1
|
Silindir-Gunay M, Ozolmez N. Adverse reactions to therapeutic radiopharmaceuticals. Appl Radiat Isot 2024; 214:111527. [PMID: 39332267 DOI: 10.1016/j.apradiso.2024.111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Radiopharmaceuticals are drugs used in treatment or diagnosis that contain a radioactive part, usually a pharmaceutical part in their structure. Adverse drug reactions are harmful and unexpected responses that occur when administered at normal doses. Although radiopharmaceuticals are regarded as safe medical products, adverse reactions should not be ignored. More serious adverse reactions such as myelosuppression, pleural effusion, and death may develop in therapeutic radiopharmaceuticals due to their use at higher doses than those used in diagnosis. Therefore, monitoring adverse reactions and reporting them to health authorities is important. This review aims to provide information about adverse reactions that may be related to radiopharmaceuticals used in treatment.
Collapse
Affiliation(s)
- Mine Silindir-Gunay
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Nur Ozolmez
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Andrew J, Ezra-Manicum AL, Witika BA. Developments in radionanotheranostic strategies for precision diagnosis and treatment of prostate cancer. EJNMMI Radiopharm Chem 2024; 9:62. [PMID: 39180599 PMCID: PMC11344754 DOI: 10.1186/s41181-024-00295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Prostate Cancer (PCa) is the second most diagnosed urological cancer among men worldwide. Conventional methods used for diagnosis of PCa have several pitfalls which include lack of sensitivity and specificity. On the other hand, traditional treatment of PCa poses challenges such as long-term side effects and the development of multidrug resistance (MDR). MAIN BODY Hence, there is a need for novel PCa agents with the potential to lessen the burden of these adverse effects on patients. Nanotechnology has emerged as a promising approach to support both early diagnosis and effective treatment of tumours by ensuring precise delivery of the drug to the targeted site of the disease. Most cancer-related biological processes occur on the nanoscale hence application of nanotechnology has been greatly appreciated and implemented in the management and therapeutics of cancer. Nuclear medicine plays a significant role in the non-invasive diagnosis and treatment of PCa using appropriate radiopharmaceuticals. This review aims to explore the different radiolabelled nanomaterials to enhance the specific delivery of imaging and therapeutic agents to cancer cells. Thereafter, the review appraises the advantages and disadvantages of these modalities and then discusses and outlines the benefits of radiolabelled nanomaterials in targeting cancerous prostatic tumours. Moreover, the nanoradiotheranostic approaches currently developed for PCa are discussed and finally the prospects of combining radiopharmaceuticals with nanotechnology in improving PCa outcomes will be highlighted. CONCLUSION Nanomaterials have great potential, but safety and biocompatibility issues remain. Notwithstanding, the combination of nanomaterials with radiotherapeutics may improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Jubilee Andrew
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Amanda-Lee Ezra-Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria, South Africa
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
3
|
Naik M, Khan SR, Lewington V, Challapalli A, Eccles A, Barwick TD. Imaging and therapy in prostate cancer using prostate specific membrane antigen radioligands. Br J Radiol 2024; 97:1391-1404. [PMID: 38733571 PMCID: PMC11256943 DOI: 10.1093/bjr/tqae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Prostate specific membrane antigen (PSMA) directed PET imaging has rapidly transformed prostate cancer workup over the past decade and paved the way for a theranostic approach using 177Lu-labelled PSMA radioligand therapy (RLT). This review gives an overview of the underlying principles behind PSMA as a target; the current use of PSMA PET in prostate cancer imaging and benefits compared to conventional imaging; and therapeutic applications including optimisation of patient selection. It also explores the evidence base of PSMA PET for other indications not in routine clinical use and the future of PSMA-directed RLT.
Collapse
Affiliation(s)
- Mitesh Naik
- Imaging Department, Imperial College Healthcare NHS Trust, London W6 8RF, United Kingdom
| | - Sairah R Khan
- Imaging Department, Imperial College Healthcare NHS Trust, London W6 8RF, United Kingdom
| | - Valerie Lewington
- Division of Biomedical Engineering and Imaging Sciences, Kings College London, London WC2R 2LS, United Kingdom
| | - Amarnath Challapalli
- Department of Clinical Oncology, Bristol Cancer Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS2 8ED, United Kingdom
| | - Amy Eccles
- Imaging Department, Imperial College Healthcare NHS Trust, London W6 8RF, United Kingdom
| | - Tara D Barwick
- Imaging Department, Imperial College Healthcare NHS Trust, London W6 8RF, United Kingdom
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0HS, United Kingdom
| |
Collapse
|
4
|
Liu RF, Ferrario C, Fallah P, Rose AAN, Labidi S, Mamo A, Probst SM. A phase 2, single-arm trial evaluating 131 I-PSMA-1095 targeted radioligand therapy for metastatic castration-resistant prostate cancer. Nucl Med Commun 2024; 45:683-689. [PMID: 38726601 DOI: 10.1097/mnm.0000000000001858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) remains uniformly lethal. Prostate specific membrane antigen (PSMA) is a transmembrane glycoprotein overexpressed in prostate cancer. 131 I-PSMA-1095 (also known as 131 I-MIP-1095) is a PSMA-targeted radioligand which selectively delivers therapeutic radiation to cancer cells and the tumor microenvironment. METHODS We conducted a single-arm, phase 2 trial to assess efficacy and tolerability of 131 I-PSMA-1095 in mCRPC patients who had exhausted all lines of approved therapy. All patients underwent 18 F-DCFPyL PET and 18 F-FDG PET to determine PSMA-positive tumor volume, and patients with >50% PSMA-positive tumor volume were treated with up to four doses of 131 I-PSMA-1095. The primary endpoint was the response rate of prostate specific antigen (PSA). Secondary endpoints included rates of radiographic response and adverse events. Overall and radiographic progression-free survival were also analyzed. RESULTS Eleven patients were screened for inclusion and nine patients received 131 I-PSMA-1095. The median baseline PSA was 162 µg/l, and six patients demonstrated a >50% PSA decrease. One patient demonstrated a confirmed radiographic response. Median overall survival was 10.3 months, and median progression-free survival was 5.4 months. Four patients experienced adverse events of grade 3 or higher, the most frequent being thrombocytopenia and anemia. CONCLUSION 131 I-PSMA-1095 is highly active against heavily-pretreated PSMA-positive mCRPC, significantly decreasing tumor burden as measured by PSA. Adverse events, mainly hematologic toxicity, were not infrequent, likely related to off-target irradiation. This hematologic toxicity, as well as a higher logistical burden associated with use, could represent relative disadvantages of 131 I-PSMA-1095 compared to 177 Lu-PSMA-617.
Collapse
Affiliation(s)
| | - Cristiano Ferrario
- Department of Medical Oncology, Segal Cancer Centre, Jewish General Hospital and
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Parvaneh Fallah
- Department of Medical Oncology, Segal Cancer Centre, Jewish General Hospital and
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - April A N Rose
- Department of Medical Oncology, Segal Cancer Centre, Jewish General Hospital and
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Soumaya Labidi
- Department of Medical Oncology, Segal Cancer Centre, Jewish General Hospital and
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Aline Mamo
- Department of Medical Oncology, Segal Cancer Centre, Jewish General Hospital and
| | | |
Collapse
|
5
|
Liubchenko G, Böning G, Zacherl M, Rumiantcev M, Unterrainer LM, Gildehaus FJ, Brendel M, Resch S, Bartenstein P, Ziegler SI, Delker A. Image-based dosimetry for [ 225Ac]Ac-PSMA-I&T therapy and the effect of daughter-specific pharmacokinetics. Eur J Nucl Med Mol Imaging 2024; 51:2504-2514. [PMID: 38512484 PMCID: PMC11178588 DOI: 10.1007/s00259-024-06681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Although 221Fr and 213Bi have sufficient gamma emission probabilities, quantitative SPECT after [225Ac]Ac-PSMA-I&T therapy remains challenging due to low therapeutic activities. Furthermore, 221Fr and 213Bi may underlie a different pharmacokinetics due to alpha recoil. We conducted a quantitative SPECT study and a urine analysis to investigate the pharmacokinetics of 221Fr and 213Bi and the impact on image-based lesion and kidney dosimetry. METHODS Five patients (7.7 ± 0.2 MBq [225Ac]Ac-PSMA-I&T) underwent an abdominal SPECT/CT (1 h) at 24 and 48 h (Siemens Symbia T2, high-energy collimator, 440 keV/218 keV (width 20%), 78 keV (width 50%)). Quantitative SPECT was reconstructed using MAP-EM with attenuation and transmission-dependent scatter corrections and resolution modelling. Time-activity curves for kidneys (CT-based) and lesions (80% isocontour 24 h) were fitted mono-exponentially. Urine samples collected along with each SPECT/CT were measured in a gamma counter until secular equilibrium was reached. RESULTS Mean kidney and lesion effective half-lives were as follows: 213Bi, 27 ± 6/38 ± 10 h; 221Fr, 24 ± 6/38 ± 11 h; 78 keV, 23 ± 7/39 ± 13 h. The 213Bi-to-221Fr kidney SUV ratio increased by an average of 9% from 24 to 48 h. Urine analysis revealed an increasing 213Bi-to-225Ac ratio (24 h, 0.98 ± 0.15; 48 h, 1.08 ± 0.09). Mean kidney and lesion absorbed doses were 0.17 ± 0.06 and 0.36 ± 0.1 Sv RBE = 5 /MBq using 221Fr and 213Bi SPECT images, compared to 0.16 ± 0.05/0.18 ± 0.06 and 0.36 ± 0.1/0.38 ± 0.1 Sv RBE = 5 /MBq considering either the 221Fr or 213Bi SPECT. CONCLUSION SPECT/CT imaging and urine analysis showed minor differences of up to 10% in the daughter-specific pharmacokinetics. These variances had a minimal impact on the lesion and kidney dosimetry which remained within 8%.
Collapse
Affiliation(s)
- Grigory Liubchenko
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany.
| | - Guido Böning
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany
| | - Mathias Zacherl
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany
| | - Mikhail Rumiantcev
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Sandra Resch
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany
| | - Astrid Delker
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Marchioninstrasse 15, 81377, Munich, Germany
| |
Collapse
|
6
|
Rathke H, Winter E, Bruchertseifer F, Röhrich M, Giesel FL, Haberkorn U, Morgenstern A, Kratochwil C. Deescalated 225Ac-PSMA-617 Versus 177Lu/ 225Ac-PSMA-617 Cocktail Therapy: A Single-Center Retrospective Analysis of 233 Patients. J Nucl Med 2024; 65:1057-1063. [PMID: 38844358 DOI: 10.2967/jnumed.123.267206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/25/2024] [Indexed: 07/03/2024] Open
Abstract
The aim of this work is to evaluate our clinical real-world data obtained with 225Ac-PSMA-617 (AcPSMA), which were acquired under compassionate care regulations in patients with advanced-stage prostate cancer. The objective parameters that could be derived from this evaluation are compared with previous literature about AcPSMA and 177Lu-PSMA-617 (LuPSMA). Methods: The medical files of all patients who had received AcPSMA on an individual patient basis at the Heidelberg University Hospital since January 2014 were analyzed retrospectively. Previously published patients were excluded. The remaining patients were tailored into 2 subgroups with different treatment strategies: group 1 received AcPSMA as a deescalated monotherapy, and group 2 received LuPSMA plus AcPSMA as a cocktail regimen. Baseline characteristics, serum prostate-specific antigen (PSA) response, and overall survival were compared with the most appropriate historical controls. Results: Of 287 patients treated, 54 were excluded because of previous publication and 233 were evaluated, 104 of whom received AcPSMA monotherapy (median, 6 MBq). In this group, 55 patients (53%) presented with a best PSA response of at least 50%. The other 129 patients received a cocktail therapy of AcPSMA (median, 4 MBq) plus LuPSMA (4 GBq). In this group, a best PSA response of at least 50% was observed in 74 patients (57%). The median overall survival in the monogroup was 9 mo and in the cocktail group was 15 mo. If adjusted for prognostic baseline characteristics, the efficacy of both regimens was not significantly different. Conclusion: Deescalated treatment activities of AcPSMA or AcPSMA and LuPSMA cocktail regimens present better tolerability with regard to xerostomia than previous regimens of at least 100 kBq/kg while retaining high antitumor activity in poor-prognosis prostate cancer patients.
Collapse
Affiliation(s)
- Hendrik Rathke
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany;
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
| | - Erik Winter
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Manuel Röhrich
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
- Department of Nuclear Medicine, Mainz University Hospital, Mainz, Germany; and
| | - Frederik Lars Giesel
- Department of Nuclear Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Clemens Kratochwil
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
Wang Y, Hua Q, Zhang Y, Wang W, Chen Y. Favorable Response of 225 Ac-PSMA in the Treatment of Castration-Resistant Prostate Cancer With High Bone Metastasis Burden. Clin Nucl Med 2024; 49:674-676. [PMID: 38598741 DOI: 10.1097/rlu.0000000000005222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
ABSTRACT 225 Ac-PSMA treatment demonstrated low hematologic toxicity for prostate cancer with diffuse red marrow infiltration. A 70-year-old man with diffuse bone metastases of castration-resistant prostate cancer received 225 Ac-PSMA radiation therapy. After 1 treatment cycle, the patient's skeletal lesions demonstrated a significant response and a significant decrease in PSA. 225 Ac-PSMA may be a promising therapeutic option for metastatic castration-resistant prostate cancer patients with high bone metastatic burden.
