1
|
Aboughalia HA, Cheeney SHE, Elojeimy S, Blacklock LC, Parisi MT. Meckel diverticulum scintigraphy: technique, findings and diagnostic pitfalls. Pediatr Radiol 2023; 53:493-508. [PMID: 36323958 DOI: 10.1007/s00247-022-05527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Meckel diverticulum, the most common congenital anomaly of the gastrointestinal tract, results from the aberrant involution of the omphalomesenteric duct and accounts for more than 50% of unexplained lower gastrointestinal bleeding in the pediatric population. The most accurate imaging tool to identify a Meckel diverticulum containing ectopic gastric mucosa is the Technetium-99m pertechnetate Meckel scan, a scintigraphic study with a reported accuracy of 90% in the pediatric population. In addition to depicting a Meckel diverticulum with ectopic gastric mucosa, careful attention to the normal biodistribution of the radiotracer can lead to the identification of unexpected pathology with implications for patient management. This article serves to review the embryological origin and anatomical features of Meckel diverticulum, highlight the role of scintigraphy in evaluating Meckel diverticulum, and discuss the proper imaging technique when performing this test. We will focus on pitfalls that can lead to an erroneous diagnosis as well as incidental findings that can affect patient management.
Collapse
Affiliation(s)
- Hassan A Aboughalia
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| | - Safia H E Cheeney
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Saeed Elojeimy
- Department of Radiology, Medical University of South Carolina, Charleston, SC, USA
| | - Lisa C Blacklock
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| | - Marguerite T Parisi
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Department of Radiology, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
2
|
Congenital hyperinsulinism: localization of a focal lesion with 18F-FDOPA positron emission tomography. Pediatr Radiol 2022; 52:693-701. [PMID: 34668049 DOI: 10.1007/s00247-021-05206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Hyperinsulinemic hypoglycemia of infancy, also known as congenital hyperinsulinism, is a group of disorders characterized by dysregulated insulin release. Neonates with severe, persistent hyperinsulinemic hypoglycemia who are unresponsive to medical therapy require pancreatectomy to prevent brain damage from hypoglycemia. To date, multiple genetic mutations and syndromes and several unique histopathological entities have been identified in children with hyperinsulinism. Histopathology is characterized as diffuse, focal or atypical. Surgical resection of a focal lesion results in a cure in up to 97% of these children. Imaging with 6-fluoro-(18F)-L-3,4-dihydroxyphenylalanine (18F-FDOPA) positron emission tomography (PET) is the test of choice for identifying and localizing a focal lesion and has proved to be an invaluable guide for surgical resection. Genetic evaluation is essential for determining who will benefit from PET imaging. This article provides an approach to determine who should be imaged, how to set up a protocol and how to interpret the imaging findings. The diagnosis and management of this disorder require a multidisciplinary approach to prevent brain damage from hypoglycemia.
