1
|
Zych MG, Hatch EM. Small spaces, big problems: The abnormal nucleoplasm of micronuclei and its consequences. Curr Opin Struct Biol 2024; 87:102839. [PMID: 38763098 DOI: 10.1016/j.sbi.2024.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Micronuclei (MN) form from missegregated chromatin that recruits its own nuclear envelope during mitotic exit and are a common consequence of chromosomal instability. MN are unstable due to errors in nuclear envelope organization and frequently rupture, leading to loss of compartmentalization, loss of nuclear functions, and major changes in genome stability and gene expression. However, recent work found that, even prior to rupture, nuclear processes can be severely defective in MN, which may contribute to rupture-associated defects and have lasting consequences for chromatin structure and function. In this review we discuss work that highlights nuclear function defects in intact MN, including their mechanisms and consequences, and how biases in chromosome missegregation into MN may affect the penetrance of these defects. Illuminating the nuclear environment of MN demonstrates that MN formation alone has major consequences for both the genome and cell and provides new insight into how nuclear content is regulated.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA; Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. https://twitter.com/ZychMolly
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
2
|
Andreu I, Granero-Moya I, Chahare NR, Clein K, Molina-Jordán M, Beedle AEM, Elosegui-Artola A, Abenza JF, Rossetti L, Trepat X, Raveh B, Roca-Cusachs P. Mechanical force application to the nucleus regulates nucleocytoplasmic transport. Nat Cell Biol 2022; 24:896-905. [PMID: 35681009 PMCID: PMC7614780 DOI: 10.1038/s41556-022-00927-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
Mechanical force controls fundamental cellular processes in health and disease, and increasing evidence shows that the nucleus both experiences and senses applied forces. Such forces can lead to the nuclear translocation of proteins, but whether force controls nucleocytoplasmic transport, and how, remains unknown. Here we show that nuclear forces differentially control passive and facilitated nucleocytoplasmic transport, setting the rules for the mechanosensitivity of shuttling proteins. We demonstrate that nuclear force increases permeability across nuclear pore complexes, with a dependence on molecular weight that is stronger for passive than for facilitated diffusion. Owing to this differential effect, force leads to the translocation of cargoes into or out of the nucleus within a given range of molecular weight and affinity for nuclear transport receptors. Further, we show that the mechanosensitivity of several transcriptional regulators can be both explained by this mechanism and engineered exogenously by introducing appropriate nuclear localization signals. Our work unveils a mechanism of mechanically induced signalling, probably operating in parallel with others, with potential applicability across signalling pathways.
Collapse
Affiliation(s)
- Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- Universidad de Navarra, TECNUN Escuela de Ingeniería, Donostia-San Sebastián, Spain.
| | - Ignasi Granero-Moya
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Nimesh R Chahare
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Kessem Clein
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Molina-Jordán
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Amy E M Beedle
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
| | - Alberto Elosegui-Artola
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Department of Physics, King's College London, London, UK
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Juan F Abenza
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Barak Raveh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain.
- Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
4
|
Hoogenboom BW, Hough LE, Lemke EA, Lim RYH, Onck PR, Zilman A. Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment. PHYSICS REPORTS 2021; 921:1-53. [PMID: 35892075 PMCID: PMC9306291 DOI: 10.1016/j.physrep.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The hallmark of eukaryotic cells is the nucleus that contains the genome, enclosed by a physical barrier known as the nuclear envelope (NE). On the one hand, this compartmentalization endows the eukaryotic cells with high regulatory complexity and flexibility. On the other hand, it poses a tremendous logistic and energetic problem of transporting millions of molecules per second across the nuclear envelope, to facilitate their biological function in all compartments of the cell. Therefore, eukaryotes have evolved a molecular "nanomachine" known as the Nuclear Pore Complex (NPC). Embedded in the nuclear envelope, NPCs control and regulate all the bi-directional transport between the cell nucleus and the cytoplasm. NPCs combine high molecular specificity of transport with high throughput and speed, and are highly robust with respect to molecular noise and structural perturbations. Remarkably, the functional mechanisms of NPC transport are highly conserved among eukaryotes, from yeast to humans, despite significant differences in the molecular components among various species. The NPC is the largest macromolecular complex in the cell. Yet, despite its significant complexity, it has become clear that its principles of operation can be largely understood based on fundamental physical concepts, as have emerged from a combination of experimental methods of molecular cell biology, biophysics, nanoscience and theoretical and computational modeling. Indeed, many aspects of NPC function can be recapitulated in artificial mimics with a drastically reduced complexity compared to biological pores. We review the current physical understanding of the NPC architecture and function, with the focus on the critical analysis of experimental studies in cells and artificial NPC mimics through the lens of theoretical and computational models. We also discuss the connections between the emerging concepts of NPC operation and other areas of biophysics and bionanotechnology.