Collapse
|
8
|
Rosar F, Burgard C, Rohloff LV, Blickle A, Bartholomä M, Maus S, Petto S, Schaefer-Schuler A, Ezziddin S. 225 Ac-PSMA-617 Augmentation in High-Risk mCRPC Undergoing 177 Lu-PSMA-617 Radioligand Therapy : Pilot Experience From a Prospective Registry. Clin Nucl Med 2024; 49:621-629. [PMID: 38769643 DOI: 10.1097/rlu.0000000000005253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PURPOSE This pilot study investigates the efficacy and safety profile as well as predictive biomarkers of 225 Ac-PSMA-617-augmented 177 Lu-PSMA-617 radioligand therapy (RLT) in a cohort of high-risk patients with metastatic castration-resistant prostate cancer (mCRPC), enrolled in a prospective registry (NCT04833517). PATIENTS AND METHODS A group of n = 33 high-risk mCRPC patients received 177 Lu-PSMA-617 RLT, augmented by 1 or more cycles of 225 Ac-PSMA-617. Response was assessed by prostate-specific antigen (PSA) serum value after 2 cycles of treatment. Overall survival (OS) and PSA-based progression-free survival were evaluated using Kaplan-Meier analysis. To assess the side effect profile, Common Terminology Criteria for Adverse Events were applied. In total, 12 potential pretherapeutic biomarkers were tested for association with OS. RESULTS The median decrease in serum PSA value was -49.1%, and 16/33 (48.5%) patients experienced a partial response after 2 cycles RLT. The median PSA-based progression-free survival and median OS was 7.2 and 14.8 months, respectively. Alkaline phosphatase ( P < 0.001), lactate dehydrogenase ( P = 0.035), Eastern European Oncology Group Performance Score ( P = 0.037), and the presence of visceral metastases ( P = 0.029) revealed significant association with OS in Kaplan-Meier analysis (log-rank test). Most of the recorded adverse events were rated as mild or moderate. Higher-grade adverse events were very limited with only 1 case (3.0%) of grade 3 anemia. Treatment-related mild xerostomia was recorded in 6/33 (18.2%) patients. CONCLUSIONS 225 Ac-PSMA-617 augmentation in high-risk mCRPC undergoing 177 Lu-PSMA-617 RLT appears to be an effective treatment option with a favorable safety profile. The pretherapeutic values of alkaline phosphatase, lactate dehydrogenase, the Eastern European Oncology Group Performance Score, and the presence of visceral metastases may be appropriate biomarkers predicting survival outcome of this treatment regimen.
Collapse
Affiliation(s)
- Florian Rosar
- From the Department of Nuclear Medicine, Saarland University-Medical Center, Homburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ndlovu H, Mokoala KMG, Lawal I, Emmett L, Sathekge MM. Prostate-specific Membrane Antigen: Alpha-labeled Radiopharmaceuticals. PET Clin 2024; 19:371-388. [PMID: 38658230 DOI: 10.1016/j.cpet.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Novel prostate-specific membrane antigen (PSMA) ligands labeled with α-emitting radionuclides are sparking a growing interest in prostate cancer treatment. These targeted alpha therapies (TATs) have attractive physical properties that deem them effective in progressive metastatic castrate-resistant prostate cancer (mCRPC). Among the PSMA TAT radiopharmaceuticals, [225Ac]Ac-PSMA has been used extensively on a compassionate basis and is currently undergoing phase I trials. Notably, TAT has the potential to improve quality of life and has favorable antitumor activity and outcomes in multiple scenarios other than in mCRPC. In addition, resistance mechanisms to TAT may be amenable to combination therapies.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Kgomotso M G Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa
| | - Ismaheel Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Louise Emmett
- Theranostics and Nuclear Medicine, St Vincent's Hospital Sydney, Australia
| | - Mike M Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, South Africa.
| |
Collapse
|
10
|
Vorster M, Sathekge M. Advances in PSMA Alpha Theragnostics. Semin Nucl Med 2024; 54:591-602. [PMID: 38658300 DOI: 10.1053/j.semnuclmed.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Alpha theranostics offer an attractive alternative form of therapy, which has best been investigated and documented with 225Ac-PSMA in patients with prostate cancer. Advantages offered by targeted alpha therapy include overcoming radiation resistance, oxygen independence, effecting double-stranded DNA breakages within the tumors with anticipated improved clinical outcomes and an acceptable side effect profile. The previous Seminars article on this topic, published in 2020, had to rely mostly on published case reports and small observational studies. In the last few years, however, several meta-analyses have emerged that evaluate the safety and efficacy of 225Ac-PSMA in prostate cancer patients, followed most recently by a multi-center retrospective study initiated by WARMTH. The findings of these publications, together with the exploration of TAT offered in clinical conditions other than as a last resort, is the focus of this updated overview. Unresolved clinical issues that remain, include the appropriate selection of patients that would benefit most from treatment with 225Ac-PSMA, treatment timing within the disease landscape, optimal dosing schedule, dosimetry, when and how to best use combination therapies and minimization and treatment of side effects, particularly that of xerostomia.
Collapse
Affiliation(s)
- Mariza Vorster
- Department of Nuclear Medicine at Inkosi Albert Luthuli Hospital, University of KwaZulu-Natal, KwaZulu-Natal, South Africa.
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa; Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
11
|
Song H, Sgouros G. Alpha and Beta Radiation for Theragnostics. PET Clin 2024; 19:307-323. [PMID: 38688775 DOI: 10.1016/j.cpet.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Targeted radionuclide therapy (TRT) has significantly evolved from its beginnings with iodine-131 to employing carrier molecules with beta emitting isotopes like lutetium-177. With the success of Lu-177-DOTATATE for neuroendocrine tumors and Lu-177-PSMA-617 for prostate cancer, several other beta emitting radioisotopes, such as Cu-67 and Tb-161, are being explored for TRT. The field has also expanded into targeted alpha therapy (TAT) with agents like radium-223 for bone metastases in prostate cancer, and several other alpha emitter radioisotopes with carrier molecules, such as Ac-225, and Pb-212 under clinical trials. Despite these advancements, the scope of TRT in treating diverse solid tumors and integration with other therapies like immunotherapy remains under investigation. The success of antibody-drug conjugates further complements treatments with TRT, though challenges in treatment optimization continue.
Collapse
Affiliation(s)
- Hong Song
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - George Sgouros
- Division of Radiological Physics, Department of Radiology and Radiological Sciences, The Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Al-Ibraheem A, Al-Abdallat H, Al-Rashdan R, Abdlkadir AS, Sweedat DA, Alyasjeen SF, Ghesani M, Kairemo K, Buscombe JR. Navigating The Prostate Cancer Frontier: A Bibliometric and Altmetric Analysis of [ 225Ac]Ac-PSMA Therapy. Semin Nucl Med 2024; 54:603-611. [PMID: 38735824 DOI: 10.1053/j.semnuclmed.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 05/14/2024]
Abstract
The main aim of this study was to evaluate the current state of bibliometric and altmetric research output of [225Ac]Ac-Prostate specific membrane antigen (PSMA) and its implications for prostate cancer (PC). Both PubMed and Scopus digital libraries were systematically explored to retrieve relevant data on the topic of interest. The study of various bibliometric and altmetric indices was facilitated through the use of Microsoft Excel, Stata (Version 17.0), and VOSviewer (Version 1.6) Softwares. The parameters included in this study comprised the examination of published articles, annual trends, countries, institutions, authors, journals, and co-occurring keywords. From 2014 to 2024, our study examined a total of 100 publications within the given domain. The studies that received the highest citations primarily centered on the crucial topic of metastatic castration-resistant prostate cancer, with a particular emphasis on evaluating the safety and effectiveness of [225Ac]Ac-PSMA therapy. Moreover, much scholarly inquiry has been devoted to examining the [225Ac]Ac-PSMA adverse effects. Three high prolific countries (namely, Germany, United States, and South Africa) dominated the research render in terms of publications and citations. Finally, A strong correlation was observed between altmetric score and citation number (P < 0.001). The observed surge in scholarly research output and altmetric indicators associated with [225Ac]Ac-PSMA signifies a shift in emphasis towards embracing alpha targeted therapy in PC.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, 11942, Jordan; School of Medicine, University of Jordan, Amman, 11942, Jordan.
| | | | - Rakan Al-Rashdan
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, 11942, Jordan
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, 11942, Jordan
| | - Deya' Aldeen Sweedat
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, 11942, Jordan
| | - Salem Fandi Alyasjeen
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, 11942, Jordan
| | - Munir Ghesani
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kalevi Kairemo
- Department of Molecular Radiotherapy and Nuclear Medicine, International Comprehensive Cancer Center Docrates, Saukonpaadenranta 2, FI-00180 Helsinki, Finland; Department of Nuclear Medicine, University of Texas, MD Anderson Cancer Center, Holcombe Blvd, 77030 Houston, TX
| | - John R Buscombe
- Department of Nuclear Medicine, Cambridge University Hospitals, Cambridge, United Kingdom
| |
Collapse
|
13
|
Tagawa ST, Thomas C, Sartor AO, Sun M, Stangl-Kremser J, Bissassar M, Vallabhajosula S, Castellanos SH, Nauseef JT, Sternberg CN, Molina A, Ballman K, Nanus DM, Osborne JR, Bander NH. Prostate-Specific Membrane Antigen-Targeting Alpha Emitter via Antibody Delivery for Metastatic Castration-Resistant Prostate Cancer: A Phase I Dose-Escalation Study of 225Ac-J591. J Clin Oncol 2024; 42:842-851. [PMID: 37922438 PMCID: PMC10906595 DOI: 10.1200/jco.23.00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 11/05/2023] Open
Abstract
PURPOSE Novel therapies are needed to extend survival in metastatic castration-resistant prostate cancer (mCRPC). Prostate-specific membrane antigen (PSMA), a cell surface antigen overexpressed in PC, provides a validated target. This dose-escalation study investigated the safety, efficacy, maximum tolerated dose (MTD), and recommended phase II dose (RP2D) for 225Ac-J591, anti-PSMA monoclonal antibody J591 radiolabeled with the alpha emitter actinium-225. METHODS Following investigational new drug-enabling preclinical studies, we enrolled patients with progressive mCRPC that was refractory to or who refused standard treatment options (including androgen receptor pathway inhibitor and had received or been deemed ineligible for taxane chemotherapy). No selection for PSMA was performed. Patients received a single dose of 225Ac-J591 at one of seven dose-escalation levels followed by expansion at the highest dose. Primary end point of dose-escalation cohort was determination of dose-limiting toxicity (DLT) and RP2D. RESULTS Radiochemistry and animal studies were favorable. Thirty-two patients received 225Ac-J591 in an accelerated dose-escalation design (22 in dose escalation, 10 in expansion). One patient (1 of 22; 4.5%) experienced DLT in cohort 6 (80 KBq/kg) but none in cohort 7; MTD was not reached, and RP2D was the highest dose level (93.3 KBq/kg). The majority of high-grade adverse events (AEs) were hematologic with an apparent relationship with administered radioactivity. Nonhematologic AEs were generally of low grade. Prostate-specific antigen (PSA) declines and circulating tumor cell (CTC) control were observed: 46.9% had at least 50% PSA decline at any time (34.4% confirmed PSA response), and protocol-defined CTC count response occurred in 13 of 22 (59.1%). CONCLUSION To our knowledge, this is the first-in-human phase I dose-escalation trial of a single dose of 225Ac-J591 in 32 patients with pretreated progressive mCRPC demonstrated safety and preliminary efficacy signals. Further investigation is underway.