Collapse
|
3
|
Baum RP, Zhang J, Schuchardt C, Müller D, Mäcke H. First-in-Humans Study of the SSTR Antagonist 177Lu-DOTA-LM3 for Peptide Receptor Radionuclide Therapy in Patients with Metastatic Neuroendocrine Neoplasms: Dosimetry, Safety, and Efficacy. J Nucl Med 2021; 62:1571-1581. [PMID: 33674401 PMCID: PMC8612334 DOI: 10.2967/jnumed.120.258889] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to assess the safety, dosimetry, and efficacy of the 177Lu-labeled somatostatin receptor (SSTR) antagonist DOTA-p-Cl-Phe-cyclo(d-Cys-Tyr-d-4-amino-Phe(carbamoyl)-Lys-Thr-Cys)d-Tyr-NH2 (177Lu-DOTA-LM3) in patients with metastatic neuroendocrine neoplasms (NENs). Methods: Fifty-one patients (aged 27-76 y; mean, 51.6 ± 13.9 y) with metastatic NENs underwent peptide receptor radionuclide therapy (PRRT) with 177Lu-DOTA-LM3 between August 2017 and December 2019. The median administered activity per cycle was 6.1 ± 0.88 GBq (range, 2.8-7.4 GBq). 68Ga-NODAGA-LM3 PET/CT was used for patient selection and follow-up after 177Lu-DOTA-LM3 PRRT. Morphologic and molecular responses were evaluated in accordance with RECIST 1.1 and the criteria of the European Organisation for Research and Treatment of Cancer (EORTC). Treatment-related adverse events were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events, version 5.0. Dosimetry was performed on 11 patients and compared with the SSTR agonist 177Lu-DOTATOC in 247 patients undergoing PRRT on the same dosimetry protocol. Results: Higher uptake and a longer effective half-life were found for 177Lu-DOTA-LM3 than for the agonist 177Lu-DOTATOC in the whole body and in the kidneys, spleen, and metastases, resulting in higher mean absorbed organ and tumor doses. All patients tolerated therapy without any serious acute adverse effects. Mild nausea without vomiting was observed in 5 (9.8%) patients; no other symptoms were reported. The most severe delayed adverse event was Common Terminology Criteria (CTC)-3 thrombocytopenia in 3 (5.9%) patients. Neither CTC-4 thrombocytopenia nor CTC-3-4 anemia or leukopenia was observed after treatment. No significant decline in renal function was observed, nor was hepatotoxicity. According to RECIST 1.1, disease control could be reached in 40 patients (disease control rate, 85.1%) of the 47 patients monitored after 177Lu-DOTA-LM3 PRRT, with a partial response in 17 (36.2%) and stable disease in 23 (48.9%), whereas 7 patients (14.9%) had progressive disease, and by EORTC criteria, there was complete remission in 2 patients (4.3%), partial remission in 21 (44.7%), stable disease in 18 (38.3%), and progressive disease in 6 (12.8%). Conclusion: The antagonist PRRT with 177Lu-DOTA-LM3 could be administered without severe adverse effects and was well tolerated by most patients, with thrombocytopenia occurring in only a few. No other severe adverse effects were observed; in particular, there was no nephrotoxicity. The SSTR antagonist 177Lu-DOTA-LM3 appears to be promising for PRRT, provides a favorable biodistribution and higher tumor radiation doses than SSTR agonists, and was effective in treating advanced metastatic NENs, especially in patients with low or no SSTR agonist binding, even achieving complete remission in some patients.
Collapse
Affiliation(s)
- Richard P Baum
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Jingjing Zhang
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany;
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; and
| | - Christiane Schuchardt
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Dirk Müller
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Helmut Mäcke
- Department of Nuclear Medicine, Medical Center, University Hospital of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Frush DP, Sorantin E. Radiation use in diagnostic imaging in children: approaching the value of the pediatric radiology community. Pediatr Radiol 2021; 51:532-543. [PMID: 33743037 DOI: 10.1007/s00247-020-04924-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 08/19/2020] [Accepted: 11/30/2020] [Indexed: 01/15/2023]
Abstract
Medical imaging is foundational in the care of children, and much of the medical imaging province depends on ionizing radiation: radiography, fluoroscopy, CT and nuclear imaging. Many considerations for this imaging in children are distinct in the domains of appropriate radiation use, other factors that determine examination quality, the opportunities to engage and educate through networking, and the translation of research efforts. Given these needs, it is worth approaching the contributions and their impact by the pediatric radiology community, especially to the enhancement of this value in the care of children.
