PET/CT and Circulating Tumor Cells in Metastatic Castration-Resistant Prostate Cancer Treated With Enzalutamide. J Clin Oncol 2020; 38:3662-3671. [PMID: 32897830 DOI: 10.1200/jco.20.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Intrapatient treatment response heterogeneity is under-recognized. Quantitative total bone imaging (QTBI) using 18F-NaF positron emission tomography/computed tomography (PET/CT) scans is a tool that allows characterization of interlesional treatment response heterogeneity in bone. Understanding spatial-temporal response is important to identify individuals who may benefit from treatment beyond progression. PATIENTS AND METHODS Men with progressive metastatic castration-resistant prostate cancer (mCRPC) with at least two lesions on bone scintigraphy were enrolled and treated with enzalutamide 160 mg daily (ClinicalTrials.gov identifier: NCT02384382). 18F-NaF PET/CT scans were obtained at baseline (PET1), week 13 (PET2), and at the time of prostate-specific antigen (PSA) progression, standard radiographic or clinical progression, or at 2 years without progression (PET3). QTBI was used to determine lesion-level response. The primary end point was the proportion of men with at least one responding bone lesion on PET3 using QTBI. RESULTS Twenty-three men were enrolled. Duration on treatment ranged from 1.4 to 34.1 months. In general, global standardized uptake value (SUV) metrics decreased while on enzalutamide (PET2) and increased at the time of progression (PET3). The most robust predictor of PSA progression was change in SUVhetero (PET1 to PET3; hazard ratio, 3.88; 95% CI, 1.24 to 12.1). Although overall functional disease burden improved during enzalutamide treatment, an increase in total burden (SUVtotal) was seen at the time of progression, as measured by 18F-NaF PET/CT. All (22/22) evaluable men had at least one responding bone lesion at PET3 using QTBI. CONCLUSION We found that the proportion of progressing lesions was low, indicating that a substantial number of lesions appear to continue to benefit from enzalutamide beyond progression. Selective targeting of nonresponding lesions may be a reasonable approach to extend benefit.
Collapse
Affiliation(s)
| | - Elisabeth I Heath
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI
| | - Anna Ferrari
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Jamie M Sperger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Anupama Singh
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Scott B Perlman
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI.,Department of Radiology, University of Wisconsin, Madison, WI
| | - Alison R Roth
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI.,Department of Medical Physics, University of Wisconsin, Madison, WI
| | - Timothy G Perk
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI.,Department of Medical Physics, University of Wisconsin, Madison, WI
| | | | | | | | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Robert Jeraj
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI.,Department of Medical Physics, University of Wisconsin, Madison, WI.,AIQ Solutions, Madison, WI
| | - Glenn Liu
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI.,AIQ Solutions, Madison, WI
| |
Collapse
|
21
|
Walker SM, Lim I, Lindenberg L, Mena E, Choyke PL, Turkbey B. Positron emission tomography (PET) radiotracers for prostate cancer imaging. Abdom Radiol (NY) 2020; 45:2165-2175. [PMID: 32047993 DOI: 10.1007/s00261-020-02427-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Imaging plays an increasing role in prostate cancer diagnosis and staging. Accurate staging of prostate cancer is required for optimal treatment planning. In detecting extraprostatic cancer and sites of early recurrence, traditional imaging methods (computed tomography, magnetic resonance imaging, radionuclide bone scan) have suboptimal performance. This leaves a gap between known disease recurrence as indicated by rising prostate-specific antigen and the ability to localize the recurrence on imaging. Novel positron emission tomography (PET) agents including radiolabeled choline, fluciclovine (18F-FACBC), and agents targeting prostate-specific membrane antigen are being developed and tested to increase diagnostic performance of non-invasive prostate cancer localization. When combined with CT or MRI, these tracers offer a combination of functional information and anatomic localization that is superior to conventional imaging methods. These PET radiotracers have varying mechanisms and excretion patterns affecting their pharmacokinetics and diagnostic performance, which will be reviewed in this article.