Collapse
Affiliation(s)
- Scott T. Tagawa
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
- Department of Urology, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine-NewYork Presbyterian Hospital, New York, NY
| | - Charlene Thomas
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - A. Oliver Sartor
- Departments of Medicine and Urology, Tulane University School of Medicine, New Orleans, LA
| | - Michael Sun
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | - Mahelia Bissassar
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | - Sandra Huicochea Castellanos
- Meyer Cancer Center, Weill Cornell Medicine-NewYork Presbyterian Hospital, New York, NY
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Jones T. Nauseef
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine-NewYork Presbyterian Hospital, New York, NY
| | - Cora N. Sternberg
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
- Department of Urology, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine-NewYork Presbyterian Hospital, New York, NY
| | - Ana Molina
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine-NewYork Presbyterian Hospital, New York, NY
| | - Karla Ballman
- Meyer Cancer Center, Weill Cornell Medicine-NewYork Presbyterian Hospital, New York, NY
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - David M. Nanus
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
- Department of Urology, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine-NewYork Presbyterian Hospital, New York, NY
| | - Joseph R. Osborne
- Meyer Cancer Center, Weill Cornell Medicine-NewYork Presbyterian Hospital, New York, NY
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Neil H. Bander
- Department of Urology, Weill Cornell Medicine, New York, NY
- Meyer Cancer Center, Weill Cornell Medicine-NewYork Presbyterian Hospital, New York, NY
| |
Collapse
|
14
|
Sathekge MM, Lawal IO, Bal C, Bruchertseifer F, Ballal S, Cardaci G, Davis C, Eiber M, Hekimsoy T, Knoesen O, Kratochwil C, Lenzo NP, Mahapane J, Maserumule LC, Mdlophane AH, Mokoala KMG, Ndlovu H, Pant V, Rathke H, Reed J, Sen IB, Singh A, Sood A, Tauber R, Thakral P, Yadav MP, Morgenstern A. Actinium-225-PSMA radioligand therapy of metastatic castration-resistant prostate cancer (WARMTH Act): a multicentre, retrospective study. Lancet Oncol 2024; 25:175-183. [PMID: 38218192 DOI: 10.1016/s1470-2045(23)00638-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Actinium-225 (225Ac) prostate-specific membrane antigen (PSMA) radioligand therapy (RLT) is a novel therapy for metastatic castration-resistant prostate cancer (mCRPC). We aimed to report the safety and antitumour activity of 225Ac-PSMA RLT of mCRPC in a large cohort of patients treated at multiple centres across the world. METHODS This retrospective study included patients treated at seven centres in Australia, India, Germany, and South Africa. We pooled data of consecutive patients of any age and Eastern Cooperative Oncology Group performance status with histopathologically confirmed adenocarcinoma of the prostate who were treated with one or more cycles of 8 MBq 225Ac-PSMA RLT administered intravenously for mCRPC. Previous lines of mCRPC treatment included taxane-based chemotherapy, androgen-receptor-axis inhibitors, lutetium-177 (177Lu) PSMA RLT, and radium-223 dichloride. The primary outcomes were overall survival and progression-free survival. FINDINGS Between Jan 1, 2016, and May 31, 2023, 488 men with mCRPC received 1174 cycles of 225Ac-PSMA RLT (median two cycles, IQR 2-4). The mean age of the patients was 68·1 years (SD 8·8), and the median baseline prostate-specific antigen was 169·5 ng/mL (IQR 34·6-519·8). Previous lines of treatment were docetaxel in 324 (66%) patients, cabazitaxel in 103 (21%) patients, abiraterone in 191 (39%) patients, enzalutamide in 188 (39%) patients, 177Lu-PSMA RLT in 154 (32%) patients, and radium-223 dichloride in 18 (4%) patients. The median follow-up duration was 9·0 months (IQR 5·0-17·5). The median overall survival was 15·5 months (95% CI 13·4-18·3) and median progression-free survival was 7·9 months (6·8-8·9). In 347 (71%) of 488 patients, information regarding treatment-induced xerostomia was available, and 236 (68%) of the 347 patients reported xerostomia after the first cycle of 225Ac-PSMA RLT. All patients who received more than seven cycles of 225Ac-PSMA RLT reported xerostomia. Grade 3 or higher anaemia occurred in 64 (13%) of 488 patients, leukopenia in 19 (4%), thrombocytopenia in 32 (7%), and renal toxicity in 22 (5%). No serious adverse events or treatment-related deaths were recorded. INTERPRETATION 225Ac-PSMA RLT shows a substantial antitumour effect in mCRPC and represents a viable therapy option in patients treated with previous lines of approved agents. Xerostomia is a common side-effect. Severe bone marrow and renal toxicity are less common adverse events. FUNDING None.
Collapse
Affiliation(s)
- Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa; Nuclear Medicine Research Infrastructure, Pretoria, South Africa.
| | - Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sajana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Cindy Davis
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mathias Eiber
- Department of Nuclear Medicine, Klinikum Rechts Der Isar, Technical University of Munich and Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Türkay Hekimsoy
- Department of Nuclear Medicine, Klinikum Rechts Der Isar, Technical University of Munich and Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Otto Knoesen
- Nuclear Technology Products (NTP), Division of the South African Nuclear Energy Cooperation (NECSA), Pelindaba, South Africa
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Johncy Mahapane
- Department of Radiography, University of Pretoria, Pretoria, South Africa
| | - Letjie C Maserumule
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa; Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Amanda H Mdlophane
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Kgomotso M G Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa; Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa; Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Vineet Pant
- Royal Liverpool University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Hendrik Rathke
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany; Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Janet Reed
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | - Ishita B Sen
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, India
| | | | - Ashwani Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Robert Tauber
- Department of Urology, School of Medicine, and Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Parul Thakral
- Department of Nuclear Medicine, Fortis Memorial Research Institute, Gurugram, India
| | - Madhav Prasad Yadav
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Alfred Morgenstern
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; European Commission, Joint Research Centre, Karlsruhe, Germany
| |
Collapse
|
15
|
Ling SW, van der Veldt AAM, Konijnenberg M, Segbers M, Hooijman E, Bruchertseifer F, Morgenstern A, de Blois E, Brabander T. Evaluation of the tolerability and safety of [ 225Ac]Ac-PSMA-I&T in patients with metastatic prostate cancer: a phase I dose escalation study. BMC Cancer 2024; 24:146. [PMID: 38287346 PMCID: PMC10826262 DOI: 10.1186/s12885-024-11900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Life expectancy of patients with metastatic castration-resistant prostate cancer (mCRPC) is still limited despite several systemic treatments. Within five years after diagnosis of primary prostate cancer, 10-20% of the patients have mCRPC and curation is not an option. Radionuclide therapy (RNT) targeted against prostate-specific membrane antigen (PSMA) emerged as a new treatment option and showed effective results in patients with mCRPC. Survival benefit after [177Lu]Lu-PSMA RNT has already been demonstrated in several clinical trials. However, [225Ac]Ac-PSMA (225Ac-PSMA) appears to be an even more promising radiopharmaceutical for the treatment of mCRPC. The use of alpha emitting radionuclides offers advantages over beta emitting radionuclides due to the high linear energy transfer effective for killing tumor cells and the limited range to reduce the radiation effects on the healthy tissue. However, these results are based on retrospective data and safety data of 225Ac-PSMA are still limited. Therefore, a prospective trial is needed to determine the optimal amount of activity that can be administered. METHODS The 225Ac-PSMA-Imaging & Therapy (I&T) trial is an investigator-initiated phase I, single-center, open label, repeated dose-escalation and expansion trial. Patient with PSMA-positive mCRPC after at least one line of chemotherapy and/or one line of nonsteroidal antiandrogen will be treated with 225Ac-PSMA-I&T in increasing amount of activity per cycle. Dose-escalation following an accelerated 3 + 3 design which allows to open the next dose-level cohort in the absence of dose limiting toxicity while the previous one is still ongoing. Up to 4 treatment cohorts will be explored including up to 3 dose-escalation cohorts and one expansion cohort where patients will be administered with the recommended dose. A total of up to 30 patients will be enrolled in this trial. All patients will be evaluated for safety. Additionally, dosimetry was performed for the patients in the dose-escalation cohorts after the first 225Ac-PSMA-I&T administration. DISCUSSION This trial will assess the safety and tolerability of 225Ac-PSMA-I&T in patients with mCRPC to recommend the optimal dose for the phase II trial. TRIAL REGISTRATION ClinicalTrials.gov, (NCT05902247). Retrospectively registered 13 June 2023.
Collapse
Affiliation(s)
- Sui Wai Ling
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | - Astrid A M van der Veldt
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marcel Segbers
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Eline Hooijman
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Erik de Blois
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Lawal IO, Ndlovu H, Kgatle M, Mokoala KMG, Sathekge MM. Prognostic Value of PSMA PET/CT in Prostate Cancer. Semin Nucl Med 2024; 54:46-59. [PMID: 37482489 DOI: 10.1053/j.semnuclmed.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein expressed in the majority of prostate cancer (PCa). PSMA has an enzymatic function that makes metabolic substrates such as folate available for utilization by PCa cells. Intracellular folate availability drives aggressive tumor phenotype. PSMA expression is, therefore, a marker of aggressive tumor biology. The large extracellular domain of PSMA is available for targeting by diagnostic and therapeutic radionuclides, making it a suitable cellular epitope for theranostics. PET imaging of radiolabeled PSMA ligands has several prognostic utilities. In the prebiopsy setting, intense PSMA avidity in a prostate lesion correlate well with clinically significant PCa (csPCa) on histology. When used for staging, PSMA PET imaging outperforms conventional imaging for the accurate staging of primary PCa, and findings on imaging predict post-treatment outcomes. The biggest contribution of PSMA PET imaging to PCa management is in the biochemical recurrence setting, where it has emerged as the most sensitive imaging modality for the localization of PCa recurrence by helping to guide salvage therapy. PSMA PET obtained for localizing the site of recurrence is prognostic, such that a higher lesion number predicts a less favorable outcome to salvage radiotherapy or surgical intervention. Systemic therapy is given to patients with advanced PCa with distant metastasis. PSMA PET is useful for predicting response to treatments with chemotherapy, first- and second-line androgen deprivation therapies, and PSMA-targeted radioligand therapy. Artificial intelligence using machine learning algorithms allows for the mining of information from clinical images not visible to the human eyes. Artificial intelligence applied to PSMA PET images, therefore, holds great promise for prognostication in PCa management.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA; Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mankgopo Kgatle
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Kgomotso M G Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa.
| |
Collapse
|
17
|
Echigo H, Mishiro K, Munekane M, Fuchigami T, Washiyama K, Takahashi K, Kitamura Y, Wakabayashi H, Kinuya S, Ogawa K. Development of probes for radiotheranostics with albumin binding moiety to increase the therapeutic effects of astatine-211 ( 211At). Eur J Nucl Med Mol Imaging 2024; 51:412-421. [PMID: 37819452 DOI: 10.1007/s00259-023-06457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE We have developed probes for multiradionuclides radiotheranostics using RGD peptide ([67Ga]Ga-DOTA-c[RGDf(4-I)K] ([67Ga]1) and Ga-DOTA-[211At]c[RGDf(4-At)K] ([211At]2)) for clinical applications. The introduction of an albumin binding moiety (ABM), such as 4-(4-iodophenyl)-butyric acid (IPBA), that has high affinity with the blood albumin and prolongs the circulation half-life can improve the pharmacokinetics of drugs. To perform more effective targeted alpha therapy (TAT), we designed and synthesized Ga-DOTA-K([211At]APBA)-c(RGDfK) ([211At]5) with 4-(4-astatophenyl)-butyric acid (APBA), which has an astato group instead of an iodo group in IPBA. We evaluated whether APBA functions as ABM and [211At]5 is effective for TAT. In addition, we prepared 67Ga-labeled RGD peptide without ABM, [67Ga]Ga-DOTA-K-c(RGDfK) ([67Ga]3), and 125I-labeled RGD peptide with ABM, Ga-DOTA-K([125I]IPBA)-c(RGDfK) ([125I]4), to compare with [211At]5. METHODS Biodistribution experiments of [67Ga]3 without ABM, [125I]4 and [211At]5 with ABM were conducted in normal mice and U-87 MG tumor-bearing mice. In addition, two doses of [211At]5 (370 or 925 kBq) were administered to U-87 MG tumor-bearing mice to confirm the therapeutic effects. RESULTS The blood retention of [125I]4 and [211At]5 was remarkably increased compared to [67Ga]3. Also, [125I]4 and [211At]5 showed similar biodistribution and significantly greater tumor accumulation and retention compared to [67Ga]3. In addition, [211At]5 inhibited tumor growth in a dose-dependent manner. CONCLUSION The functionality of APBA as ABM like IPBA, and the usefulness of [211At]5 as the radionuclide therapy agent for TAT was revealed.
Collapse
Affiliation(s)
- Hiroaki Echigo
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
18
|
Jalloul W, Ghizdovat V, Stolniceanu CR, Ionescu T, Grierosu IC, Pavaleanu I, Moscalu M, Stefanescu C. Targeted Alpha Therapy: All We Need to Know about 225Ac's Physical Characteristics and Production as a Potential Theranostic Radionuclide. Pharmaceuticals (Basel) 2023; 16:1679. [PMID: 38139806 PMCID: PMC10747780 DOI: 10.3390/ph16121679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The high energy of α emitters, and the strong linear energy transfer that goes along with it, lead to very efficient cell killing through DNA damage. Moreover, the degree of oxygenation and the cell cycle state have no impact on these effects. Therefore, α radioisotopes can offer a treatment choice to individuals who are not responding to β- or gamma-radiation therapy or chemotherapy drugs. Only a few α-particle emitters are suitable for targeted alpha therapy (TAT) and clinical applications. The majority of available clinical research involves 225Ac and its daughter nuclide 213Bi. Additionally, the 225Ac disintegration cascade generates γ decays that can be used in single-photon emission computed tomography (SPECT) imaging, expanding the potential theranostic applications in nuclear medicine. Despite the growing interest in applying 225Ac, the restricted global accessibility of this radioisotope makes it difficult to conduct extensive clinical trials for many radiopharmaceutical candidates. To boost the availability of 225Ac, along with its clinical and potential theranostic applications, this review attempts to highlight the fundamental physical properties of this α-particle-emitting isotope, as well as its existing and possible production methods.
