1
|
Maestro I, de la Ballina LR, Simonsen A, Boya P, Martinez A. Phenotypic Assay Leads to Discovery of Mitophagy Inducers with Therapeutic Potential for Parkinson's Disease. ACS Chem Neurosci 2021; 12:4512-4523. [PMID: 34846852 DOI: 10.1021/acschemneuro.1c00529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mitophagy, the selective degradation of mitochondria by autophagy, involved in important physiological processes and defects in pathways has been reported in pathological conditions, such as neurodegeneration. Thus, mitophagy is an interesting target for drug discovery programs. In this investigation, we used robust phenotypic assay to screen a set of 50 small heterocyclic compounds to identify inducers of mitophagy. We identified two compounds, VP07 and JAR1.39, that induce Parkin-dependent mitophagy. Based on structure-activity relationship studies, we proposed the ability of the compounds to act as light chain 3 (LC3) interactors, similar to cardiolipin or ceramide, triggering mitophagy via Pink1/Parkin. Finally, we show promising therapeutic applicability in a cellular model of Parkinson's disease.
Collapse
Affiliation(s)
- Inés Maestro
- Centro de Investigaciones Biologicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Laura R. de la Ballina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biologicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| |
Collapse
|
2
|
Singh A, Gao M, Beck MW. Human carboxylesterases and fluorescent probes to image their activity in live cells. RSC Med Chem 2021; 12:1142-1153. [PMID: 34355180 PMCID: PMC8292992 DOI: 10.1039/d1md00073j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Human carboxylesterases (CESs) are serine hydrolases that are responsible for the phase I metabolism of an assortment of ester, amide, thioester, carbonate, and carbamate containing drugs. CES activity is known to be influenced by a variety of factors including single nucleotide polymorphisms, alternative splicing, and drug-drug interactions. These different factors contribute to interindividual variability of CES activity which has been demonstrated to influence clinical outcomes among people treated with CES-substrate therapeutics. Detailed exploration of the factors that influence CES activity is emerging as an important area of research. The use of fluorescent probes with live cell imaging techniques can selectively visualize the real-time activity of CESs and have the potential to be useful tools to help reveal the impacts of CES activity variations on human health. This review summarizes the properties of the five known human CESs including factors reported to or that could potentially influence their activity before discussing the design aspects and use considerations of CES fluorescent probes in general in addition to highlighting several well-characterized probes.
Collapse
Affiliation(s)
- Anchal Singh
- Department of Chemistry and Biochemistry, Eastern Illinois University Charleston IL 61920 USA +1 217 581 6227
| | - Mingze Gao
- Department of Biological Sciences, Eastern Illinois University Charleston IL 61920 USA
| | - Michael W Beck
- Department of Chemistry and Biochemistry, Eastern Illinois University Charleston IL 61920 USA +1 217 581 6227
| |
Collapse
|
3
|
Hu H, Bezabih G, Feng M, Wei Q, Zhang X, Wu F, Meng L, Fang Y, Han B, Ma C, Li J. In-depth Proteome of the Hypopharyngeal Glands of Honeybee Workers Reveals Highly Activated Protein and Energy Metabolism in Priming the Secretion of Royal Jelly. Mol Cell Proteomics 2019; 18:606-621. [PMID: 30617159 PMCID: PMC6442370 DOI: 10.1074/mcp.ra118.001257] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
Royal jelly (RJ) is a secretion of the hypopharyngeal glands (HGs) of honeybee workers. High royal jelly producing bees (RJBs), a stock of honeybees selected from Italian bees (ITBs), have developed a stronger ability to produce RJ than ITBs. However, the mechanism underpinning the high RJ-producing performance in RJBs is still poorly understood. We have comprehensively characterized and compared the proteome across the life span of worker bees between the ITBs and RJBs. Our data uncover distinct molecular landscapes that regulate the gland ontogeny and activity corresponding with age-specific tasks. Nurse bees (NBs) have a well-developed acini morphology and cytoskeleton of secretory cells in HGs to prime the gland activities of RJ secretion. In RJB NBs, pathways involved in protein synthesis and energy metabolism are functionally induced to cement the enhanced RJ secretion compared with ITBs. In behavior-manipulated RJB NBs, the strongly expressed proteins implicated in protein synthesis and energy metabolism further demonstrate their critical roles in the regulation of RJ secretion. Our findings provide a novel understanding of the mechanism consolidating the high RJ-output in RJBs.