Collapse
Affiliation(s)
- Donald P Frush
- Pediatric Radiology, Duke University Medical Center, Room #2568, 40 Duke Medicine Circle, Red Zone, Duke South Box 3808, Durham, NC, 27710, USA.
| | - Erich Sorantin
- Division of Pediatric Radiology, Department of Radiology, Medical University Graz, Graz, Austria
| |
Collapse
|
5
|
Zhao YM, Li YH, Chen T, Zhang WG, Wang LH, Feng J, Li C, Zhang X, Fan W, Hu YY. Image quality and lesion detectability in low-dose pediatric 18F-FDG scans using total-body PET/CT. Eur J Nucl Med Mol Imaging 2021; 48:3378-3385. [PMID: 33738519 DOI: 10.1007/s00259-021-05304-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To investigate the effects of dose reduction on image quality and lesion detectability of oncological 18F-FDG total-body PET/CT in pediatric oncological patients and explore the minimum threshold of administered tracer activity. METHODS A total of 33 pediatric patients (weight 8.5-58.5 kg; age 0.8-17.6 years) underwent total-body PET/CT using uEXPLORER scanner with an 18F-FDG administered dose of 3.7 MBq/kg and an acquisition time of 600 s were retrospectively enrolled. Low-dose images (0.12-1.85 MBq/kg) were simulated by truncating the list-mode PET data to reducing count density. Subjective image quality was rated on a 5-point scale. Semi-quantitative uptake metrics for low-dose images were assessed using region-of-interest (ROI) analysis of healthy liver and suspected lesions and were compared with full-dose images. The micro-lesion detectability was compared among the dose-dependent PET images. RESULTS Our analysis shows that sufficient subjective image quality and lesion conspicuity could be maintained down to 1/30th (0.12 MBq/kg) of the administered dose of 18F-FDG, where good image quality scores were given to 1/2- and 1/10- dose groups. The image noise was significantly more deranged than the overall quality and lesion conspicuity in 1/30- to 1/10-dose groups (all p < 0.05). With reduced doses, quantitative analysis of ROIs showed that SUVmax and SD in the liver increased gradually (p < 0.05), but SUVmax in the lesions and lesion-to-background ratio (LBR) showed no significant deviation down to 1/30-dose. One hundred percent of the 18F-FDG-avid micro-lesions identified in full-dose images were localized down to 1/15-dose images, while 97% of the lesion were localized in 1/30-dose images. CONCLUSION The total-body PET/CT might significantly decrease the administered dose upon maintaining the image quality and diagnostic performance of micro-lesions in pediatric patients. Data suggests that using total-body PET/CT, optimal image quality could be achieved with an administered dose-reduction down to 1/10-dose (0.37 MBq/kg).
Collapse
Affiliation(s)
- Yu-Mo Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
| | - Ying-He Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
| | - Tao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
| | - Wei-Guang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
| | - Lin-Hao Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
| | - Jiatai Feng
- Central research institute, United Imaging Healthcare, Shanghai, China
| | - Chenwei Li
- Central research institute, United Imaging Healthcare, Shanghai, China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
| | - Ying-Ying Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China. .,Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
6
|
Werner RA, Derlin T, Rowe SP, Bundschuh L, Sheikh GT, Pomper MG, Schulz S, Higuchi T, Buck AK, Bengel FM, Bundschuh RA, Lapa C. High Interobserver Agreement for the Standardized Reporting System SSTR-RADS 1.0 on Somatostatin Receptor PET/CT. J Nucl Med 2020; 62:514-520. [PMID: 32859702 DOI: 10.2967/jnumed.120.245464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
Recently, a standardized framework system for interpreting somatostatin receptor (SSTR)-targeted PET/CT, termed the SSTR reporting and data system (RADS) 1.0, was introduced, providing reliable standards and criteria for SSTR-targeted imaging. We determined the interobserver reliability of SSTR-RADS for interpretation of 68Ga-DOTATOC PET/CT scans in a multicentric, randomized setting. Methods: A set of 51 randomized 68Ga-DOTATOC PET/CT scans was independently assessed by 4 masked readers with different levels of experience (2 experienced readers and 2 inexperienced readers) trained on the SSTR-RADS 1.0 criteria (based on a 5-point scale from 1 [definitively benign] to 5 [high certainty that neuroendocrine neoplasia is present]). For each scan, SSTR-RADS scores were assigned to a maximum of 5 target lesions (TLs). An overall scan impression based on SSTR-RADS was indicated, and interobserver agreement rates on a TL-based, on