Collapse
Affiliation(s)
- Wael Jalloul
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Teodor Ionescu
- Department of Morpho-Functional Sciences (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irena Cristina Grierosu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana Pavaleanu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| |
Collapse
|
19
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
20
|
Nelson BJB, Wilson J, Andersson JD, Wuest F. Theranostic Imaging Surrogates for Targeted Alpha Therapy: Progress in Production, Purification, and Applications. Pharmaceuticals (Basel) 2023; 16:1622. [PMID: 38004486 PMCID: PMC10674391 DOI: 10.3390/ph16111622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This article highlights recent developments of SPECT and PET diagnostic imaging surrogates for targeted alpha particle therapy (TAT) radiopharmaceuticals. It outlines the rationale for using imaging surrogates to improve diagnostic-scan accuracy and facilitate research, and the properties an imaging-surrogate candidate should possess. It evaluates the strengths and limitations of each potential imaging surrogate. Thirteen surrogates for TAT are explored: 133La, 132La, 134Ce/134La, and 226Ac for 225Ac TAT; 203Pb for 212Pb TAT; 131Ba for 223Ra and 224Ra TAT; 123I, 124I, 131I and 209At for 211At TAT; 134Ce/134La for 227Th TAT; and 155Tb and 152Tb for 149Tb TAT.
Collapse
Affiliation(s)
- Bryce J. B. Nelson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - John Wilson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - Jan D. Andersson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Edmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
21
|
Szponar P, Petrasz P, Brzeźniakiewicz-Janus K, Drewa T, Zorga P, Adamowicz J. Precision strikes: PSMA-targeted radionuclide therapy in prostate cancer - a narrative review. Front Oncol 2023; 13:1239118. [PMID: 38033494 PMCID: PMC10687416 DOI: 10.3389/fonc.2023.1239118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/18/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Radio-ligand targeted therapy is a new and promising concept of treatment Castration resistant prostate cancer (CRPC). Only a few radio-pharmaceutics were approved for usage in treating prostate cancer, among the multiple others tested. We aimed to review and summarize the literature on the therapeutic isotopes specific for PSMA. Methods We performed a scoping literature review of PubMed from January 1996 to December 2022. Results 98 publications were selected for inclusion in this review. The studies contained in publications allowed to summarize the data on pharmacokinetics, therapeutic effects, side effects and the medical use of 225Ac and 177Lu radionuclides. The review also presents new research directions for specific PSMA radionuclides. Conclusion Radioligand targeted therapy is a new and promising concept where Lu-177-PSMA-617 have promising outcomes in treatment according to standard of care.
Collapse
Affiliation(s)
- Paweł Szponar
- Department of Urology and Urological Oncology, Multidisciplinary Regional Hospital in, Gorzów Wielkopolski, Poland
| | - Piotr Petrasz
- Department of Urology and Urological Oncology, Multidisciplinary Regional Hospital in, Gorzów Wielkopolski, Poland
| | - Katarzyna Brzeźniakiewicz-Janus
- Department and Clinic of Hematology, Oncology and Radiotherapy of the University of Zielona Góra, Multidisciplinary Regional Hospital in, Gorzów Wielkopolski, Poland
| | - Tomasz Drewa
- General and Oncological Urology Clinic, University Hospital No. 1 Dr. Antoni Jurasz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Piotr Zorga
- Clinical Department of Nuclear Medicine with a PET/CT Laboratory of the University of Zielona Góra, Multidisciplinary Regional Hospital in, Gorzów Wielkopolski, Poland
| | - Jan Adamowicz
- General and Oncological Urology Clinic, University Hospital No. 1 Dr. Antoni Jurasz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
22
|
Arbuznikova D, Eder M, Grosu AL, Meyer PT, Gratzke C, Zamboglou C, Eder AC. Towards Improving the Efficacy of PSMA-Targeting Radionuclide Therapy for Late-Stage Prostate Cancer-Combination Strategies. Curr Oncol Rep 2023; 25:1363-1374. [PMID: 37861915 PMCID: PMC10640479 DOI: 10.1007/s11912-023-01458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW [177Lu]Lu-PSMA-617 is a radiopharmaceutical that emits beta-minus radiation and targets prostate-specific membrane antigen (PSMA)-positive prostate cancer. Despite its clinical success, there are still patients not showing sufficient response rates. This review compiles latest studies aiming at therapy improvement in [177Lu]Lu-PSMA-617-naïve and -resistant patients by alternative or combination treatments. RECENT FINDINGS A variety of agents to combine with [177Lu]Lu-PSMA-617 are currently under investigation including alpha radiation-emitting pharmaceuticals, radiosensitizers, taxane chemotherapeutics, androgen receptor pathway inhibitors, immune checkpoint inhibitors, and external beam radiation. Actinium-225 (225Ac)-labeled PSMA-targeting inhibitors are the most studied pharmaceuticals for combination therapy or as an alternative for treatment after progression under [177Lu]Lu-PSMA-617 therapy. Alpha emitters seem to have a potential of achieving a response to PSMA-targeting radionuclide therapy in both initial non-responders or responders to [177Lu]Lu-PSMA-617 later developing treatment resistance. Emerging evidence for immunostimulatory effects of radiopharmaceuticals and first prospective studies support the combination of [177Lu]Lu-PSMA-617 and immune checkpoint inhibition for late-stage prostate cancer.
Collapse
Affiliation(s)
- Daria Arbuznikova
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany.
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christian Gratzke
- Department of Urology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
23
|
Uygur E, Sezgin C, Parlak Y, Karatay KB, Arikbasi B, Avcibasi U, Toklu T, Barutca S, Harmansah C, Sozen TS, Maus S, Scher H, Aras O, Gumuser FG, Muftuler FZB. The Radiolabeling of [161Tb]-PSMA-617 by a Novel Radiolabeling Method and Preclinical Evaluation by In Vitro/In Vivo Methods. RESEARCH SQUARE 2023:rs.3.rs-3415703. [PMID: 37961521 PMCID: PMC10635383 DOI: 10.21203/rs.3.rs-3415703/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Prostate cancer (PC) is the most common type of cancer in elderly men, with a positive correlation with age. As resistance to treatment has developed, particularly in the progressive stage of the disease and in the presence of microfocal multiple bone metastases, new generation radionuclide therapies have emerged. Recently, [161Tb], a radiolanthanide introduced for treating micrometastatic foci, has shown great promise for treating prostate cancer. Results In this study, Terbium-161 [161Tb]Tb was radiolabeled with prostate-specific membrane antigen (PSMA)-617 ([161Tb]-PSMA-617) and the therapeutic efficacy of the radiolabeled compound investigated in vitro and in vivo. [161Tb]-PSMA-617 was found to have a radiochemical yield of 97.99 ± 2.01% and was hydrophilic. [161Tb]-PSMA-617 was also shown to have good stability, with a radiochemical yield of over 95% up to 72 hours. In vitro, [161Tb]-PSMA-617 showed a cytotoxic effect on LNCaP cells but not on PC-3 cells. In vivo, scintigraphy imaging visualized the accumulation of [161Tb]-PSMA-617 in the prostate, kidneys, and bladder. Conclusions The results suggest that [161Tb]-PSMA-617 can be an effective radiolabeled agent for the treatment of PSMA positive foci in prostate cancer.
Collapse
Affiliation(s)
- Emre Uygur
- Manisa Celal Bayar University: Manisa Celal Bayar Universitesi
| | | | - Yasemin Parlak
- Manisa Celal Bayar University: Manisa Celal Bayar Universitesi
| | - Kadriye Busra Karatay
- Ege University Institute of Nuclear Sciences: Ege Universitesi Nukleer Bilimler Enstitusu
| | | | - Ugur Avcibasi
- Manisa Celal Bayar Üniversitesi: Manisa Celal Bayar Universitesi
| | | | - Sabri Barutca
- Adnan Menderes Üniversitesi Tıp Fakültesi: Adnan Menderes Universitesi Tip Fakultesi
| | | | | | - Stephan Maus
- Saarland University Hospital and Saarland University Faculty of Medicine: Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes
| | - Howard Scher
- Memorial Sloan-Kettering Cancer Center Inpatient Hospital and Main Campus: Memorial Sloan Kettering Cancer Center
| | - Omer Aras
- Memorial Sloan-Kettering Cancer Center Inpatient Hospital and Main Campus: Memorial Sloan Kettering Cancer Center
| | | | | |
Collapse
|
24
|
Echavidre W, Fagret D, Faraggi M, Picco V, Montemagno C. Recent Pre-Clinical Advancements in Nuclear Medicine: Pioneering the Path to a Limitless Future. Cancers (Basel) 2023; 15:4839. [PMID: 37835533 PMCID: PMC10572076 DOI: 10.3390/cancers15194839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The theranostic approach in oncology holds significant importance in personalized medicine and stands as an exciting field of molecular medicine. Significant achievements have been made in this field in recent decades, particularly in treating neuroendocrine tumors using 177-Lu-radiolabeled somatostatin analogs and, more recently, in addressing prostate cancer through prostate-specific-membrane-antigen targeted radionuclide therapy. The promising clinical results obtained in these indications paved the way for the further development of this approach. With the continuous discovery of new molecular players in tumorigenesis, the development of novel radiopharmaceuticals, and the potential combination of theranostics agents with immunotherapy, nuclear medicine is poised for significant advancements. The strategy of theranostics in oncology can be categorized into (1) repurposing nuclear medicine agents for other indications, (2) improving existing radiopharmaceuticals, and (3) developing new theranostics agents for tumor-specific antigens. In this review, we provide an overview of theranostic development and shed light on its potential integration into combined treatment strategies.
Collapse
Affiliation(s)
- William Echavidre
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Daniel Fagret
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, CHU Grenoble Alpes, Inserm, 38000 Grenoble, France;
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| |
Collapse
|
25
|
Alan-Selcuk N, Beydagi G, Demirci E, Ocak M, Celik S, Oven BB, Toklu T, Karaaslan I, Akcay K, Sonmez O, Kabasakal L. Clinical Experience with [ 225Ac]Ac-PSMA Treatment in Patients with [ 177Lu]Lu-PSMA-Refractory Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 2023; 64:1574-1580. [PMID: 37620050 DOI: 10.2967/jnumed.123.265546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/13/2023] [Indexed: 08/26/2023] Open
Abstract
For patients with advanced-stage metastatic castration-resistant prostate cancer (mCRPC) who do not respond to [177Lu]Lu-PSMA therapy, there are limited treatment options. Clinical results obtained with [225Ac]Ac-PSMA are promising. We retrospectively analyzed the outcomes of patients treated with [225Ac]Ac-PSMA between December 2018 and October 2022. Methods: We evaluated the treatment results of 23 patients (mean age, 70.3 ± 8.8 y) with mCRPC who were refractory to treatment with [177Lu]Lu-PSMA (2-9 cycles). The safety profile was assessed according to Common Technology Criteria for Adverse Events version 5.0. Treatment efficacy was assessed using prostate-specific membrane antigen PET progression criteria and prostate-specific antigen (PSA) response according to Prostate Cancer Working Group 2 criteria after the first cycle of [225Ac]Ac-PSMA treatment. Results: All patients received androgen-deprivation therapy, whereas 22 (96%) and 19 (83%) patients received chemotherapy and second-generation antiandrogen therapy, respectively. One patient received 4 cycles, 2 received 3 cycles, 8 received 2 cycles, and 12 received 1 cycle of [225Ac]Ac-PSMA. The median interval between cycles was 13 wk (range, 8-28 wk). [225Ac]Ac-PSMA was administered with a mean activity of 7.6 MBq (range, 6.2-10.0 MBq) in each cycle. Patients were at an advanced stage of disease, and tumor burden was very high. Although the best PSA response was observed in 5 patients (26%) after [225Ac]Ac-PSMA treatment, there was at least some level of decline in PSA observed in 11 patients (58%; n = 19). Treatment response was assessed in patients who underwent [68Ga]Ga-PSMA PET/CT imaging. After the first cycle of treatment (n = 18), 50% of patients (n = 9) showed disease progression according to prostate-specific membrane antigen PET progression criteria, and the disease control rate was calculated to be 50%. Median progression-free survival was 3.1 mo, and median overall survival was 7.7 mo. Grade 3 hematologic toxicity occurred in 1 patient, and grade 3 nephrotoxicity was observed in another patient. Parotid SUVmax decreased by 33%, although all patients complained of dry mouth before treatment. Conclusion: We observed that [225Ac]Ac-PSMA therapy was safe and showed potential even in cases with advanced-stage mCRPC in which all other treatment options were completed.
