1
|
Morse J, Nadiveedhi MR, Schmidt M, Tang FK, Hladun C, Ganesh P, Qiu Z, Leung K. Tunable Cytosolic Chloride Indicators for Real-Time Chloride Imaging in Live Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606814. [PMID: 39149292 PMCID: PMC11326291 DOI: 10.1101/2024.08.08.606814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Chloride plays a crucial role in various cellular functions, and its level is regulated by a variety of chloride transporters and channels. However, to date, we still lack the capability to image instantaneous ion flux through chloride channels at single-cell level. Here, we developed a series of cell-permeable, pH-independent, chloride-sensitive fluorophores for real-time cytosolic chloride imaging, which we call CytoCl dyes. We demonstrated the ability of CytoCl dyes to monitor cytosolic chloride and used it to uncover the rapid changes and transient events of halide flux, which cannot be captured by steady-state imaging. Finally, we successfully imaged the proton-activated chloride channel-mediated ion flux at single-cell level, which is, to our knowledge, the first real-time imaging of ion flux through a chloride channel in unmodified cells. By enabling the imaging of single-cell level ion influx through chloride channels and transporters, CytoCl dyes can expand our understanding of ion flux dynamics, which is critical for characterization and modulator screening of these membrane proteins. A conjugable version of CytoCl dyes was also developed for its customization across different applications.
Collapse
Affiliation(s)
- Jared Morse
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | | | - Matthias Schmidt
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Fung-Kit Tang
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Colby Hladun
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Prasanna Ganesh
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| | - Zhaozhu Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, MD 21205, United States
| | - Kaho Leung
- Department of Chemistry & Biochemistry, Clarkson University, NY 13676, United States
| |
Collapse
|
2
|
Perazzo A, Gallier S, Liuzzi R, Guido S, Caserta S. Quantitative methods to detect phospholipids at the oil-water interface. Adv Colloid Interface Sci 2021; 290:102392. [PMID: 33740709 DOI: 10.1016/j.cis.2021.102392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/29/2023]
Abstract
Phospholipids are the main constituents of cell membranes and act as natural stabilizers of milk fat globules. Phospholipids are used in a wide range of applications, e.g. as emulsifiers in cosmetic, pharmaceutical and food products. While processed emulsion droplets are usually stabilized by a monolayer of phospholipids, cell membranes have a phospholipid bilayer structure and milk fat globules are stabilized by a complex phospholipid trilayer membrane. Despite the broad relevance of phospholipids, there are still many scientific challenges in understanding how their behavior at the fluid-fluid interface affects microstructure, stability, and physico-chemical properties of natural and industrial products. Most of these challenges arise from the experimental difficulties related to the investigation of the molecular arrangement of phospholipids in situ at the fluid-fluid interface and the quantification of their partitioning between the bulk phase and the interface, both under static and flow conditions. This task is further complicated by the presence of other surface-active components, such as proteins, that can interact with phospholipids and compete for space at the interface. Here, we review the methodologies available from the literature to detect and quantify phospholipids, focusing on oil-water interfaces, and highlight current limitations and future perspectives.