Collapse
Affiliation(s)
- Stephanie M Walker
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ilhan Lim
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| | - Liza Lindenberg
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Esther Mena
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Pesapane F, Downey K, Rotili A, Cassano E, Koh DM. Imaging diagnosis of metastatic breast cancer. Insights Imaging 2020; 11:79. [PMID: 32548731 PMCID: PMC7297923 DOI: 10.1186/s13244-020-00885-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous imaging modalities may be used for the staging of women with advanced breast cancer. Although bone scintigraphy and multiplanar-CT are the most frequently used tests, others including PET, MRI and hybrid scans are also utilised, with no specific recommendations of which test should be preferentially used. We review the evidence behind the imaging modalities that characterise metastases in breast cancer and to update the evidence on comparative imaging accuracy.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO - European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milano, MI, Italy.
| | - Kate Downey
- Department of Breast Radiology, Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, UK
| | - Anna Rotili
- Breast Imaging Division, IEO - European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milano, MI, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO - European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milano, MI, Italy
| | - Dow-Mu Koh
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK.,Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, UK
| |
Collapse
|
23
|
Understanding and Improving 18F-Fluciclovine PET/CT Reports: A Guide for Physicians Treating Patients with Biochemical Recurrence of Prostate Cancer. Prostate Cancer 2020; 2020:1929565. [PMID: 32395349 PMCID: PMC7199579 DOI: 10.1155/2020/1929565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 01/18/2023] Open
Abstract
The positron emission tomography (PET) tracer 18F-fluciclovine has seen increasing use to localize disease in men with biochemical recurrence of prostate cancer, i.e., elevated prostate-specific antigen (PSA) levels post-treatment. 18F-Fluciclovine PET/computed tomography (CT) imaging reports now play central roles in many physician-patient discussions. However, because no standardized grading system or templates yet exist for 18F-fluciclovine image assessment, reports vary in format, comprehensiveness, and terminology and may be challenging to fully understand. To better utilize these documents, referring physicians should be aware of six key features of 18F-fluciclovine PET/CT. First, 18F-fluciclovine is a radiolabeled synthetic amino acid targeting the amino acid transporters ASCT2 and LAT1, which are ubiquitous throughout the body, but overexpressed in prostate cancer. Second, 18F-fluciclovine image interpretation is predominantly visual/qualitative: radiotracer uptake in suspicious lesions is compared with uptake in bone marrow or blood pool. Location of 18F-fluciclovine-avid lesions relative to typical recurrence sites and findings elsewhere in the patient are considered when evaluating lesions' probability of malignancy, as is visibility on maximum intensity projection images when assessing bone lesions. Third, 18F-fluciclovine PET/CT detection rates increase as PSA levels rise. Fourth, detection rates may differ among centers, possibly due to equipment and reader experience. Fifth, since no diagnostic test is 100% accurate, scan data should not be used in isolation. Lastly, 18F-fluciclovine PET/CT findings frequently induce changes in disease management plans. In the prospective multicenter LOCATE and FALCON studies, scans altered management plans in 59% (126/213) and 64% (66/104) of patients, respectively; 78% (98/126) and 65% (43/66) of changes, respectively, involved modality switches. Referring physicians and imagers should collaborate to improve scan reports. Referrers should clearly convey critical information, including prescan PSA levels, and open clinical questions. Imagers should produce reports that read like consultations, avoid leaving open questions, and if needed, provide thoughts on next diagnostic steps.