Collapse
Affiliation(s)
- Nalan Alan-Selcuk
- Department of Nuclear Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Gamze Beydagi
- Department of Nuclear Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Emre Demirci
- Department of Nuclear Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
- Department of Radiology, University of Missouri, Columbia, Missouri
| | - Meltem Ocak
- Molecular Imaging and Theranostics Center, University of Missouri, Columbia, Missouri
| | - Serkan Celik
- Department of Medical Oncology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Bala B Oven
- Department of Medical Oncology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Turkay Toklu
- Department of Nuclear Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Ipek Karaaslan
- Department of Physics, Yeditepe University, Istanbul, Turkey; and
| | - Kaan Akcay
- Department of Nuclear Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Omer Sonmez
- Department of Nuclear Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Levent Kabasakal
- Department of Nuclear Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey;
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
26
|
Ballal S, Yadav MP, Satapathy S, Raju S, Tripathi M, Damle NA, Sahoo RK, Bal C. Long-term survival outcomes of salvage [ 225Ac]Ac-PSMA-617 targeted alpha therapy in patients with PSMA-expressing end-stage metastatic castration-resistant prostate cancer: a real-world study. Eur J Nucl Med Mol Imaging 2023; 50:3777-3789. [PMID: 37462775 DOI: 10.1007/s00259-023-06340-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/09/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Despite the existence of various treatment options, the prognosis for patients with metastatic castration-resistant prostate cancer (mCRPC) remains unfavorable. One potential therapeutic approach is the use of [225Ac]Ac-PSMA-617, a targeted alpha therapy (TAT) that administers alpha-particle radiation specifically to prostate cancer cells expressing PSMA. In this study, we report the long-term survival outcomes of this novel therapy in a series of patients with mCRPC who have exhausted all standard treatment options. METHODS The study enrolled patients with mCRPC who had shown resistance to standard lines of therapies, including next-generation anti-androgen therapies and taxane-based chemotherapies. These eligible patients received treatment with [225Ac]Ac-PSMA-617 at 100-150 kBq/kg doses administered every 8 weeks. The primary objective of the study was to assess overall survival (OS), while secondary objectives included evaluating radiological progression-free survival (rPFS), monitoring serum prostate-specific antigen (PSA) levels as a measure of biochemical response, and assessing adverse events using the CTCAE v5.0 grading system. RESULTS Among the 63 initially enrolled patients, a total of 56 patients who had completed at least two cycles of [225Ac]Ac-PSMA-617 were included in this study. The mean age was 67 years (range, 39-87) and patients received a total of 204 cycles of [225Ac]Ac-PSMA-617 TAT. 91% of patients exhibited any PSA decline, with 67.8% experiencing a decline of 50% or more. The median follow-up was of 22 months (range: 6-59 months). Imaging-based disease progression was observed in 68% of patients, and 66% of patients succumbed to the disease. The median OS was 15 months (95% CI: 10-19). In univariate analysis, factors such as lack of >50% PSA decline (P=0.031), Eastern Cooperative Oncology Group (ECOG) performance status of 2 or higher (P=0.048), and radiological progression (rPD) (P<0.001) were found to be predictors of poor OS. However, in multivariate analysis, only rPD emerged as an independent prognostic factor with a hazard ratio (HR) of 8.264 (95% CI: 1.429-16.497, P=0.004). The estimated median rPFS was 9 months (95% CI: 7-15). Moreover, patients who demonstrated any PSA decline had a median rPFS of 10 months compared to only 3 months in patients without any PSA decline (multivariate HR: 6.749; 95% CI: 1.949-23.370; P=0.002). Fatigue was one of the most common treatment-emergent adverse events, with grades 1/2 occurring in 70% of patients and grades 3 or higher in 3.5% of patients. This fatigue was transient and resolved before the next treatment cycle. Additionally, approximately one-third of patients experienced xerostomia (grades 1/2: 32.1%). CONCLUSION [225Ac]Ac-PSMA-617 targeted alpha therapy, was found to be well-tolerated with acceptable adverse events and effective in the treatment of patients with end-stage mCRPC.
Collapse
Affiliation(s)
- Sanjana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
- Department of Medical Oncology, BR Ambedkar Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Madhav P Yadav
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
- Department of Medical Oncology, BR Ambedkar Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Swayamjeet Satapathy
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
- Department of Medical Oncology, BR Ambedkar Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Shobhana Raju
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
- Department of Medical Oncology, BR Ambedkar Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Madhavi Tripathi
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
- Department of Medical Oncology, BR Ambedkar Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Nishikant A Damle
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
- Department of Medical Oncology, BR Ambedkar Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjit K Sahoo
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
- Department of Medical Oncology, BR Ambedkar Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
- Department of Medical Oncology, BR Ambedkar Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
27
|
Parghane RV, Basu S. PSMA-targeted radioligand therapy in prostate cancer: current status and future prospects. Expert Rev Anticancer Ther 2023; 23:959-975. [PMID: 37565281 DOI: 10.1080/14737140.2023.2247562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/19/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION The prostate-specific membrane antigen (PSMA) targeted radioligand therapy (PRLT) for the treatment of metastatic castration-resistant prostate cancer (mCRPC) patients has generated significant interest among the oncologic community, with several publications documenting good response rates and survival benefits with low toxicity profiles. AREAS COVERED Indications, patient preparation, dose administration, post-treatment imaging, dosimetry, and side effect profiles of 177Lu-PSMA-617 are discussed in this article. We also discuss results from prospective studies, major retrospective studies, meta-analyses, clinical trials, and mentioned major ongoing clinical trials on PRLT. We have also portrayed our own experiences and future perspectives on PRLT. EXPERT OPINION For PRLT, PSMA-617 and PSMA-I&T molecules have revolutionized the theranostic approach in the management of advanced prostate cancer, with solid backing from several published articles showing favorable outcomes and an excellent safety profile of 177Lu-PSMA-617. Improvement in quality of life and survival was seen in the majority of mCRPC patients after 177Lu-PSMA-617 PRLT. Patients with good performance status, asymptomatic, only lymph node metastases, high PSMA expressing lesions, and no discordant FDG avid lesions have a longer survival after 177Lu-PSMA-617 PRLT than patients with poor performance status, symptomatic, hepatic, brain, and skeletal metastases, discordant PSMA, and FDG-avid lesions. Docetaxel and cabazitaxel are approved treatments for mCRPC patients. 177Lu-PSMA-617 is approved as a third-line systemic treatment for mCRPC patients with failure to respond to androgen receptor pathway inhibitors and docetaxel therapy. PRLT is a safe and effective alternative to cabazitaxel (third-line systemic treatment), but it has a higher cost. 177Lu-PSMA-617 could be a more efficient therapeutic option for mCRPC patients as first-line or combined therapy, and it may be a useful therapeutic option for the treatment of metastatic hormone-sensitive prostate cancer (mHSPC) patients. Several clinical studies and clinical trials on PRLT are currently underway. In the future, the results of these trials will be helpful in evolving treatment strategies for prostate cancer patients.
Collapse
Affiliation(s)
- Rahul V Parghane
- Radiation Medicine Centre (BARC), Tata Memorial Hospital Annexe, Mumbai, India
- Radiation Medicine Centre (BARC), Homi Bhabha National Institute, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Centre (BARC), Tata Memorial Hospital Annexe, Mumbai, India
- Radiation Medicine Centre (BARC), Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
28
|
Deshayes E, Fersing C, Thibault C, Roumiguie M, Pourquier P, Houédé N. Innovation in Radionuclide Therapy for the Treatment of Prostate Cancers: Radiochemical Perspective and Recent Therapeutic Practices. Cancers (Basel) 2023; 15:3133. [PMID: 37370743 DOI: 10.3390/cancers15123133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer represents the second cause of death by cancer in males in western countries. While early-stage diseases are accessible to surgery and/or external radiotherapy, advanced metastatic prostate cancers are primarily treated with androgen deprivation therapy, to which new generation androgen receptor antagonists or taxane-based chemotherapies are added in the case of tumor relapse. Nevertheless, patients become invariably resistant to castration with a median survival that rarely exceeds 3 years. This fostered the search for alternative strategies, independent of the androgen receptor signaling pathway. In this line, radionuclide therapies may represent an interesting option as they could target either the microenvironment of sclerotic bone metastases with the use of radiopharmaceuticals containing samarium-153, strontium-89 or radium-223 or tumor cells expressing the prostate-specific membrane antigen (PSMA), a protein found at the surface of prostate cancer cells. This review gives highlights the chemical properties of radioligands targeting prostate cancer cells and recapitulates the clinical trials evaluating the efficacy of radionuclide therapies, alone or in combination with other approved treatments, in patients with castration-resistant prostate tumors. It discusses some of the encouraging results obtained, especially the benefit on overall survival that was reported with [177Lu]-PSMA-617. It also addresses the specific requirements for the use of this particular class of drugs, both in terms of medical staff coordination and adapted infrastructures for efficient radioprotection.
Collapse
Affiliation(s)
- Emmanuel Deshayes
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
- Department of Nuclear Medicine, Institute du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Department of Nuclear Medicine, Institute du Cancer de Montpellier (ICM), 34298 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Constance Thibault
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP Centre, 75015 Paris, France
| | - Mathieu Roumiguie
- Urology Department, Andrology and Renal Transplantation, CHU Rangueil, 31059 Toulouse, France
| | - Philippe Pourquier
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
| | - Nadine Houédé
- INSERM U1194, Montpellier Cancer Research Institute, University of Montpellier, 34298 Montpellier, France
- Medical Oncology Department, Institute de Cancérologie du Gard-CHU Caremeau, 30009 Nîmes, France
| |
Collapse
|
29
|
Sathekge M, Bruchertseifer F, Vorster M, Lawal IO, Mokoala K, Reed J, Maseremule L, Ndlovu H, Hlongwa K, Maes A, Morgenstern A, Van de Wiele C. 225Ac-PSMA-617 radioligand therapy of de novo metastatic hormone-sensitive prostate carcinoma (mHSPC): preliminary clinical findings. Eur J Nucl Med Mol Imaging 2023; 50:2210-2218. [PMID: 36864360 PMCID: PMC10199874 DOI: 10.1007/s00259-023-06165-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE 225Ac-PSMA-617 has demonstrated good anti-tumor effect as a treatment option for metastatic castration-resistant prostate cancer (mCRPC) patients. No study has previously assessed treatment outcome and survival following 225Ac-PSMA-617 treatment of de novo metastatic hormone-sensitive prostate carcinoma (mHSPC) patients. Based on the potential side effects that are known and explained to the patients by the oncologist, some of the patients refused the standard treatment and are seeking alternative therapies. Thus, we report our preliminary findings in a retrospective series of 21 mHSPC patients that refused standard treatment options and were treated with 225Ac-PSMA-617. METHODS We retrospectively reviewed patients with histologically confirmed de novo treatment-naïve bone ± visceral mHSPC that were treated with 225Ac-PSMA-617 radioligand therapy (RLT). Inclusion criteria included an Eastern Cooperative Oncology Group (ECOG) performance status of 0 to 2, treatment-naive bone ± visceral mHSPC, and patients refusal for ADT ± docetaxel, abiraterone acetate, or enzalutamide. We evaluated the response to treatment using prostate-specific antigen (PSA) response and the progression-free survival (PFS) and overall survival (OS) as well as the toxicities. RESULTS Twenty-one mHSPC patients were included in this preliminary work. Following treatment, twenty patients (95%) had any decline in PSA and eighteen patients (86%) presented with a PSA decline of ≥ 50% including 4 patients in whom PSA became undetectable. A lower percentage decrease in PSA following treatment was associated with increased mortality and shorter progression-free survival. Overall, administration of 225Ac-PSMA-617 was well tolerated. The commonest toxicity seen was grade I/II dry mouth observed in 94% of patients. CONCLUSIONS Given these favorable results, randomized prospective multicenter trials assessing the clinical value of 225Ac-PSMA-617 as a therapeutic agent for mHSPC administered either as monotherapy or administered concomitant with ADT are of interest.
Collapse
Affiliation(s)
- Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa.
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa.
| | | | - Mariza Vorster
- Department of Nuclear Medicine, University of Kwa-Zulu Natal & Inkosi Albert Luthuli Central Academic Hospital, Durban, South Africa
| | - Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Kgomotso Mokoala
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Janet Reed
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Letjie Maseremule
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Khanyi Hlongwa
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Pretoria, South Africa
| | - Alex Maes
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Katholieke University Leuven, Kortrijk, Belgium
| | - Alfred Morgenstern
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- European Commission, Joint Research Centre, Karlsruhe, Germany
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria, 0001, South Africa
- Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Parida GK, Panda RA, Bishnoi K, Agrawal K. Efficacy and Safety of Actinium-225 Prostate-Specific Membrane Antigen Radioligand Therapy in Metastatic Prostate Cancer: A Systematic Review and Metanalysis. Med Princ Pract 2023; 32:178-191. [PMID: 37247612 PMCID: PMC10601660 DOI: 10.1159/000531246] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Actinium-225 (Ac-225) labelled PSMA RLT has been tested recently in metastatic castration-resistant prostate cancer (mCRPC), with encouraging results. Ac-225, being an alpha emitter, is expected to have higher efficacy and fewer side effects compared to the beta-emitters such as Lutetium-177. We have performed a meta-analysis to assess the therapeutic responses, survival effects, and significant side effects of Ac-225 PSMA RLT in patients with mCRPC. METHODOLOGY Systematic literature search was carried out from five electronic databases PubMed/MEDLINE, SCOPUS, EMBASE, Web of Science, and Cochrane Library until March 2021. Eight studies were found to be eligible for this metanalysis. RESULTS Eight studies with 226 patients were analyzed in this metanalysis. 81% (95% CI 73-89) patients had a decline in PSA levels. 60% of the patients showed more than 50% PSA decline. Two studies assessed survival effects of radioligand naïve patients compared to patients who had received Lu-PSMA therapy previously and the pooled HR for radioligand naïve patients is 0.22. The most common toxicity reported was xerostomia in 167 patients out of 226 patients (73.9%, 95% CI 67.6-79.5%); however, most of them were confined to grade I and II levels. Other reported side effects include hematologic toxicity and nephrotoxicity. CONCLUSION Ac-PSMA RLT is a safe and potentially effective treatment option for patients with mCRPC.