Collapse
Affiliation(s)
- Antonio Perazzo
- Novaflux Inc., 1 Wall Street, Princeton, NJ, 08540, United States; Advanced BioDevices LLC., 1 Wall Street, Princeton, NJ, 08540, United States
| | - Sophie Gallier
- Dairy Goat Co-operative (N.Z.) Limited, 18 Gallagher Drive, PO Box 1398, Hamilton 3240, New Zealand
| | - Roberta Liuzzi
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", P.le Ascarelli 80, 80125 Napoli, Italy
| | - Stefano Guido
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", P.le Ascarelli 80, 80125 Napoli, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR INSTM Napoli Federico II, P.le Ascarelli 80, 80125 Napoli, Italy; CEINGE - Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Sergio Caserta
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", P.le Ascarelli 80, 80125 Napoli, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR INSTM Napoli Federico II, P.le Ascarelli 80, 80125 Napoli, Italy; CEINGE - Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|
3
|
Gao D, Barber PR, Chacko JV, Kader Sagar MA, Rueden CT, Grislis AR, Hiner MC, Eliceiri KW. FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis. PLoS One 2020; 15:e0238327. [PMID: 33378370 PMCID: PMC7773231 DOI: 10.1371/journal.pone.0238327] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
In the field of fluorescence microscopy, there is continued demand for dynamic technologies that can exploit the complete information from every pixel of an image. One imaging technique with proven ability for yielding additional information from fluorescence imaging is Fluorescence Lifetime Imaging Microscopy (FLIM). FLIM allows for the measurement of how long a fluorophore stays in an excited energy state, and this measurement is affected by changes in its chemical microenvironment, such as proximity to other fluorophores, pH, and hydrophobic regions. This ability to provide information about the microenvironment has made FLIM a powerful tool for cellular imaging studies ranging from metabolic measurement to measuring distances between proteins. The increased use of FLIM has necessitated the development of computational tools for integrating FLIM analysis with image and data processing. To address this need, we have created FLIMJ, an ImageJ plugin and toolkit that allows for easy use and development of extensible image analysis workflows with FLIM data. Built on the FLIMLib decay curve fitting library and the ImageJ Ops framework, FLIMJ offers FLIM fitting routines with seamless integration with many other ImageJ components, and the ability to be extended to create complex FLIM analysis workflows. Building on ImageJ Ops also enables FLIMJ's routines to be used with Jupyter notebooks and integrate naturally with science-friendly programming in, e.g., Python and Groovy. We show the extensibility of FLIMJ in two analysis scenarios: lifetime-based image segmentation and image colocalization. We also validate the fitting routines by comparing them against industry FLIM analysis standards.
Collapse
Affiliation(s)
- Dasong Gao
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Paul R. Barber
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, United Kingdom
| | - Jenu V. Chacko
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Md. Abdul Kader Sagar
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States of America
| | - Curtis T. Rueden
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Aivar R. Grislis
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Mark C. Hiner
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, United States of America
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- Morgridge Institute for Research, University of Wisconsin, Madison, WI, United States of America
| |
Collapse
|
4
|
Biomolecular dynamics and binding studies in the living cell. Phys Life Rev 2014; 11:1-30. [DOI: 10.1016/j.plrev.2013.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 11/22/2022]
|
5
|
Zhu X, Zhang D. Efficient parallel Levenberg-Marquardt model fitting towards real-time automated parametric imaging microscopy. PLoS One 2013; 8:e76665. [PMID: 24130785 PMCID: PMC3794933 DOI: 10.1371/journal.pone.0076665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/26/2013] [Indexed: 11/18/2022] Open
Abstract
We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy.
Collapse
Affiliation(s)
- Xiang Zhu
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
- College of Economics & Management, China Agricultural University, Beijing, China
| | - Dianwen Zhang
- Imaging Technology group, Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zhou Y, Bai Y, Chen C, Dickenson JM. Processing of fluorescence lifetime image using modified phasor approach: homo-FRET from the acceptor. J Fluoresc 2013; 23:725-32. [PMID: 23494166 DOI: 10.1007/s10895-013-1193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/24/2013] [Indexed: 11/24/2022]
Abstract
As the hardware of FLIM technique becomes mature, the most important criterion for FLIM application is the correct interpretation of its data. In this research, first of all, a more orthogonal phasor approach, called as Modified Phasor Approach (MPA), is put forward. It is a way to calculate the lifetime of the complex fluorescent process, and a rule to measure how much the fluorescence process deviates from single exponential decay. Secondly, MPA is used to analysis the time-resolved fluorescence processes of the transfected CHO-K1 Cell lines expressing adenosine receptor A1R tagged by CYP and YFP, measured in the channel of the acceptor. The image of the fluorescence lifetime and the multiplication of the fluorescence lifetime and deviation from single exponential decay reveal the details of the Homo-FRET. In one word, MPA provides the physical meaning in its whole modified phasor space, and broadens the way for the application of the fluorescence lifetime imaging.