Collapse
|
24
|
Zacho HD, Petersen LJ. Reply: Off-Target Report on 18F-Sodium Fluoride PET/CT for Detection of Skeletal Metastases in Prostate Cancer. J Nucl Med 2019; 60:1836. [DOI: 10.2967/jnumed.119.234146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Pomykala KL, Czernin J, Grogan TR, Armstrong WR, Williams J, Calais J. Total-Body 68Ga-PSMA-11 PET/CT for Bone Metastasis Detection in Prostate Cancer Patients: Potential Impact on Bone Scan Guidelines. J Nucl Med 2019; 61:405-411. [PMID: 31541035 DOI: 10.2967/jnumed.119.230318] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022] Open
Abstract
Our purpose was to determine the relationship between serum prostate-specific antigen (PSA) level categories (<5, 5-10, 10-20, and >20 ng/mL) and the incidence of bone metastases detected by total-body 68Ga-prostate-specific membrane antigen (PSMA)-11 PET/CT and to assess if expanding the 68Ga-PSMA-11 PET/CT imaging field to include the vertex and lower extremities (total-body acquisition) affects bone metastasis detection rates and patient management. Methods: This was a retrospective analysis of 388 prostate cancer patients enrolled in 5 prospective studies (NCT02940262, NCT03368547, NCT03042312, NCT04050215, and NCT03515577). All underwent 68Ga-PSMA-11 PET/CT scans acquired from vertex to toes for primary staging (n = 93/388, 24%), biochemical recurrence (BCR) localization (n = 225/388, 58%), or restaging metastatic disease (M1) before or during systemic therapy (n = 70/388, 18%) between September 2017 and May 2018. Results: In total, 321 of 388 patients (83%) had a positive 68Ga-PSMA-11 study. PSMA-positive bone lesions were found in 105 of 388 (27%) patients, with an incidence that was positively associated with serum PSA level (<10 ng/mL, 21%; 10-20 ng/mL, 41%; ≥20 ng/mL, 41%; P < 0.001). This association was maintained for all 3 indications: initial staging, BCR, and restaging M1. Bone metastases occurred most frequently in restaging M1, followed by BCR and initial staging. Bone metastasis incidence was not significantly associated with National Comprehensive Cancer Network risk score (P = 0.22). The average number of PSMA-positive regions also increased with serum PSA level (P < 0.001). Eighteen of 388 (5%) and 18 of 388 (5%) had lesions above the superior orbital ridge and below the proximal third of the femur, respectively. There was only 1 of 388 patients (0.26%) in whom the total-body PET acquisition had an impact on management. Conclusion: Bone metastases as assessed with 68Ga-PSMA-11 PET/CT are prevalent even in patients with low serum PSA levels. Therefore, current guidelines for bone assessments in prostate cancer patients should be revisited because 68Ga-PSMA-11 PET/CT may provide additional information for accurate bone staging at low serum PSA levels. Including the total body (from vertex to toes) in 68Ga-PSMA-11 PET/CT imaging revealed additional bone lesions in 6% of patients, but without significantly affecting patient management.
Collapse
Affiliation(s)
- Kelsey L Pomykala
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Radiology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California.,Institute of Urologic Oncology, UCLA, Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California; and
| | - Tristan R Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Wesley R Armstrong
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - John Williams
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California .,Institute of Urologic Oncology, UCLA, Los Angeles, California.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California; and
| |
Collapse
|
26
|
Lim I, Lindenberg ML, Mena E, Verdini N, Shih JH, Mayfield C, Thompson R, Lin J, Vega A, Mallek M, Cadena J, Diaz C, Mortazavi A, Knopp M, Wright C, Stein M, Pal S, Choyke PL, Apolo AB. 18F-Sodium fluoride PET/CT predicts overall survival in patients with advanced genitourinary malignancies treated with cabozantinib and nivolumab with or without ipilimumab. Eur J Nucl Med Mol Imaging 2019; 47:178-184. [PMID: 31522271 PMCID: PMC6885023 DOI: 10.1007/s00259-019-04483-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/09/2019] [Indexed: 11/25/2022]
Abstract
Purpose We evaluated the prognostic value of 18F-sodium fluoride (NaF) PET/CT in patients with urological malignancies treated with cabozantinib and nivolumab with or without ipilimumab. Methods We prospectively recruited patients with advanced urological malignancies into a phase I trial of cabozantinib plus nivolumab with or without ipilimumab. NaF PET/CT scans were performed pre- and 8 weeks post-treatment. We measured the total volume of fluoride avid bone (FTV) using a standardized uptake value (SUV) threshold of 10. We used Kaplan-Meier analysis to predict the overall survival (OS) of patients in terms of SUVmax, FTV, total lesion fluoride (TLF) uptake at baseline and 8 weeks post-treatment, and percent change in FTV and TLF. Result Of 111 patients who underwent NaF PET/CT, 30 had bone metastases at baseline. Four of the 30 patients survived for the duration of the study period. OS ranged from 0.23 to 34 months (m) (median 6.0 m). The baseline FTV of all 30 patients ranged from 9.6 to 1570 ml (median 439 ml). The FTV 8 weeks post-treatment was 56–6296 ml (median 448 ml) from 19 available patients. Patients with higher TLF at baseline had shorter OS than patients with lower TLF (3.4 vs 14 m; p = 0.022). Patients with higher SUVmax at follow-up had shorter OS than patients with lower SUVmax (5.6 vs 24 m; p = 0.010). However, FTV and TLF 8 weeks post-treatment did not show a significant difference between groups (5.6 vs 17 m; p = 0.49), and the percent changes in FTV (12 vs 14 m; p = 0.49) and TLF (5.6 vs 17 m; p = 0.54) also were not significant. Conclusion Higher TLF at baseline and higher SUVmax at follow-up NaF PET/CT corresponded with shorter survival in patients with bone metastases from urological malignancies who underwent treatment. NaF PET/CT may be a useful predictor of OS in this population.