Collapse
Affiliation(s)
- Girish Kumar Parida
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Raj Abhisek Panda
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Komal Bishnoi
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Kanhaiyalal Agrawal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
31
|
Feuerecker B, Kratochwil C, Ahmadzadehfar H, Morgenstern A, Eiber M, Herrmann K, Pomykala KL. Clinical Translation of Targeted α-Therapy: An Evolution or a Revolution? J Nucl Med 2023; 64:685-692. [PMID: 37055224 DOI: 10.2967/jnumed.122.265353] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Indexed: 04/15/2023] Open
Abstract
The field of radioligand therapy has advanced greatly in recent years, driven largely by β-emitting therapies targeting somatostatin receptor-expressing tumors and the prostate-specific membrane antigen. Now, more clinical trials are under way to evaluate α-emitting targeted therapies as potential next-generation theranostics with even higher efficacy due to their high linear energy and short range in human tissues. In this review, we summarize the important studies ranging from the first Food and Drug Administration-approved α-therapy, 223Ra-dichloride, for treatment of bone metastases in castration-resistant prostate cancer, including concepts in clinical translation such as targeted α-peptide receptor radiotherapy and 225Ac-PSMA-617 for treatment of prostate cancer, innovative therapeutic models evaluating new targets, and combination therapies. Targeted α-therapy is one of the most promising fields in novel targeted cancer therapy, with several early- and late-stage clinical trials for neuroendocrine tumors and metastatic prostate cancer already in progress, along with significant interest and investment in additional early-phase studies. Together, these studies will help us understand the short- and long-term toxicity of targeted α-therapy and potentially identify suitable therapeutic combination partners.
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Nuclear Medicine, Technische Universität München, München, Germany
- Department of Radiology, Technische Universität München, München, Germany
- German Cancer Consortium, partner sites München, Heidelberg, and Essen, Germany
- Department of Radiology, University Hospital, LMU München, München, Germany
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Hojjat Ahmadzadehfar
- Department of Nuclear Medicine, Klinikum Westfalen-Knappschaftskrankenhaus, Dortmund, Germany
| | | | - Matthias Eiber
- Department of Nuclear Medicine, Technische Universität München, München, Germany
| | - Ken Herrmann
- German Cancer Consortium, partner sites München, Heidelberg, and Essen, Germany
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; and
| | - Kelsey L Pomykala
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
32
|
Delker A, Schleske M, Liubchenko G, Berg I, Zacherl MJ, Brendel M, Gildehaus FJ, Rumiantcev M, Resch S, Hürkamp K, Wenter V, Unterrainer LM, Bartenstein P, Ziegler SI, Beyer L, Böning G. Biodistribution and dosimetry for combined [ 177Lu]Lu-PSMA-I&T/[ 225Ac]Ac-PSMA-I&T therapy using multi-isotope quantitative SPECT imaging. Eur J Nucl Med Mol Imaging 2023; 50:1280-1290. [PMID: 36629878 PMCID: PMC10027798 DOI: 10.1007/s00259-022-06092-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Quantitative SPECT for patient-specific dosimetry is a valuable tool in the scope of radionuclide therapy, although its clinical application for 225Ac-based treatments may be limited due to low therapeutic activities. Therefore, the aim of this study was to demonstrate the feasibility of clinical quantitative low-count SPECT imaging during [177Lu]Lu-PSMA-I&T/[225Ac]Ac-PSMA-I&T treatment. METHODS Eight prostate cancer patients (1000 MBq/8 MBq [177Lu]Lu-PSMA-I&T/[225Ac]Ac-PSMA-I&T) received a single-bed quantitative 177Lu/225Ac SPECT/CT acquisition (1 h) at 24 h post treatment (high-energy collimator, 16 projections p. head à 3.5 min, 128 × 128 pixel). The gamma peak at 440 keV (width: 10%) of the progeny 213Bi was imaged along with the peak at 208 keV (width: 15%) of 177Lu. Quantification included CT-based attenuation and window-based scatter correction plus resolution modelling. Gaussian post-filtering with a full-width-half-maximum of 30 mm and 40-45 mm was employed to match the signal-to-noise ratio of 225Ac and 177Lu, respectively. RESULTS Kidney (r = 0.96, p < 0.01) and lesion (r = 0.94, p < 0.01) SUV for [177Lu]Lu-PSMA-I&T and [225Ac]Ac-PSMA-I&T showed a strong and significant correlation. Kidney SUV were significantly higher (p < 0.01) for [225Ac]Ac-PSMA-I&T (2.5 ± 0.8 vs. 2.1 ± 0.9), while for [177Lu]Lu-PSMA-I&T lesion SUV were significantly higher (p = 0.03; 1.8 ± 1.1 vs. 2.1 ± 1.5). For absorbed dose estimates, significant differences regarding the kidneys remained, while no significant differences for lesion dosimetry were found. CONCLUSION Quantitative low-count SPECT imaging of the peak at 440 keV during [225Ac]Ac-PSMA-I&T therapy is feasible. Multi-isotope imaging for [177Lu]Lu-PSMA-I&T/[225Ac]Ac-PSMA-I&T therapy indicates accumulation of free 213Bi in the kidneys.
Collapse
Affiliation(s)
- Astrid Delker
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Mirjam Schleske
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Grigory Liubchenko
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Isabella Berg
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- SyNergy, University of Munich, Munich, Germany
- DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | | | - Mikhail Rumiantcev
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Sandra Resch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Kerstin Hürkamp
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
33
|
Rubira L, Deshayes E, Santoro L, Kotzki PO, Fersing C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023; 15:1051. [PMID: 37111537 PMCID: PMC10146019 DOI: 10.3390/pharmaceutics15041051] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The widespread use of peptide receptor radionuclide therapy (PRRT) represents a major therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroendocrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alternative. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless, preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite the growing momentum for their future use on a larger scale. In this context, this report provides a comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs; particular emphasis is placed on the challenges associated with the production of 225Ac, its physical and radiochemical properties, as well as the place of 225Ac-DOTATOC and 225Ac-DOTATATE in the management of patients with advanced metastatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Lore Santoro
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
34
|
Kleiburg F, Heijmen L, Gelderblom H, Kielbasa SM, Bovée JV, De Geus-Oei LF. Prostate-specific membrane antigen (PSMA) as a potential target for molecular imaging and treatment in bone and soft tissue sarcomas. Br J Radiol 2023; 96:20220886. [PMID: 36728839 PMCID: PMC10161918 DOI: 10.1259/bjr.20220886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bone and soft tissue sarcomas are a group of rare malignant tumours with major histological and anatomical varieties. In a metastatic setting, sarcomas have a poor prognosis due to limited response rates to chemotherapy. Radioligand therapy targeting prostate-specific membrane antigen (PSMA) may offer a new perspective. PSMA is a type II transmembrane glycoprotein which is present in all prostatic tissue and overexpressed in prostate cancer. Despite the name, PSMA is not prostate-specific. PSMA expression is also found in a multitude of non-prostatic diseases including a subgroup of sarcomas, mostly in its neovascular endothelial cells. On PET/CT imaging, multiple sarcomas have also shown intense PSMA-tracer accumulation. PSMA expression and PSMA-tracer uptake seem to be highest in patients with aggressive and advanced sarcomas, who are also in highest need of new therapeutic options. Although these results provide a good rationale for the future use of PSMA-targeted radioligand therapy in a selection of sarcoma patients, more research is needed to gain insight into optimal patient selection methods, PSMA-targeting antibodies and tracers, administered doses of radioligand therapy, and their efficacy and tolerability. In this review, mRNA expression of the FOLH1 gene which encodes PSMA, PSMA immunohistochemistry, PSMA-targeted imaging and PSMA-targeted therapy in sarcomas will be discussed.
Collapse
Affiliation(s)
- Fleur Kleiburg
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands.,Department of Radiology, section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Heijmen
- Department of Radiology, section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kielbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Vmg Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lioe-Fee De Geus-Oei
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands.,Department of Radiology, section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Radiation Science and Technology, Technical University of Delft, Delft, The Netherlands
| |
Collapse
|
35
|
Miyahira AK, Hawley JE, Adelaiye-Ogala R, Calais J, Nappi L, Parikh R, Seibert TM, Wasmuth EV, Wei XX, Pienta KJ, Soule HR. Exploring new frontiers in prostate cancer research: Report from the 2022 Coffey-Holden prostate cancer academy meeting. Prostate 2023; 83:207-226. [PMID: 36443902 DOI: 10.1002/pros.24461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION The 2022 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Exploring New Frontiers in Prostate Cancer Research," was held from June 23 to 26, 2022, at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA. METHODS The CHPCA Meeting is an annual discussion-oriented scientific conference organized by the Prostate Cancer Foundation, that focuses on emerging and next-step topics deemed critical for making the next major advances in prostate cancer research and clinical care. The 2022 CHPCA Meeting included 35 talks over 10 sessions and was attended by 73 academic investigators. RESULTS Major topic areas discussed at the meeting included: prostate cancer diversity and disparities, the impact of social determinants on research and patient outcomes, leveraging real-world and retrospective data, development of artificial intelligence biomarkers, androgen receptor (AR) signaling biology and new strategies for targeting AR, features of homologous recombination deficient prostate cancer, and future directions in immunotherapy and nuclear theranostics. DISCUSSION This article summarizes the scientific presentations from the 2022 CHPCA Meeting, with the goal that dissemination of this knowledge will contribute to furthering global prostate cancer research efforts.
Collapse
Affiliation(s)
| | - Jessica E Hawley
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Remi Adelaiye-Ogala
- Department of Medicine, Division of Hematology and Oncology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jeremie Calais
- Department of Molecular and Medical Pharmacology, Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, California, USA
| | - Lucia Nappi
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, British Columbia, Canada
| | - Ravi Parikh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Xiao X Wei
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
36
|
Te Beek ET, Burggraaf J, Teunissen JJM, Vriens D. Clinical Pharmacology of Radiotheranostics in Oncology. Clin Pharmacol Ther 2023; 113:260-274. [PMID: 35373336 DOI: 10.1002/cpt.2598] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023]
Abstract
The combined use of diagnostic and therapeutic radioligands with the same molecular target, also known as theranostics, enables accurate patient selection, targeted therapy, and prediction of treatment response. Radioiodine, bone-seeking radioligands and norepinephrine analogs have been used for many years for diagnostic imaging and radioligand therapy of thyroid carcinoma, bone metastases, pheochromocytoma, paraganglioma, and neuroblastoma, respectively. In recent years, radiolabeled somatostatin analogs and prostate-specific membrane antigen ligands have shown clinical efficacy in the treatment of neuroendocrine tumors and prostate cancer, respectively. Several candidate compounds are targeting novel theranostic targets such as fibroblast activation protein, C-X-C chemokine receptor 4, and gastrin-releasing peptide receptor. In addition, several strategies to improve efficacy of radioligand therapy are being evaluated, including dosimetry-based dose optimization, multireceptor targeting, upregulation of target receptors, radiosensitization, pharmacogenomics, and radiation genomics. Design and evaluation of novel radioligands and optimization of dose and dose schedules, within the complex context of individualized multimodal cancer treatment, requires a multidisciplinary approach that includes clinical pharmacology. Significant increases in the use of these radiopharmaceuticals in routine oncological practice can be expected, which will have major impact on patient care as well as (radio)pharmacy utilization.