Collapse
Affiliation(s)
- Han Hu
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Gebreamlak Bezabih
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Mao Feng
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Qiaohong Wei
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Xufeng Zhang
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Fan Wu
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Lifeng Meng
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Yu Fang
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Bin Han
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Chuan Ma
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China
| | - Jianke Li
- From the ‡ Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou Xiangshan, Beijing, 100093, China.
| |
Collapse
|
4
|
Strittmatter T, Brockmann A, Pott M, Hantusch A, Brunner T, Marx A. Expanding the scope of human DNA polymerase λ and β inhibitors. ACS Chem Biol 2014; 9:282-90. [PMID: 24171552 DOI: 10.1021/cb4007562] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The exact biological functions of individual DNA polymerases still await clarification, and therefore appropriate reagents to probe their respective functions are required. In the present study, we report the development of a highly potent series of human DNA polymerase λ and β (pol λ and β) inhibitors based on the rhodanine scaffold. Both enzymes are involved in DNA repair and are thus considered as future drug targets. We expanded the chemical diversity of the small-molecule inhibitors arising from a high content screening and designed and synthesized 30 novel analogues. By biochemical evaluation, we discovered 23 highly active compounds against pol λ. Importantly, 10 of these small-molecules selectively inhibited pol λ and not the homologous pol β. We discovered 14 small-molecules that target pol β and found out that they are more potent than known inhibitors. We also investigated whether the discovered compounds sensitize cancer cells toward DNA-damaging reagents. Thus, we cotreated human colorectal cancer cells (Caco-2) with the small-molecule inhibitors and hydrogen peroxide or the approved drug temozolomide. Interestingly, the tested compounds sensitized Caco-2 cells to both genotoxic agents in a DNA repair pathway-dependent manner.
Collapse
Affiliation(s)
- Tobias Strittmatter
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Anette Brockmann
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Moritz Pott
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Annika Hantusch
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Thomas Brunner
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
5
|
Strittmatter T, Bareth B, Immel TA, Huhn T, Mayer TU, Marx A. Small Molecule Inhibitors of Human DNA Polymerase λ. ACS Chem Biol 2011; 6:314-9. [PMID: 21194240 DOI: 10.1021/cb100382m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To discover chemical probes to further under-stand the function of individual DNA polymerases, we established a generally applicable high-throughput screening. By applying this technique we discovered three novel inhibitor classes of human DNA polymerase λ (DNA Pol λ), a key enzyme to maintain the genetic integrity of the genome. The rhodanines, classified as an excellent drug scaffold, were found to be the most potent inhibitors for DNA Pol λ. Importantly, they are up to 10 times less active against the highly similar DNA polymerase β. We investigated basic structure activity relationships. Furthermore, the rhodanines showed pharmacological activity in two human cancer cell lines. So the here reported small molecules could serve as useful DNA Pol λ probes and might serve as starting point to develop novel therapeutic agents.
Collapse
Affiliation(s)
- Tobias Strittmatter
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Bettina Bareth
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Timo A. Immel
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Thomas Huhn
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Thomas U. Mayer
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Reindl W, Gräber M, Strebhardt K, Berg T. Development of high-throughput assays based on fluorescence polarization for inhibitors of the polo-box domains of polo-like kinases 2 and 3. Anal Biochem 2009; 395:189-94. [PMID: 19716361 DOI: 10.1016/j.ab.2009.08.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/20/2009] [Accepted: 08/22/2009] [Indexed: 01/12/2023]
Abstract
The serine/threonine kinases Plk1, Plk2, and Plk3 harbor a protein-protein interaction domain dubbed polo-box domain (PBD). Recently, the inhibition of the PBD of the cancer target Plk1 has been successfully explored as an alternative to the inhibition of the kinase by ATP-competitive ligands. However, because the PBDs of Plk1, Plk2, and Plk3 have very similar optimal binding motifs, absolute specificity for the PBD of Plk1 over the PBDs of Plk2 and Plk3 may also represent a big challenge for a small molecule. To aid in the activity profiling of Plk PBD inhibitors, and to identify selective small molecules that will reveal the cellular consequences of inhibiting the PBDs of Plk2 and Plk3, we have developed high-throughput assays based on fluorescence polarization against the PBDs of Plk2 and Plk3. The assays are stable with regard to time and 10% dimethyl sulfoxide and have Z' values > or = 0.7, making them well-suited for high-throughput screening. Moreover, our data provide insights into the binding preferences of the PBDs of Plk2 and Plk3.
Collapse
Affiliation(s)
- Wolfgang Reindl
- Department of Molecular Biology, Max Planck Institute of Biochemistry, and Center for Integrated Protein Science Munich, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
7
|
Pucheault M. Natural products: chemical instruments to apprehend biological symphony. Org Biomol Chem 2007; 6:424-32. [PMID: 18219406 DOI: 10.1039/b713022h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As a striking variety of biological activities are elicited by natural products, these chemicals have been used for decades to study biological phenomena. Understanding how these products interfere with normal cell functions at a molecular level led to a wide range of discoveries including new signaling pathways and proteins. Moreover, as natural products often act as chemical inhibitors, such studies often allow the identification of their binding partners as relevant targets for drug design. This article aims to emphasize how natural products or engineered analogs can be used as chemical tools to apprehend some biological problems from the point of view of a chemical biologist.
Collapse
Affiliation(s)
- Mathieu Pucheault
- CPM UMR 6510, CNRS, Case 1003-Campus de Beaulieu, Université de Rennes, 1-35042, Rennes Cedex, France.
| |
Collapse
|