Collapse
Affiliation(s)
- Yanzhou Zhou
- Faculty of Automation, Guangdong University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.
| | | | | | | |
Collapse
|
7
|
Buscaglia R, Jameson DM, Chaires JB. G-quadruplex structure and stability illuminated by 2-aminopurine phasor plots. Nucleic Acids Res 2012; 40:4203-15. [PMID: 22241767 PMCID: PMC3351194 DOI: 10.1093/nar/gkr1286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 11/17/2022] Open
Abstract
The use of time-resolved fluorescence measurements in studies of telomeric G-quadruplex folding and stability has been hampered by the complexity of fluorescence lifetime distributions in solution. The application of phasor diagrams to the analysis of time-resolved fluorescence measurements, collected from either frequency-domain or time-domain instrumentation, allows for rapid characterization of complex lifetime distributions. Phasor diagrams are model-free graphical representations of transformed time-resolved fluorescence results. Simplification of complex fluorescent decays by phasor diagrams is demonstrated here using a 2-aminopurine substituted telomeric G-quadruplex sequence. The application of phasor diagrams to complex systems is discussed with comparisons to traditional non-linear regression model fitting. Phasor diagrams allow for the folding and stability of the telomeric G-quadruplex to be monitored in the presence of either sodium or potassium. Fluorescence lifetime measurements revealed multiple transitions upon folding of the telomeric G-quadruplex through the addition of potassium. Enzymatic digestion of the telomeric G-quadruplex structure, fluorescence quenching and Förster resonance energy transfer were also monitored through phasor diagrams. This work demonstrates the sensitivity of time-resolved methods for monitoring changes to the telomeric G-quadruplex and outlines the phasor diagram approach for analysis of complex time-resolved results that can be extended to other G-quadruplex and nucleic acid systems.
Collapse
Affiliation(s)
- Robert Buscaglia
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202 and Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - David M. Jameson
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202 and Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Jonathan B. Chaires
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock Street, Louisville, KY 40202 and Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
8
|
Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012; 17:4047-132. [PMID: 22469598 PMCID: PMC6268795 DOI: 10.3390/molecules17044047] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 12/19/2022] Open
Abstract
Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Förster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research.
Collapse
Affiliation(s)
- Hellen C. Ishikawa-Ankerhold
- Ludwig Maximilian University of Munich, Institute of Anatomy and Cell Biology, Schillerstr. 42, 80336 München, Germany
| | - Richard Ankerhold
- Carl Zeiss Microimaging GmbH, Kistlerhofstr. 75, 81379 München, Germany
| | - Gregor P. C. Drummen
- Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio&Nano-Solutions, Helmutstr. 3A, 40472 Düsseldorf, Germany
| |
Collapse
|
9
|
|
10
|
FEREIDOUNI F, ESPOSITO A, BLAB G, GERRITSEN H. A modified phasor approach for analyzing time-gated fluorescence lifetime images. J Microsc 2011; 244:248-58. [DOI: 10.1111/j.1365-2818.2011.03533.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Fruhwirth GO, Fernandes LP, Weitsman G, Patel G, Kelleher M, Lawler K, Brock A, Poland SP, Matthews DR, Kéri G, Barber PR, Vojnovic B, Ameer‐Beg SM, Coolen ACC, Fraternali F, Ng T. How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology. Chemphyschem 2011; 12:442-61. [DOI: 10.1002/cphc.201000866] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/07/2011] [Indexed: 01/22/2023]
Affiliation(s)
- Gilbert O. Fruhwirth
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Luis P. Fernandes
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Gregory Weitsman
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Gargi Patel
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Muireann Kelleher
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Katherine Lawler
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Adrian Brock
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - Simon P. Poland
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Daniel R. Matthews
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
| | - György Kéri
- Vichem Chemie Research Ltd. Herman Ottó utca 15, Budapest, Hungary and Pathobiochemistry Research Group of Hungarian Academy of Science, Semmelweis University, Budapest, 1444 Bp 8. POB 260 (Hungary)
| | - Paul R. Barber
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ (UK)
| | - Borivoj Vojnovic
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ (UK)
| | - Simon M. Ameer‐Beg
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Anthony C. C. Coolen
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
- Department of Mathematics, King's College London, Strand Campus, London, WC2R 2LS (UK)
| | - Franca Fraternali
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| | - Tony Ng
- Richard Dimbleby Department of Cancer Research, Division of Cancer Studies, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK), Fax: (+44) (0) 20 7848 6220, Fax: (+44) (0) 20 7848 8056
- Randall Division of Cell & Molecular Biophysics, King's College London, Guy's Medical School Campus, NHH, SE1 1UL (UK)
- Comprehensive Cancer Imaging Centre, New Hunt's House, Guy's Medical School Campus, NHH, SE1 1UL (UK)
| |
Collapse
|
12
|
Stöckl M, Herrmann A. Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1444-56. [DOI: 10.1016/j.bbamem.2009.12.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/30/2009] [Accepted: 12/21/2009] [Indexed: 01/17/2023]
|
13
|
Global analysis of dynamic fluorescence anisotropy by a polarized phasor approach. J Fluoresc 2010; 21:11-5. [PMID: 20532594 DOI: 10.1007/s10895-010-0683-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Recently, the graphical analysis of the fluorescence lifetime imaging using the phasor approach has been highlight, and a series of the reports have made it on the way for the applications by the nonprofessionals. In this paper, we put forward a similar theory validated by the experiments for the dynamic fluorescence anisotropy imaging. By subtracting the perpendicular component from the parallel one in the frequency-domain polarization measurement, we deduce a new analytical expression about the fluorescence joint time, and find that as much as the fluorophore is a single exponential decay and r∞ is equal to zero, △I(t) is a single exponential decay with the time constant X as well, and the center of its histograms is located on the semicircle in the polarized phasor plot. In the end, we conclude that the fluorescence joint time is the best parameter to weigh the fluorescence dynamics for the macromolecules.