Collapse
Affiliation(s)
- Erik T Te Beek
- Department of Nuclear Medicine, Reinier de Graaf Hospital, Delft, The Netherlands
| | | | - Jaap J M Teunissen
- Department of Nuclear Medicine, Reinier de Graaf Hospital, Delft, The Netherlands
| | - Dennis Vriens
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Karlsson J, Schatz CA, Wengner AM, Hammer S, Scholz A, Cuthbertson A, Wagner V, Hennekes H, Jardine V, Hagemann UB. Targeted thorium-227 conjugates as treatment options in oncology. Front Med (Lausanne) 2023; 9:1071086. [PMID: 36726355 PMCID: PMC9885765 DOI: 10.3389/fmed.2022.1071086] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
Targeted alpha therapy (TAT) is a promising approach for addressing unmet needs in oncology. Inherent properties make α-emitting radionuclides well suited to cancer therapy, including high linear energy transfer (LET), penetration range of 2-10 cell layers, induction of complex double-stranded DNA breaks, and immune-stimulatory effects. Several alpha radionuclides, including radium-223 (223Ra), actinium-225 (225Ac), and thorium-227 (227Th), have been investigated. Conjugation of tumor targeting modalities, such as antibodies and small molecules, with a chelator moiety and subsequent radiolabeling with α-emitters enables specific delivery of cytotoxic payloads to different tumor types. 223Ra dichloride, approved for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC) with bone-metastatic disease and no visceral metastasis, is the only approved and commercialized alpha therapy. However, 223Ra dichloride cannot currently be complexed to targeting moieties. In contrast to 223Ra, 227Th may be readily chelated, which allows radiolabeling of tumor targeting moieties to produce targeted thorium conjugates (TTCs), facilitating delivery to a broad range of tumors. TTCs have shown promise in pre-clinical studies across a range of tumor-cell expressing antigens. A clinical study in hematological malignancy targeting CD22 has demonstrated early signs of activity. Furthermore, pre-clinical studies show additive or synergistic effects when TTCs are combined with established anti-cancer therapies, for example androgen receptor inhibitors (ARI), DNA damage response inhibitors such as poly (ADP)-ribose polymerase inhibitors or ataxia telangiectasia and Rad3-related kinase inhibitors, as well as immune checkpoint inhibitors.
Collapse
|
38
|
Shi M, Jakobsson V, Greifenstein L, Khong PL, Chen X, Baum RP, Zhang J. Alpha-peptide receptor radionuclide therapy using actinium-225 labeled somatostatin receptor agonists and antagonists. Front Med (Lausanne) 2022; 9:1034315. [PMID: 36569154 PMCID: PMC9767967 DOI: 10.3389/fmed.2022.1034315] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) has over the last two decades emerged as a very promising approach to treat neuroendocrine tumors (NETs) with rapidly expanding clinical applications. By chelating a radiometal to a somatostatin receptor (SSTR) ligand, radiation can be delivered to cancer cells with high precision. Unlike conventional external beam radiotherapy, PRRT utilizes primarily β or α radiation derived from nuclear decay, which causes damage to cancer cells in the immediate proximity by irreversible direct or indirect ionization of the cells' DNA, which induces apoptosis. In addition, to avoid damage to surrounding normal cells, PRRT privileges the use of radionuclides that have little penetrating and more energetic (and thus more ionizing) radiations. To date, the most frequently radioisotopes are β- emitters, particularly Yttrium-90 (90Y) and Lutetium-177 (177Lu), labeled SSTR agonists. Current development of SSTR-targeting is triggering the shift from using SSTR agonists to antagonists for PRRT. Furthermore, targeted α-particle therapy (TAT), has attracted special attention for the treatment of tumors and offers an improved therapeutic option for patients resistant to conventional treatments or even beta-irradiation treatment. Due to its short range and high linear energy transfer (LET), α-particles significantly damage the targeted cancer cells while causing minimal cytotoxicity toward surrounding normal tissue. Actinium-225 (225Ac) has been developed into potent targeting drug constructs including somatostatin-receptor-based radiopharmaceuticals and is in early clinical use against multiple neuroendocrine tumor types. In this article, we give a review of preclinical and clinical applications of 225Ac-PRRT in NETs, discuss the strengths and challenges of 225Ac complexes being used in PRRT; and envision the prospect of 225Ac-PRRT as a future alternative in the treatment of NETs.
Collapse
Affiliation(s)
- Mengqi Shi
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Academy for Precision Oncology, International Centers for Precision Oncology (ICPO), Wiesbaden, Germany
| | - Lukas Greifenstein
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Agency for Science, Technology, and Research (A*STAR), Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Richard P. Baum
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Oh SW, Suh M, Cheon GJ. Current Status of PSMA-Targeted Radioligand Therapy in the Era of Radiopharmaceutical Therapy Acquiring Marketing Authorization. Nucl Med Mol Imaging 2022; 56:263-281. [PMID: 36425273 PMCID: PMC9679068 DOI: 10.1007/s13139-022-00764-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 10/15/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is highly expressed in PCa, which gradually increases in high-grade tumors, metastatic tumors, and tumors nonresponsive to androgen deprivation therapy. PSMA has been a topic of interest during the past decade for both diagnostic and therapeutic targets. Radioligand therapy (RLT) utilizes the delivery of radioactive nuclides to tumors and tumor-associated targets, and it has shown better efficacy with minimal toxicity compared to other systemic cancer therapies. Nuclear medicine has faced a new turning point claiming theranosis as the core of academic identity, since new RLTs have been introduced to clinics through the official new drug development processes for approval from the Food and Drug Administration (FDA) or European Medical Agency. Recently, PSMA targeting RLT was approved by the US FDA in March 2022. This review introduces PSMA RLT focusing on ongoing clinical trials to enhance our understanding of nuclear medicine theranosis and strive for the development of new radiopharmaceuticals.
Collapse
Affiliation(s)
- So Won Oh
- Department of Nuclear Medicine, Seoul National University Boramae Medical Center, Seoul, 07061 Korea
| | - Minseok Suh
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080 Korea
| |
Collapse
|
40
|
Busslinger SD, Tschan VJ, Richard OK, Talip Z, Schibli R, Müller C. [ 225Ac]Ac-SibuDAB for Targeted Alpha Therapy of Prostate Cancer: Preclinical Evaluation and Comparison with [ 225Ac]Ac-PSMA-617. Cancers (Basel) 2022; 14:5651. [PMID: 36428743 PMCID: PMC9688344 DOI: 10.3390/cancers14225651] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
In the present study, SibuDAB, an albumin-binding PSMA ligand, was investigated in combination with actinium-225 and the data were compared with those of [225Ac]Ac-PSMA-617. In vitro, [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617 showed similar tumor cell uptake and PSMA-binding affinities as their 177Lu-labeled counterparts. The in vitro binding to serum albumin in mouse and human blood plasma, respectively, was 2.8-fold and 1.4-fold increased for [225Ac]Ac-SibuDAB as compared to [177Lu]Lu-SibuDAB. In vivo, this characteristic was reflected by the longer retention of [225Ac]Ac-SibuDAB in the blood than previously seen for [177Lu]Lu-SibuDAB. Similar to [225Ac]Ac-PSMA-617, [225Ac]Ac-SibuDAB was well tolerated at 30 kBq per mouse. Differences in blood cell counts were observed between treated mice and untreated controls, but no major variations were observed between values obtained for [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617. [225Ac]Ac-SibuDAB was considerably more effective to treat PSMA-positive tumor xenografts than [225Ac]Ac-PSMA-617. Only 5 kBq per mouse were sufficient to eradicate the tumors, whereas tumor regrowth was observed for mice treated with 5 kBq [225Ac]Ac-PSMA-617 and only one out of six mice survived until the end of the study. The enhanced therapeutic efficacy of [225Ac]Ac-SibuDAB as compared to that of [225Ac]Ac-PSMA-617 and reasonable safety data qualify this novel radioligand as a candidate for targeted α-therapy of prostate cancer.
Collapse
Affiliation(s)
- Sarah D. Busslinger
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Viviane J. Tschan
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | | | - Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, ETH Zurich, 8093 Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen-PSI, Switzerland
- Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
41
|
Kara A. An optimization study for targeted alpha therapy: Ion behaviours and dose calculations within ICRU-compact bone tissue. Appl Radiat Isot 2022; 191:110552. [DOI: 10.1016/j.apradiso.2022.110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
42
|
Marengo M, Infantino A. Assessment of emission data and transmission factors supporting radiation protection in the use of 225Ac. Phys Med 2022; 103:59-65. [DOI: 10.1016/j.ejmp.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
|
43
|
Ling SW, de Blois E, Hooijman E, van der Veldt A, Brabander T. Advances in 177Lu-PSMA and 225Ac-PSMA Radionuclide Therapy for Metastatic Castration-Resistant Prostate Cancer. Pharmaceutics 2022; 14:2166. [PMID: 36297601 PMCID: PMC9607057 DOI: 10.3390/pharmaceutics14102166] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 08/26/2023] Open
Abstract
For patients with metastatic castration-resistant prostate cancer (mCRPC), the survival benefit of classic treatment options with chemotherapy and drugs targeting androgen signaling is limited. Therefore, beta and alpha radionuclide therapy (RNT) have emerged as novel treatment options for patients with mCRPC. Radioligands target the prostate-specific membrane antigen (PSMA) epitopes, which are upregulated up to a thousand times more in prostate cancer cells compared to the cells in normal tissues. For this reason, PSMA is an excellent target for both imaging and therapy. Over the past years, many studies have investigated the treatment effects of lutetium-177 labeled PSMA (177Lu-PSMA) and actinium-225 labeled PSMA (225Ac-PSMA) RNT in patients with mCRPC. While promising results have been achieved, this field is still in development. In this review, we have summarized and discussed the clinical data of 177Lu-PSMA and 225Ac-PSMA RNT in patients with mCRPC.
Collapse
Affiliation(s)
- Sui Wai Ling
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Eline Hooijman
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Astrid van der Veldt
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
44
|
Alam MR, Singh SB, Thapaliya S, Shrestha S, Deo S, Khanal K. A Review of 177Lutetium-PSMA and 225Actinium-PSMA as Emerging Theranostic Agents in Prostate Cancer. Cureus 2022; 14:e29369. [PMID: 36284803 PMCID: PMC9584169 DOI: 10.7759/cureus.29369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/12/2022] Open
Abstract
The development of prostate-specific membrane antigen (PSMA) ligands labeled with radionuclides is a ground-breaking achievement in the management of prostate cancer. With the increasing use of 68Gallium-PSMA and 18F-DCFPyL (Pylarify) and their approval by the Food and Drug Administration (FDA), other PSMA agents and their unique characteristics are also being studied. Two other PSMA agents, namely 177Lutetium-PSMA (177Lu-PSMA) and 225Actinium-PSMA (225Ac-PSMA), are currently drawing the researcher’s attention mainly due to their theranostic importance. Studies focusing on the essential characteristics of these two emerging radiotracers are relatively lacking. Hence, this review article, beginning with a brief introduction, intends to provide insights on the mechanism, efficacy, adverse effects, usefulness, including theranostic implications, and limitations of these two emerging PSMA agents. The 177Lu-PSMA is commercially accessible, is well tolerated, and has been found to lower prostate-specific antigen (PSA) levels while improving patients’ quality of life. It also reduces pain and the requirement for analgesics and is safe for advanced diseases. However, despite its potential advantages, around one-third of patients do not respond satisfactorily to this costly treatment; it is still challenging to personalize this therapy and predict its outcome. Similarly, 225Ac is compatible with antibody-based targeting vectors, releasing four extremely hazardous high-energy emissions with a longer half-life of 10 days. It has made 225Ac-PSMA therapy useful for tumors resistant to standard treatments, with a better response than 177Lu-PSMA. Dosimetry studies show a good biochemical response without toxicity in patients with advanced metastatic castration-resistant prostate cancer (mCRPC). However, it can potentially cause significant damage to healthy tissues if not retained at the tumor site. Encapsulating radionuclides in a nano-carrier, hastening the absorption by tumor cells, and local delivery might all help reduce the harmful consequences. Both have advantages and disadvantages. The choice of PSMA agents may rely on desired qualities, cost, and convenience, among other factors. Further research is warranted in order to better understand their ideal use in clinical settings.
Collapse
|
45
|
Optimized 68Ga-Labeled Urea-Based PSMA-Targeted PET Tracers for Prostate Cancer. Pharmaceuticals (Basel) 2022; 15:ph15081001. [PMID: 36015149 PMCID: PMC9414910 DOI: 10.3390/ph15081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA)-targeting radiopharmaceuticals have become some of the most promising tools for the diagnosis and therapy prostate cancer (PCa). The structure of existing PSMA-targeted PET tracers still needs to be optimized to improve their pharmacokinetic properties and tumor-to-background ratio. In this study, we modified the structure of a well-studied PSMA tracer, and six novel tracers with variable hydrophilicity and pharmacokinetics were developed and evaluated both in vitro and in vivo. All of the novel tracers showed high hydrophilicity (log p = −2.99 ± 0.33 to −3.49 ± 0.01), rapid clearance rates (elimination half-times = 15.55 to 35.97 min), and high affinity for PSMA (Ki = 8.11 ± 0.49 to 42.40 ± 2.11 nM) in vitro. Specific cell binding and micro-PET experiments showed that [68Ga]Ga-PSMA-Q displayed the highest specific PSMA+ cell uptake (3.75 ± 0.35 IA%/106 at 60 min), tumor uptake (SUVmax = 0.97 ± 0.24 at 60 min p.i.), and tumor-to-muscle ratio (59.33 ± 5.72 at 60 min p.i.), while the tumor-to-muscle ratio was much higher than that of [68Ga]Ga-PSMA-617. The results of this study validate the clinical potential of [68Ga]Ga-PSMA-Q for PET imaging and further targeted therapy of prostate cancer.