Collapse
Affiliation(s)
- Ilhan Lim
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, B3B403, Bethesda, MD, 20892, USA.,Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Maria Liza Lindenberg
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, B3B403, Bethesda, MD, 20892, USA
| | - Esther Mena
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, B3B403, Bethesda, MD, 20892, USA
| | - Nicholas Verdini
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joanna H Shih
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian Mayfield
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Thompson
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Lin
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andy Vega
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marissa Mallek
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacqueline Cadena
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carlos Diaz
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Michael Knopp
- Wright Center of Innovation in Biomedical Imaging, Division of Imaging Science, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chadwick Wright
- Wright Center of Innovation in Biomedical Imaging, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mark Stein
- Division of Genitourinary Medical Oncology, Department of Medicine, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sumanta Pal
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, B3B403, Bethesda, MD, 20892, USA
| | - Andrea B Apolo
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. .,Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., 13N240, MSC 1906, Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Rowe SP, Li X, Trock BJ, Werner RA, Frey S, DiGianvittorio M, Bleiler JK, Reyes DK, Abdallah R, Pienta KJ, Gorin MA, Pomper MG. Prospective Comparison of PET Imaging with PSMA-Targeted 18F-DCFPyL Versus Na 18F for Bone Lesion Detection in Patients with Metastatic Prostate Cancer. J Nucl Med 2019; 61:183-188. [PMID: 31451492 DOI: 10.2967/jnumed.119.227793] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Bone metastases in prostate cancer (PCa) have important prognostic significance, and imaging modalities used for PCa staging should have high sensitivity for detecting such lesions. Prostate-specific membrane antigen (PSMA)-targeted PET radiotracers are promising new agents for imaging PCa. We undertook a head-to-head comparison of PSMA-targeted 2-(3-{1-carboxy-5-[(6-18F-fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid (18F-DCFPyL) PET to Na18F PET to determine which modality was more sensitive for the detection of lesions suggestive of bone metastases in a group of patients with metastatic PCa. Methods: Patients with progressive, metastatic PCa were prospectively imaged with both 18F-DCFPyL and Na18F PET/CT, with both scans occurring within 24 h of each other. A consensus 2-reader central review was performed to identify all bone lesions suggestive of sites of PCa involvement on both scans, and maximized SUVs corrected for body weight (SUVmax) and lean body mass (SULmax) were recorded. Soft-tissue lesions were also noted on both scans, and SUVmax, SULmax, and PSMA reporting and data system (RADS) version 1.0 scores were recorded. Data from the 2 scans were compared using a generalized estimating equation. Results: In total, 16 patients meeting all inclusion criteria were enrolled in this study, and 15 of the 16 (93.8%) were imaged with both PET radiotracers. In total, 405 bone lesions suggestive of sites of PCa were identified on at least 1 scan. On 18F-DCFPyL PET/CT, 391 (96.5%) were definitively positive, 4 (1.0%) were equivocally positive, and 10 (2.5%) were negative. On Na18F PET/CT, the corresponding values were 388 (95.8%), 4 (1.0%), and 13 (3.2%). Of the definitively negative lesions on 18F-DCFPyL PET, 8 of 10 (80.0%) were sclerotic and 2 of 10 (20.0%) were infiltrative or marrow-based. Additionally, 12 of 13 (92.3%) of the definitively negative lesions on Na18F PET were infiltrative or marrow-based and 1 of 13 (7.7%) was lytic. Also identified were 78 PSMA-RADS-4, 17 PSMA-RADS-5, and 1 PSMA-RADS-3C soft-tissue lesions. Conclusion: PET/CT imaging using 18F-DCFPyL and Na18F PET had nearly identical sensitivities for the detection of bone lesions in patients with metastatic PCa. As would be expected, PSMA-targeted PET provides more information on soft-tissue disease. There may be little additional value to imaging PCa patients with Na18F after a PSMA-targeted PET scan has already been performed.