Collapse
|
14
|
Affiliation(s)
- Mikhail Y. Berezin
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, St. Louis, USA, Tel. 314-747-0701, 314-362-8599, fax 314-747-5191
| |
Collapse
|
15
|
Schlachter S, Schwedler S, Esposito A, Kaminski Schierle GS, Moggridge GD, Kaminski CF. A method to unmix multiple fluorophores in microscopy images with minimal a priori information. OPTICS EXPRESS 2009; 17:22747-22760. [PMID: 20052200 DOI: 10.1364/oe.17.022747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ability to quantify the fluorescence signals from multiply labeled biological samples is highly desirable in the life sciences but often difficult, because of spectral overlap between fluorescent species and the presence of autofluorescence. Several so called unmixing algorithms have been developed to address this problem. Here, we present a novel algorithm that combines measurements of lifetime and spectrum to achieve unmixing without a priori information on the spectral properties of the fluorophore labels. The only assumption made is that the lifetimes of the fluorophores differ. Our method combines global analysis for a measurement of lifetime distributions with singular value decomposition to recover individual fluorescence spectra. We demonstrate the technique on simulated datasets and subsequently by an experiment on a biological sample. The method is computationally efficient and straightforward to implement. Applications range from histopathology of complex and multiply labelled samples to functional imaging in live cells.
Collapse
Affiliation(s)
- S Schlachter
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke St, Cambridge, CB2 1RA, U.K
| | | | | | | | | | | |
Collapse
|
16
|
Esposito A, Schlachter S, Schierle GSK, Elder AD, Diaspro A, Wouters FS, Kaminski CF, Iliev AI. Quantitative fluorescence microscopy techniques. Methods Mol Biol 2009; 586:117-42. [PMID: 19768427 DOI: 10.1007/978-1-60761-376-3_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fluorescence microscopy is a non-invasive technique that allows high resolution imaging of cytoskeletal structures. Advances in the field of fluorescent labelling (e.g., fluorescent proteins, quantum dots, tetracystein domains) and optics (e.g., super-resolution techniques and quantitative methods) not only provide better images of the cytoskeleton, but also offer an opportunity to quantify the complex of molecular events that populate this highly organised, yet dynamic, structure.For instance, fluorescence lifetime imaging microscopy and Förster resonance energy transfer imaging allow mapping of protein-protein interactions; furthermore, techniques based on the measurement of photobleaching kinetics (e.g., fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and fluorescence localisation after photobleaching) permit the characterisation of axonal transport and, more generally, diffusion of relevant biomolecules.Quantitative fluorescence microscopy techniques offer powerful tools for understanding the physiological and pathological roles of molecular machineries in the living cell.
Collapse
Affiliation(s)
- Alessandro Esposito
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Barber P, Ameer-Beg S, Gilbey J, Carlin L, Keppler M, Ng T, Vojnovic B. Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis. J R Soc Interface 2008. [DOI: 10.1098/rsif.2008.0451.focus] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Förster resonance energy transfer (FRET) detected via fluorescence lifetime imaging microscopy (FLIM) and global analysis provide a way in which protein–protein interactions may be spatially localized and quantified within biological cells. The FRET efficiency and proportion of interacting molecules have been determined using bi-exponential fitting to time-domain FLIM data from a multiphoton time-correlated single-photon counting microscope system. The analysis has been made more robust to noise and significantly faster using global fitting, allowing higher spatial resolutions and/or lower acquisition times. Data have been simulated, as well as acquired from cell experiments, and the accuracy of a modified Levenberg–Marquardt fitting technique has been explored. Multi-image global analysis has been used to follow the epidermal growth factor-induced activation of Cdc42 in a short-image-interval time-lapse FLIM/FRET experiment. Our implementation offers practical analysis and time-resolved-image manipulation, which have been targeted towards providing fast execution, robustness to low photon counts, quantitative results and amenability to automation and batch processing.