Collapse
|
46
|
Langbein T, Kulkarni HR, Schuchardt C, Mueller D, Volk GF, Baum RP. Salivary Gland Toxicity of PSMA-Targeted Radioligand Therapy with 177Lu-PSMA and Combined 225Ac- and 177Lu-Labeled PSMA Ligands (TANDEM-PRLT) in Advanced Prostate Cancer: A Single-Center Systematic Investigation. Diagnostics (Basel) 2022; 12:diagnostics12081926. [PMID: 36010276 PMCID: PMC9406477 DOI: 10.3390/diagnostics12081926] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose: PSMA-targeted radioligand therapy (PRLT) is a promising treatment option for patients with metastatic castration-resistant prostate cancer (mCRPC). However, a high uptake of the radiopharmaceutical in the salivary glands (SG) can lead to xerostomia and becomes dose-limiting for 225Ac-PSMA-617. This study investigated the sialotoxicity of 177Lu-PSMA-I&T/-617 monotherapy and co-administered 225Ac-PSMA-617 and 177Lu-PSMA-617 (Tandem-PPRLT). Methods: Three patient cohorts, that had undergone 177Lu-PSMA-I&T/-617 monotherapy or Tandem-PRLT, were retrospectively analyzed. In a short-term cohort (91 patients), a xerostomia assessment (CTCAE v.5.0), a standardized questionnaire (sXI), salivary gland scintigraphy (SGS), and SG SUVmax and the metabolic volume (MV) on 68Ga-PSMA-11-PET/CT were obtained before and after two cycles of 177Lu-PSMA-I&T/-617. In a long-term cohort, 40 patients were similarly examined. In a Tandem cohort, the same protocol was applied to 18 patients after one cycle of Tandem-PRLT. Results: Grade 1 xerostomia in the short-term follow-up was observed in 22 (24.2%) patients with a worsening of sXI from 7 to 8 at (p < 0.05). In the long-term cohort, xerostomia grades 1 to 2 occurred in 16 (40%) patients. SGS showed no significant changes, but there was a decline of the MV of all SGs. After Tandem-PRLT, 12/18 (66.7%) patients reported xerostomia grades 1 to 2, and the sXI significantly worsened from 9.5 to 14.0 (p = 0.005), with a significant reduction in the excretion fraction (EF) and MV of all SGs. Conclusion: 177Lu-PSMA-I&T/-617 causes only minor SG toxicity, while one cycle of Tandem-PRLT results in a significant SG impairment. This standardized protocol may help to objectify and quantify SG dysfunction.
Collapse
Affiliation(s)
- Thomas Langbein
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, 99438 Bad Berka, Germany
- Department of Nuclear Medicine, Technical University of Munich, Klinikum Rechts der Isar, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-8941402972; Fax: +49-8941404950
| | - Harshad R. Kulkarni
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, 99438 Bad Berka, Germany
- BAMF Health, Grand Rapids, MI 49503, USA
| | - Christiane Schuchardt
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, 99438 Bad Berka, Germany
| | - Dirk Mueller
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, 99438 Bad Berka, Germany
- Department of Nuclear Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Gerd Fabian Volk
- Department of Otorhinolaryngology, Facial-Nerve-Center Jena, Center for Rare Diseases Jena, Jena University Hospital, 07743 Jena, Germany
| | - Richard P. Baum
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, 99438 Bad Berka, Germany
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, 65191 Wiesbaden, Germany
| |
Collapse
|
47
|
Rigby A, Firth G, Rivas C, Pham T, Kim J, Phanopoulos A, Wharton L, Ingham A, Li L, Ma MT, Orvig C, Blower PJ, Terry SY, Abbate V. Toward Bifunctional Chelators for Thallium-201 for Use in Nuclear Medicine. Bioconjug Chem 2022; 33:1422-1436. [PMID: 35801668 PMCID: PMC9305974 DOI: 10.1021/acs.bioconjchem.2c00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Auger electron therapy exploits the cytotoxicity of low-energy electrons emitted during radioactive decay that travel very short distances (typically <1 μm). 201Tl, with a half-life of 73 h, emits ∼37 Auger and other secondary electrons per decay and can be tracked in vivo as its gamma emissions enable SPECT imaging. Despite the useful nuclear properties of 201Tl, satisfactory bifunctional chelators to incorporate it into bioconjugates for molecular targeting have not been developed. H4pypa, H5decapa, H4neunpa-NH2, and H4noneunpa are multidentate N- and O-donor chelators that have previously been shown to have high affinity for 111In, 177Lu, and 89Zr. Herein, we report the synthesis and serum stability of [nat/201Tl]Tl3+ complexes with H4pypa, H5decapa, H4neunpa-NH2, and H4noneunpa. All ligands quickly and efficiently formed complexes with [201Tl]Tl3+ that gave simple single-peak radiochromatograms and showed greatly improved serum stability compared to DOTA and DTPA. [natTl]Tl-pypa was further characterized using nuclear magnetic resonance spectroscopy (NMR), mass spectroscopy (MS), and X-ray crystallography, showing evidence of the proton-dependent presence of a nine-coordinate complex and an eight-coordinate complex with a pendant carboxylic acid group. A prostate-specific membrane antigen (PSMA)-targeting bioconjugate of H4pypa was synthesized and radiolabeled. The uptake of [201Tl]Tl-pypa-PSMA in DU145 PSMA-positive and PSMA-negative prostate cancer cells was evaluated in vitro and showed evidence of bioreductive release of 201Tl and cellular uptake characteristic of unchelated [201Tl]TlCl. SPECT/CT imaging was used to probe the in vivo biodistribution and stability of [201Tl]Tl-pypa-PSMA. In healthy animals, [201Tl]Tl-pypa-PSMA did not show the myocardial uptake that is characteristic of unchelated 201Tl. In mice bearing DU145 PSMA-positive and PSMA-negative prostate cancer xenografts, the uptake of [201Tl]Tl-pypa-PSMA in DU145 PSMA-positive tumors was higher than that in DU145 PSMA-negative tumors but insufficient for useful tumor targeting. We conclude that H4pypa and related ligands represent an advance compared to conventional radiometal chelators such as DOTA and DTPA for Tl3+ chelation but do not resist dissociation for long periods in the biological environment due to vulnerability to reduction of Tl3+ and subsequent release of Tl+. However, this is the first report describing the incorporation of [201Tl]Tl3+ into a chelator-peptide bioconjugate and represents a significant advance in the field of 201Tl-based radiopharmaceuticals. The design of the next generation of chelators must include features to mitigate this susceptibility to bioreduction, which does not arise for other trivalent heavy radiometals.
Collapse
Affiliation(s)
- Alex Rigby
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - George Firth
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Charlotte Rivas
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Truc Pham
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Jana Kim
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Andreas Phanopoulos
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Luke Wharton
- Medicinal
Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Life
Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Aidan Ingham
- Medicinal
Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Life
Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Lily Li
- Medicinal
Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Life
Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Michelle T Ma
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Chris Orvig
- Medicinal
Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Philip J. Blower
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Samantha Y.A. Terry
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Vincenzo Abbate
- School
of Cancer & Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
48
|
Satapathy S, Sharma A, Sood A, Maheshwari P, Gill HJS. Delayed Nephrotoxicity After 225Ac-PSMA-617 Radioligand Therapy. Clin Nucl Med 2022; 47:e466-e467. [PMID: 35353746 DOI: 10.1097/rlu.0000000000004149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT 177Lu-PSMA-617 radioligand therapy (RLT) has evolved as a suitable alternative to existing therapeutic options in patients with metastatic castration-resistant prostate cancer. With the emergence of α-emitters such as 225Ac, the efficacy of PSMA-RLT has further improved. Xerostomia and myelosuppression are common early treatment-emergent adverse events in patients receiving this therapy; however, data on long-term toxicity are relatively scarce. In this report, we describe a 76-year-old man with metastatic castration-resistant prostate cancer, who after having an initial excellent response to 2 cycles of 225Ac-PSMA-617 RLT, developed delayed nephrotoxicity in the form of tubulointerstitial nephritis.
Collapse
Affiliation(s)
- Swayamjeet Satapathy
- From the Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | - Amit Sharma
- Department of Nephrology, Fortis Hospital, Mohali
| | - Ashwani Sood
- From the Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh
| | | | | |
Collapse
|
49
|
Song H, Guja KE, Iagaru A. PSMA theragnostics for metastatic castration resistant prostate cancer. Transl Oncol 2022; 22:101438. [PMID: 35659674 PMCID: PMC9163091 DOI: 10.1016/j.tranon.2022.101438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/23/2023] Open
Abstract
PSMA targeted theragnostic agents have shown tremendous potential in detecting and treating metastatic prostate cancer. The PSMA small molecular inhibitor-based imaging agents achieve extraordinary tumor to background ratios and the PSMA small molecule therapeutic agents have shown impressive therapeutic index in mCRPC. The development and optimization of PSMA theragnostic agents provides invaluable information that may help guide development of future theragnostics for other solid tumors.
There has been tremendous growth in the development of theragnostics for personalized cancer diagnosis and treatment over the past two decades. In prostate cancer, the new generation of prostate specific membrane antigen (PSMA) small molecular inhibitor-based imaging agents achieve extraordinary tumor to background ratios and allow their therapeutic counterparts to deliver effective tumor doses while minimizing normal tissue toxicity. The PSMA targeted small molecule positron emission tomography (PET) agents 18F-DCFPyL (2-(3-{1-carboxy-5-((6-(18)F-fluoro-pyridine-3-carbonyl)-amino)-pentyl}-ureido)-pentanedioic acid) and Gallium-68 (68Ga)-PSMA-11 have been approved by the United States Food and Drug Administration (FDA) for newly diagnosed high risk prostate cancer patients and for patients with biochemical recurrence. More recently, the Phase III VISION trial showed that Lutetium-177 (177Lu)-PSMA-617 treatment increases progression-free survival and overall survival in patients with heavily pre-treated advanced PSMA-positive metastatic castration-resistant prostate cancer (mCRPC). Here, we review the PSMA targeted theragnostic pairs under clinical investigation for detection and treatment of metastatic prostate cancer.
Collapse
Affiliation(s)
- Hong Song
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University and Hospital, 300 Pasteur Dr H2200, Stanford 94305, United States
| | - Kip E Guja
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University and Hospital, 300 Pasteur Dr H2200, Stanford 94305, United States
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University and Hospital, 300 Pasteur Dr H2200, Stanford 94305, United States.
| |
Collapse
|
50
|
In vitro dose effect relationships of actinium-225- and lutetium-177-labeled PSMA-I&T. Eur J Nucl Med Mol Imaging 2022; 49:3627-3638. [PMID: 35556158 PMCID: PMC9399067 DOI: 10.1007/s00259-022-05821-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/25/2022] [Indexed: 12/18/2022]
Abstract
PURPOSE Targeting the prostate-specific membrane antigen (PSMA) using lutetium-177-labeled PSMA-specific tracers has become a very promising novel therapy option for prostate cancer (PCa). The efficacy of this therapy might be further improved by replacing the β-emitting lutetium-177 with the α-emitting actinium-225. Actinium-225 is thought to have a higher therapeutic efficacy due to the high linear energy transfer (LET) of the emitted α-particles, which can increase the amount and complexity of the therapy induced DNA double strand breaks (DSBs). Here we evaluated the relative biological effectiveness of [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T by assessing in vitro binding characteristics, dosimetry, and therapeutic efficacy. METHODS AND RESULTS The PSMA-expressing PCa cell line PC3-PIP was used for all in vitro assays. First, binding and displacement assays were performed, which revealed similar binding characteristics between [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T. Next, the assessment of the number of 53BP1 foci, a marker for the number of DNA double strand breaks (DSBs), showed that cells treated with [225Ac]Ac-PSMA-I&T had slower DSB repair kinetics compared to cells treated with [177Lu]Lu-PSMA-I&T. Additionally, clonogenic survival assays showed that specific targeting with [225Ac]Ac-PSMA-I&T and [177Lu]Lu-PSMA-I&T caused a dose-dependent decrease in survival. Lastly, after dosimetric assessment, the relative biological effectiveness (RBE) of [225Ac]Ac-PSMA-I&T was found to be 4.2 times higher compared to [177Lu]Lu-PSMA-I&T. CONCLUSION We found that labeling of PSMA-I&T with lutetium-177 or actinium-225 resulted in similar in vitro binding characteristics, indicating that the distinct biological effects observed in this study are not caused by a difference in uptake of the two tracers. The slower repair kinetics of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T correlates to the assumption that irradiation with actinium-225 causes more complex, more difficult to repair DSBs compared to lutetium-177 irradiation. Furthermore, the higher RBE of [225Ac]Ac-PSMA-I&T compared to [177Lu]Lu-PSMA-I&T underlines the therapeutic potential for the treatment of PCa.
Collapse
|