Collapse
Affiliation(s)
- Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland .,James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xin Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan City, Shandong Province, China
| | - Bruce J Trock
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rudolf A Werner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Nuclear Medicine, University Hospital Wurzburg, Wurzburg, Germany
| | - Sarah Frey
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael DiGianvittorio
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Spectrum Medical Group, South Portland, Maine; and
| | | | - Diane K Reyes
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rehab Abdallah
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kenneth J Pienta
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A Gorin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Karamzade-Ziarati N, Manafi-Farid R, Ataeinia B, Langsteger W, Pirich C, Mottaghy FM, Beheshti M. Molecular imaging of bone metastases using tumor-targeted tracers. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2019; 63:136-149. [PMID: 31315347 DOI: 10.23736/s1824-4785.19.03206-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone metastasis is a disastrous manifestation of most malignancies, especially in breast, prostate and lung cancers. Since asymptomatic bone metastases are not uncommon, early detection, precise assessment, and localization of them are very important. Various imaging modalities have been employed in the setting of diagnosis of bone metastasis, from plain radiography and bone scintigraphy to SPECT, SPECT/CT, PET/CT, MRI. However, each modality showed its own limitation providing accurate diagnostic performance. In this regard, various tumor-targeted radiotracers have been introduced for molecular imaging of bone metastases using modern hybrid modalities. In this article we review the strength of different cancer-specific radiopharmaceuticals in the detection of bone metastases. As shown in the literature, among various tumor-targeted tracers, 68Ga DOTA-conjugated-peptides, 68Ga PSMA, 18F DOPA, 18F galacto-RGD integrin, 18F FDG, 11C/18F acetate, 11C/18F choline, 111In octreotide, 123/131I MIBG, 99mTc MIBI, and 201Tl have acceptable capabilities in detecting bone metastases depending on the cancer type. However, different study designs and gold standards among reviewed articles should be taken into consideration.
Collapse
Affiliation(s)
- Najme Karamzade-Ziarati
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Werner Langsteger
- PET-CT Center Linz, Department of Nuclear Medicine, Ordensklinikum, St. Vincent's Hospital, Linz, Austria
| | - Christian Pirich
- Department of Nuclear Medicine & Endocrinology, Paracelsus Medical University, Salzburg, Austria
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH University, Aachen, Germany.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Mohsen Beheshti
- Department of Nuclear Medicine & Endocrinology, Paracelsus Medical University, Salzburg, Austria - .,Department of Nuclear Medicine, University Hospital, RWTH University, Aachen, Germany
| |
Collapse
|
29
|
Roth AR, Harmon SA, Perk TG, Eickhoff J, Choyke PL, Kurdziel KA, Dahut WL, Apolo AB, Morris MJ, Perlman SB, Liu G, Jeraj R. Impact of Anatomic Location of Bone Metastases on Prognosis in Metastatic Castration-Resistant Prostate Cancer. Clin Genitourin Cancer 2019; 17:306-314. [PMID: 31221545 DOI: 10.1016/j.clgc.2019.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/12/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Whole-body assessments of 18F-NaF positron emission tomography (PET)/computed tomography (CT) provide promising quantitative imaging biomarkers of metastatic castration-resistant prostate cancer (mCRPC). This study investigated whether the distribution of metastases across anatomic regions is prognostic of progression-free survival. PATIENTS AND METHODS Fifty-four mCRPC patients with osseous metastases received baseline NaF PET/CT. Patients received chemotherapy (n = 16) or androgen receptor pathway inhibitors (n = 38). Semiautomated analysis using Quantitative Total Bone Imaging software extracted imaging metrics for the whole, axial, and appendicular skeleton as well as 11 skeletal regions. Five PET metrics were extracted for each region: number of lesions (NL), standardized maximum uptake value (SUVmax), average uptake (SUVmean), sum of uptake (SUVtotal), and diseased fraction of the skeleton (volume fraction). Progression included that discovered by clinical, biochemical, or radiographic means. Univariate and multivariate Cox proportional hazard regression analyses were performed between imaging metrics and progression-free survival, and were assessed according to their hazard ratios (HR) and concordance (C)-indices. RESULTS The strongest univariate models of progression-free survival were pelvic NL and SUVmax with HR = 1.80 (NL: false discovery rate adjusted P = .001, SUVmax: adjusted P = .001). Three other region-specific metrics (axial NL: HR = 1.59, adjusted P = .02, axial SUVmax: HR = 1.61, adjusted P = .02, and skull SUVmax: HR = 1.58, adjusted P = .04) were found to be stronger prognosticators relative to their whole-body counterparts. Multivariate model including region-specific metrics (C-index = 0.727) outperformed that of whole-body metrics (C-index = 0.705). The best performance was obtained when region-specific and whole-body metrics were included (C-index = 0.742). CONCLUSION Quantitative characterization of metastatic spread by anatomic location on NaF PET/CT enhances potential prognostication. Further study is warranted to optimize the prognostic and predictive value of NaF PET/CT in mCRPC patients.