an organ-based, and on an overall SSTR-RADS score-based level were computed. The readers were also asked to decide whether peptide receptor radionuclide therapy (PRRT) should be considered on the basis of the assigned RADS scores. Results: Among the selected TLs, 153 were chosen by at least 2 readers (all 4 readers selected the same TLs in 58 of 153 [37.9%] instances). The interobserver agreement for SSTR-RADS scoring among identical TLs was good (intraclass correlation coefficient [ICC] ≥ 0.73 for 4, 3, and 2 identical TLs). For lymph node and liver lesions, excellent interobserver agreement rates were derived (ICC, 0.91 and 0.77, respectively). Moreover, the interobserver agreement for an overall scan impression based on SSTR-RADS was excellent (ICC, 0.88). The SSTR-RADS-based decision to use PRRT also demonstrated excellent agreement, with an ICC of 0.80. No significant differences between experienced and inexperienced readers for an overall scan impression and TL-based SSTR-RADS scoring were observed (P ≥ 0.18), thereby suggesting that SSTR-RADS seems to be readily applicable even for less experienced readers. Conclusion: SSTR-RADS-guided assessment demonstrated a high concordance rate, even among readers with different levels of experience, supporting the adoption of SSTR-RADS for trials, clinical routine, or outcome studies.
Collapse
Affiliation(s)
- Rudolf A Werner
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lena Bundschuh
- Department of Nuclear Medicine, University Medical Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Gabriel T Sheikh
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sebastian Schulz
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; and.,Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; and
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Ralph A Bundschuh
- Department of Nuclear Medicine, University Medical Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
7
|
Zhang J, Liu Q, Singh A, Schuchardt C, Kulkarni HR, Baum RP. Prognostic Value of 18F-FDG PET/CT in a Large Cohort of Patients with Advanced Metastatic Neuroendocrine Neoplasms Treated with Peptide Receptor Radionuclide Therapy. J Nucl Med 2020; 61:1560-1569. [PMID: 32169914 DOI: 10.2967/jnumed.119.241414] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/05/2020] [Indexed: 01/22/2023] Open
Abstract
The objective of this retrospective study was to determine the role of 18F-FDG PET/CT in a large cohort of 495 patients with metastatic neuroendocrine neoplasms (NENs) who were treated with peptide receptor radionuclide therapy (PRRT) with a long-term follow-up. Methods: The 495 patients were treated with 177Lu- or 90Y-DOTATOC/DOTATATE PRRT between February 2002 and July 2018. All subjects received both 68Ga-DOTATOC/TATE/NOC and 18F-FDG PET/CT before treatment and were followed 3-189 mo. Kaplan-Meier analysis, log-rank testing (Mantel-Cox), and Cox regression analysis were performed for overall survival (OS) and progression-free survival (PFS). Results: One hundred ninety-nine patients (40.2%) presented with pancreatic NENs, 49 with cancer of unknown primary, and 139 with midgut NENs, whereas the primary tumor was present in the rectum in 20, in the lung in 38, in the stomach in 8, and in other locations in 42. 18F-FDG PET/CT was positive in 382 (77.2%) patients and negative in 113 (22.8%) before PRRT, whereas 100% were 68Ga-DOTATOC/TATE/NOC-positive. For all patients, the median PFS and OS, defined from the start of PRRT, were 19.6 mo and 58.7 mo, respectively. Positive 18F-FDG results predicted shorter PFS (18.5 mo vs. 24.1 mo; P = 0.0015) and OS (53.2 mo vs. 83.1 mo; P < 0.001) than negative 18F-FDG results. Among the cases of pancreatic NENs, the median OS was 52.8 mo in 18F-FDG-positive subjects and 114.3 mo in 18F-FDG-negative subjects (P = 0.0006). For all patients positive for 18F-FDG uptake, and a ratio of more than 2 for the highest SUVmax on 68Ga-somatostatin receptor (SSTR) PET to the most 18F-FDG-avid tumor lesions, the median OS was 53.0 mo, compared with 43.4 mo in those patients with a ratio of less than 2 (P = 0.030). For patients with no 18F-FDG uptake (complete mismatch imaging pattern), the median OS was 108.3 mo versus 76.9 mo for an SUVmax of more than 15.0 and an SUVmax of 15.0 or less on 68Ga-SSTR PET/CT, respectively. Conclusion: The presence of positive lesions on 18F-FDG PET is an independent prognostic factor in patients with NENs treated with PRRT. Metabolic imaging with 18F-FDG PET/CT complements the molecular imaging aspect of 68Ga-SSTR PET/CT for the prognosis of survival after PRRT. High SSTR expression combined with negative 18F-FDG PET/CT results is associated with the most favorable long-term prognosis.