Collapse
Affiliation(s)
- P.R Barber
- University of Oxford Gray Cancer Institute, Mount Vernon HospitalMiddlesex HA6 2JR, UK
| | - S.M Ameer-Beg
- University of Oxford Gray Cancer Institute, Mount Vernon HospitalMiddlesex HA6 2JR, UK
- King's College London, Randall CentreNew Hunt's House, Guy's Medical School Campus, London SE1 1UL, UK
| | - J Gilbey
- University of Oxford Gray Cancer Institute, Mount Vernon HospitalMiddlesex HA6 2JR, UK
| | - L.M Carlin
- King's College London, Randall CentreNew Hunt's House, Guy's Medical School Campus, London SE1 1UL, UK
| | - M Keppler
- King's College London, Randall CentreNew Hunt's House, Guy's Medical School Campus, London SE1 1UL, UK
| | - T.C Ng
- King's College London, Randall CentreNew Hunt's House, Guy's Medical School Campus, London SE1 1UL, UK
| | - B Vojnovic
- University of Oxford Gray Cancer Institute, Mount Vernon HospitalMiddlesex HA6 2JR, UK
| |
Collapse
|
18
|
Esposito A, Tiffert T, Mauritz JMA, Schlachter S, Bannister LH, Kaminski CF, Lew VL. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells. PLoS One 2008; 3:e3780. [PMID: 19023444 PMCID: PMC2582953 DOI: 10.1371/journal.pone.0003780] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/28/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards. METHODOLOGY/PRINCIPAL FINDINGS The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45). In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites. CONCLUSIONS/SIGNIFICANCE The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host cell with limited access to hemoglobin molecules indicating the concentration of substantial amounts of parasite-exported material.
Collapse
Affiliation(s)
- Alessandro Esposito
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
19
|
Barreiro O, Zamai M, Yáñez-Mó M, Tejera E, López-Romero P, Monk PN, Gratton E, Caiolfa VR, Sánchez-Madrid F. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol 2008; 183:527-42. [PMID: 18955551 PMCID: PMC2575792 DOI: 10.1083/jcb.200805076] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 09/09/2008] [Indexed: 02/06/2023] Open
Abstract
VCAM-1 and ICAM-1, receptors for leukocyte integrins, are recruited to cell-cell contact sites on the apical membrane of activated endothelial cells. In this study, we show that this recruitment is independent of ligand engagement, actin cytoskeleton anchorage, and heterodimer formation. Instead, VCAM-1 and ICAM-1 are recruited by inclusion within specialized preformed tetraspanin-enriched microdomains, which act as endothelial adhesive platforms (EAPs). Using advanced analytical fluorescence techniques, we have characterized the diffusion properties at the single-molecule level, nanoscale organization, and specific intradomain molecular interactions of EAPs in living primary endothelial cells. This study provides compelling evidence for the existence of EAPs as physical entities at the plasma membrane, distinct from lipid rafts. Scanning electron microscopy of immunogold-labeled samples treated with a specific tetraspanin-blocking peptide identify nanoclustering of VCAM-1 and ICAM-1 within EAPs as a novel mechanism for supramolecular organization that regulates the leukocyte integrin-binding capacity of both endothelial receptors during extravasation.
Collapse
Affiliation(s)
- Olga Barreiro
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wessels JT, Hoffman RM, Wouters FS. The use of transgenic fluorescent mouse strains, fluorescent protein coding vectors, and innovative imaging techniques in the life sciences. Cytometry A 2008; 73:490-1. [PMID: 18307256 DOI: 10.1002/cyto.a.20548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Johannes T Wessels
- Department of Nephrology/ Rheumatology, Centre of Internal Medicine, Molecular and Optical Live Cell Imaging (MOLCI), University of Medicine, Goettingen, Germany.
| | | | | |
Collapse
|