Collapse
Affiliation(s)
- Alison R Roth
- Department of Medical Physics, University of Wisconsin, Madison, WI.
| | | | - Timothy G Perk
- Department of Medical Physics, University of Wisconsin, Madison, WI
| | - Jens Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| | - Karen A Kurdziel
- Molecular Imaging Branch, National Cancer Institute, Bethesda, MD
| | - William L Dahut
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD
| | - Andrea B Apolo
- Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD
| | | | | | - Glenn Liu
- Department of Medical Physics, University of Wisconsin, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Robert Jeraj
- Department of Medical Physics, University of Wisconsin, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| |
Collapse
|
30
|
Diao W, Cai H, Chen L, Jin X, Liao X, Jia Z. Recent Advances in Prostate-Specific Membrane Antigen-Based Radiopharmaceuticals. Curr Top Med Chem 2019; 19:33-56. [PMID: 30706785 DOI: 10.2174/1568026619666190201100739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common sex-related malignancy with high mortality in men worldwide. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of most prostate tumor cells and considered a valuable target for both diagnosis and therapy of prostate cancer. A series of radiolabeled agents have been developed based on the featured PSMA ligands in the previous decade and have demonstrated promising outcomes in clinical research of primary and recurrent PCa. Furthermore, the inspiring response and safety of lutetium-177-PSMA-617 (177Lu-PSMA-617) radiotherapy represent the potential for expanded therapeutic options for metastatic castration-resistant PCa. Retrospective cohort studies have revealed that radiolabeled PSMA agents are the mainstays of the current success, especially in detecting prostate cancer with metastasis and biochemical recurrence. OBJECTIVE This review is intended to present a comprehensive overview of the current literature on PSMA ligand-based agents for both radionuclide imaging and therapeutic approaches, with a focus on those that have been clinically adopted. CONCLUSION PSMA-based diagnosis and therapy hold great promise for improving the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Wei Diao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lihong Chen
- Department of Biochemistry & Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xi Jin
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Xinyang Liao
- Institute of Urology, Department of Urology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| |
Collapse
|
31
|
Sheikhbahaei S, Jones KM, Werner RA, Salas-Fragomeni RA, Marcus CV, Higuchi T, Rowe SP, Solnes LB, Javadi MS. 18F-NaF-PET/CT for the detection of bone metastasis in prostate cancer: a meta-analysis of diagnostic accuracy studies. Ann Nucl Med 2019; 33:351-361. [PMID: 30877561 DOI: 10.1007/s12149-019-01343-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE This meta-analysis aims to establish the diagnostic performance of 18F-NaF-PET/CT for the detection of bone metastases in prostate cancer patients. The performance of 18F-NaF-PET/CT was compared with other imaging techniques in the same cohort of patients. METHODS A systematic search was performed in PubMed/Medline and EMBASE (last Updated, September 28, 2018). Studies with histopathology confirmation and/or clinical/imaging follow-up as reference standard were eligible for inclusion. RESULTS A total of 14 studies were included. Twelve studies including 507 patients provided per-patient basis information. The pooled sensitivity, specificity, diagnostic odds ratio (DOR) and the area under the summary receiver operating characteristics curve (AUC) of 18F-NaF-PET/CT for the detection of bone metastases were 0.98 (95% CI 0.95-0.99), 0.90 (95% CI 0.86-0.93), 123.2 and 0.97, respectively. Seven studies provided the lesion-based accuracy information of 1812 lesions identified on 18F-NaF-PET/CT with the pooled sensitivity, specificity, DOR and AUC of 0.97 (95% CI 0.95-0.98), 0.84 (95% CI 0.81-0.87), 206.8 and 0.97, respectively. The overall diagnostic performance of 18F-NaF-PET/CT is superior to 99mTc-bone scintigraphy (AUC 0.842; P < 0.001; four studies) and 99mTc-SPECT (AUC 0.896; P < 0.001, four studies). Compared to 18F NaF-PET/CT, whole-body MRI with diffusion-weighted imaging (DWI) was shown to have lower sensitivity (0.83, 95% CI 0.68-0.93), with no significant difference in the overall performance (AUC 0.947; P = 0.18, four studies). CONCLUSION 18F-NaF-PET/CT has excellent diagnostic performance in the detection of bone metastases in staging and restaging of high-risk prostate cancer patients. The performance of 18F-NaF-PET/CT is superior to 99mTc bone scintigraphy and SPECT, and comparable to DWI-MRI.