Collapse
Affiliation(s)
- Jingjing Zhang
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Qingxing Liu
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany.,Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; and
| | - Aviral Singh
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany.,GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Christiane Schuchardt
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Harshad R Kulkarni
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Richard P Baum
- Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany
| |
Collapse
|
8
|
Werner RA, Derlin T, Lapa C, Sheikbahaei S, Higuchi T, Giesel FL, Behr S, Drzezga A, Kimura H, Buck AK, Bengel FM, Pomper MG, Gorin MA, Rowe SP. 18F-Labeled, PSMA-Targeted Radiotracers: Leveraging the Advantages of Radiofluorination for Prostate Cancer Molecular Imaging. Theranostics 2020; 10:1-16. [PMID: 31903102 PMCID: PMC6929634 DOI: 10.7150/thno.37894] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA)-targeted PET imaging for prostate cancer with 68Ga-labeled compounds has rapidly become adopted as part of routine clinical care in many parts of the world. However, recent years have witnessed the start of a shift from 68Ga- to 18F-labeled PSMA-targeted compounds. The latter imaging agents have several key advantages, which may lay the groundwork for an even more widespread adoption into the clinic. First, facilitated delivery from distant suppliers expands the availability of PET radiopharmaceuticals in smaller hospitals operating a PET center but lacking the patient volume to justify an onsite 68Ge/68Ga generator. Thus, such an approach meets the increasing demand for PSMA-targeted PET imaging in areas with lower population density and may even lead to cost-savings compared to in-house production. Moreover, 18F-labeled radiotracers have a higher positron yield and lower positron energy, which in turn decreases image noise, improves contrast resolution, and maximizes the likelihood of detecting subtle lesions. In addition, the longer half-life of 110 min allows for improved delayed imaging protocols and flexibility in study design, which may further increase diagnostic accuracy. Moreover, such compounds can be distributed to sites which are not allowed to produce radiotracers on-site due to regulatory issues or to centers without access to a cyclotron. In light of these advantageous characteristics, 18F-labeled PSMA-targeted PET radiotracers may play an important role in both optimizing this transformative imaging modality and making it widely available. We have aimed to provide a concise overview of emerging 18F-labeled PSMA-targeted radiotracers undergoing active clinical development. Given the wide array of available radiotracers, comparative studies are needed to firmly establish the role of the available 18F-labeled compounds in the field of molecular PCa imaging, preferably in different clinical scenarios.
Collapse
Affiliation(s)
- Rudolf A. Werner
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Sara Sheikbahaei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Germany
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Frederik L. Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Spencer Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Germany
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Frank M. Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A. Gorin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Bodei L, Kidd MS, Singh A, van der Zwan WA, Severi S, Drozdov IA, Malczewska A, Baum RP, Kwekkeboom DJ, Paganelli G, Krenning EP, Modlin IM. PRRT neuroendocrine tumor response monitored using circulating transcript analysis: the NETest. Eur J Nucl Med Mol Imaging 2019; 47:895-906. [PMID: 31838581 DOI: 10.1007/s00259-019-04601-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Peptide receptor radionuclide therapy (PRRT) is effective for metastatic/inoperable neuroendocrine tumors (NETs). Imaging response assessment is usually efficient subsequent to treatment completion. Blood biomarkers such as PRRT Predictive Quotient (PPQ) and NETest are effective in real-time. PPQ predicts PRRT efficacy; NETest monitors disease. We prospectively evaluated: (1) NETest as a surrogate biomarker for RECIST; (2) the correlation of NETest levels with PPQ prediction. METHODS Three independent 177Lu-PRRT-treated GEP-NET and lung cohorts (Meldola, Italy: n = 72; Bad-Berka, Germany: n = 44; Rotterdam, Netherlands: n = 41). Treatment response: RECIST1.1 (responder (stable, partial, and complete response) vs non-responder). Blood sampling: pre-PRRT, before each cycle and follow-up (2-12 months). PPQ (positive/negative) and NETest (0-100 score) by PCR. Stable < 40; progressive > 40). CgA (ELISA) as comparator. Samples de-identified, measurement and analyses blinded. Kaplan-Meier survival and standard statistics. RESULTS One hundred twenty-two of the 157 were evaluable. RECIST stabilization or response in 67%; 33% progressed. NETest significantly (p < 0.0001) decreased in RECIST "responders" (- 47 ± 3%); in "non-responders," it remained increased (+ 79 ± 19%) (p < 0.0005). NETest monitoring accuracy was 98% (119/122). Follow-up levels > 40 (progressive) vs stable (< 40) significantly correlated with mPFS (not reached vs. 10 months; HR 0.04 (95%CI, 0.02-0.07). PPQ response prediction was accurate in 118 (97%) with a 99% accurate positive and 93% accurate negative prediction. NETest significantly (p < 0.0001) decreased in PPQ-predicted responders (- 46 ± 3%) and remained elevated or increased in PPQ-predicted non-responders (+ 75 ± 19%). Follow-up NETest categories stable vs progressive significantly correlated with PPQ prediction and mPFS (not reached vs. 10 months; HR 0.06 (95%CI, 0.03-0.12). CgA did not reflect PRRT treatment: in RECIST responders decrease in 38% and in non-responders 56% (p = NS). CONCLUSIONS PPQ predicts PRRT response in 97%. NETest accurately monitors PRRT response and is an effective surrogate marker of PRRT radiological response. NETest decrease identified responders and correlated (> 97%) with the pretreatment PPQ response predictor. CgA was non-informative.
Collapse
Affiliation(s)
- Lisa Bodei
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA. .,LuGenIum Consortium, Milan, Rotterdam, London, Bad Berka, 54 Portland Place, London, W1B1DY, UK.
| | | | - Aviral Singh
- Theranostics Center for Molecular Radiotherapy and Imaging, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Wouter A van der Zwan
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stefano Severi
- Nuclear Medicine and Radiometabolic Units, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Anna Malczewska
- Department of Endocrinology and Neuroendocrine Tumors, Medical University of Silesia, Katowice, Poland
| | - Richard P Baum
- LuGenIum Consortium, Milan, Rotterdam, London, Bad Berka, 54 Portland Place, London, W1B1DY, UK.,Theranostics Center for Molecular Radiotherapy and Imaging, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Dik J Kwekkeboom
- LuGenIum Consortium, Milan, Rotterdam, London, Bad Berka, 54 Portland Place, London, W1B1DY, UK.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Giovanni Paganelli
- Nuclear Medicine and Radiometabolic Units, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Eric P Krenning
- LuGenIum Consortium, Milan, Rotterdam, London, Bad Berka, 54 Portland Place, London, W1B1DY, UK.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Cyclotron Rotterdam BV, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Irvin M Modlin
- LuGenIum Consortium, Milan, Rotterdam, London, Bad Berka, 54 Portland Place, London, W1B1DY, UK.,Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|