Collapse
Affiliation(s)
- Sara Sheikhbahaei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Krystyna M Jones
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Roberto A Salas-Fragomeni
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles V Marcus
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lilja B Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mehrbod S Javadi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Miyahira AK, Den RB, Carlo MI, de Leeuw R, Hope TA, Karzai F, McKay RR, Salami SS, Simons JW, Pienta KJ, Soule HR. Tumor cell heterogeneity and resistance; report from the 2018 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2019; 79:244-258. [PMID: 30381857 DOI: 10.1002/pros.23729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The 2018 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Tumor Cell Heterogeneity and Resistance," was held in Los Angeles, California from June 21 to 24, 2018. METHODS The CHPCA Meeting is a unique, discussion-oriented scientific conference convened annually by the Prostate Cancer Foundation (PCF), which focuses on the most critical topics in need of further study to advance the treatment of lethal prostate cancer. The 6th Annual CHPCA Meeting was attended by 70 investigators and concentrated on prostate cancer heterogeneity and treatment resistance. RESULTS The meeting focused on topics including: recognition of tumor heterogeneity, molecular drivers of heterogeneity, the role of the tumor microenvironment, the role of heterogeneity in disease progression, metastasis and treatment resistance, clinical trials designed to target resistance and tumor heterogeneity, and immunotherapeutic approaches to target and overcome tumor heterogeneity. DISCUSSION This review article summarizes the presentations and discussions from the 2018 CHPCA Meeting in order to share this knowledge with the scientific community and encourage new studies that will lead to improved treatments and outcomes for men with prostate cancer.
Collapse
Affiliation(s)
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Renée de Leeuw
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rana R McKay
- Department of Medicine, Division of Hematology/Oncology, University of California San Diego, San Diego, California
| | - Simpa S Salami
- Department of Urology, University of Michigan Health System, Ann Arbor, Michigan
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | | | - Kenneth J Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
33
|
Harmon SA, Mena E, Shih JH, Adler S, McKinney Y, Bergvall E, Mehralivand S, Sowalsky AG, Couvillon A, Madan RA, Gulley JL, Eary J, Mease RC, Pomper MG, Dahut WL, Turkbey B, Lindenberg L, Choyke PL. A comparison of prostate cancer bone metastases on 18F-Sodium Fluoride and Prostate Specific Membrane Antigen ( 18F-PSMA) PET/CT: Discordant uptake in the same lesion. Oncotarget 2018; 9:37676-37688. [PMID: 30701023 PMCID: PMC6340866 DOI: 10.18632/oncotarget.26481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Purpose Prostate-Specific Membrane Antigen (PSMA) PET/CT has been introduced as a sensitive method for characterizing metastatic prostate cancer. The purpose of this study is to compare the spatial concordance of 18F-NaF PET/CT and 18F-PSMA-targeted PET/CT within prostate cancer bone metastases. Methods Prostate cancer patients with known bone metastases underwent PSMA-targeted PET/CT (18F-DCFBC or 18F-DCFPyL) and 18F-NaF PET/CT. In pelvic and spinal lesions detected by both radiotracers, regions-of-interest (ROIs) derived by various thresholds of uptake intensity were compared for spatial colocalization. Overlap volume was correlated with uptake characteristics and disease status. Results The study included 149 lesions in 19 patients. Qualitatively, lesions exhibited a heterogeneous range of spatial concordance between PSMA and NaF uptake from completely matched to completely discordant. Quantitatively, overlap volume decreased as a function of tracer intensity. and disease status, where lesions from patients with castration-sensitive disease showed higher spatial concordance while lesions from patients with castration-resistant disease demonstrated more frequent spatial discordance. Conclusion As metastatic prostate cancer progresses from castration-sensitive to castration-resistant, greater discordance is observed between NaF PET and PSMA PET uptake. This may indicate a possible phenotypic shift to tumor growth that is more independent of bone remodeling via osteoblastic formation.
Collapse
Affiliation(s)
- Stephanie A Harmon
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA.,Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Esther Mena
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Joanna H Shih
- Biometric Research Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephen Adler
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA.,Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yolanda McKinney
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ethan Bergvall
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sherif Mehralivand
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Anna Couvillon
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Janet Eary
- Cancer Imaging Program, National Cancer Institute, NIH, Rockville, MD, USA
| | - Ronnie C Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William L Dahut
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Liza Lindenberg
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
34
|
Beuthien-Baumann B, Koerber SA. PET imaging in adaptive radiotherapy of prostate tumors. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:404-410. [DOI: 10.23736/s1824-4785.18.03080-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Czarniecki M, Mena E, Lindenberg L, Cacko M, Harmon S, Radtke JP, Giesel F, Turkbey B, Choyke PL. Keeping up with the prostate-specific membrane antigens (PSMAs): an introduction to a new class of positron emission tomography (PET) imaging agents. Transl Androl Urol 2018; 7:831-843. [PMID: 30456186 PMCID: PMC6212618 DOI: 10.21037/tau.2018.08.03] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) targeted positron emission tomography (PET) is an emerging prostate cancer imaging method, which has been reported to have a higher sensitivity and specificity than the currently approved PET imaging agents. Multiple PSMA ligands are being investigated around the world and applications range from primary tumor characterization, to local staging, biochemical recurrence, metastasis, and image-guided interventions. The most investigated PET tracers are labelled with 68-Gallium or 18-Fluoride and are discussed in this review. Additionally, 99mTc labeled PSMA agents for single photon emission computed tomography (SPECT) imaging are elucidated as an alternative method of PSMA image acquisition.
Collapse
Affiliation(s)
- Marcin Czarniecki
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Esther Mena
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Liza Lindenberg
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marek Cacko
- Department of Nuclear Medicine, Medical University Warsaw, Warsaw, Poland
| | - Stephanie Harmon
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical Research Directorate/Clinical Monitoring Research Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jan Philipp Radtke
- Department of Urology, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Frederick Giesel
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter L. Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Pesapane F, Czarniecki M, Suter MB, Turkbey B, Villeirs G. Imaging of distant metastases of prostate cancer. Med Oncol 2018; 35:148. [DOI: 10.1007/s12032-018-1208-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
|
37
|
Reilly CC, Raynor WY, Hong AL, Kargilis DC, Lee JS, Alecxih AG, Gupta N, Lim MK, Al-Zaghal A, Werner TJ, Rhodes SS, Alavi A, Rajapakse CS. Diagnosis and Monitoring of Osteoporosis With 18F-Sodium Fluoride PET: An Unavoidable Path for the Foreseeable Future. Semin Nucl Med 2018; 48:535-540. [PMID: 30322479 DOI: 10.1053/j.semnuclmed.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of metabolic bone diseases particularly osteoporosis and its precursor, osteopenia, continue to grow as serious global health issues today. On a worldwide perspective, 200million people suffer from osteoporosis and in 2005, over 2million fracture incidents were estimated due to osteoporosis in the United States. Currently, osteoporosis and other metabolic bone diseases are evaluated primarily through dual energy X-ray absorptiometry, and rarely by bone biopsy with tetracycline labeling or Technetium-99m (99mTc) based bone scintigraphy. Deficiencies in these methods have prompted the use of more precise methods of assessment. This review highlights the use of 18F-sodium fluoride (NaF) with PET (NaF-PET), NaF-PET/CT, or NaF-PET/MRI in the evaluation of osteoporosis and osteopenia in the lumbar spine and hip. This imaging modality provides a molecular perspective with respect to the underlying metabolic alterations that lead to osseous disorders by measuring bone turnover through standardized uptake values. Its sensitivity and ability to examine the entire skeletal system make it a more superior imaging modality compared to standard structural imaging techniques. Further research is needed to determine its accuracy in reflecting the efficacy of therapeutic interventions in metabolic bone diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jae S Lee
- University of Pennsylvania, Philadelphia, PA
| | | | | | - Marie K Lim
- University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Abass Alavi
- University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|