Collapse
Affiliation(s)
- Bart W. Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Loren E. Hough
- Department of Physics and BioFrontiers Institute, University of Colorado, Boulder CO 80309, United States of America
| | - Edward A. Lemke
- Biocenter Mainz, Departments of Biology and Chemistry, Johannes Gutenberg University and Institute of Molecular Biology, 55128 Mainz, Germany
| | - Roderick Y. H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Anton Zilman
- Department of Physics and Institute for Biomedical Engineering (IBME), University of Toronto, Toronto, ON M5S 1A7, Canada
| |
Collapse
|
5
|
Kalita J, Kapinos LE, Lim RYH. On the asymmetric partitioning of nucleocytoplasmic transport - recent insights and open questions. J Cell Sci 2021; 134:239102. [PMID: 33912945 DOI: 10.1242/jcs.240382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macromolecular cargoes are asymmetrically partitioned in the nucleus or cytoplasm by nucleocytoplasmic transport (NCT). At the center of this activity lies the nuclear pore complex (NPC), through which soluble factors circulate to orchestrate NCT. These include cargo-carrying importin and exportin receptors from the β-karyopherin (Kapβ) family and the small GTPase Ran, which switches between guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms to regulate cargo delivery and compartmentalization. Ongoing efforts have shed considerable light on how these soluble factors traverse the NPC permeability barrier to sustain NCT. However, this does not explain how importins and exportins are partitioned in the cytoplasm and nucleus, respectively, nor how a steep RanGTP-RanGDP gradient is maintained across the nuclear envelope. In this Review, we peel away the multiple layers of control that regulate NCT and juxtapose unresolved features against known aspects of NPC function. Finally, we discuss how NPCs might function synergistically with Kapβs, cargoes and Ran to establish the asymmetry of NCT.
Collapse
Affiliation(s)
- Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| | - Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| |
Collapse
|
6
|
Barbato S, Kapinos LE, Rencurel C, Lim RYH. Karyopherin enrichment at the nuclear pore complex attenuates Ran permeability. J Cell Sci 2020; 133:jcs238121. [PMID: 31932502 DOI: 10.1242/jcs.238121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Ran is a small GTPase whose nucleotide-bound forms cycle through nuclear pore complexes (NPCs) to direct nucleocytoplasmic transport (NCT). Generally, Ran guanosine triphosphate (RanGTP) binds cargo-carrying karyopherin receptors (Kaps) in the nucleus and releases them into the cytoplasm following hydrolysis to Ran guanosine diphosphate (RanGDP). This generates a remarkably steep Ran gradient across the nuclear envelope that sustains compartment-specific cargo delivery and accumulation. However, because NPCs are permeable to small molecules of comparable size, it is unclear how an uncontrolled mixing of RanGTP and RanGDP is prevented. Here, we find that an NPC-enriched pool of karyopherin subunit beta 1 (KPNB1, hereafter referred to as Kapβ1) selectively mediates Ran diffusion across the pore but not passive molecules of similar size (e.g. GFP). This is due to RanGTP having a stronger binding interaction with Kapβ1 than RanGDP. For this reason, the RanGDP importer, nuclear transport factor 2, facilitates the return of RanGDP into the nucleus following GTP hydrolysis. Accordingly, the enrichment of Kapβ1 at NPCs may function as a retention mechanism that preserves the sharp transition of RanGTP and RanGDP in the nucleus and cytoplasm, respectively.
Collapse
Affiliation(s)
- Suncica Barbato
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Larisa E Kapinos
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Enhanced Nucleocytoplasmic Transport due to Competition for Elastic Binding Sites. Biophys J 2019; 115:108-116. [PMID: 29972802 DOI: 10.1016/j.bpj.2018.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/21/2018] [Accepted: 05/31/2018] [Indexed: 01/08/2023] Open
Abstract
Nuclear pore complexes (NPCs) control all traffic into and out of the cell nucleus. NPCs are molecular machines that simultaneously achieve high selectivity and high transport rates. The biophysical details of how cargoes rapidly traverse the pore remain unclear but are known to be mediated by interactions between cargo-binding chaperone proteins and natively unstructured nucleoporin proteins containing many phenylalanine-glycine repeats (FG nups) that line the pore's central channel. Here, we propose a specific and detailed physical mechanism for the high speed of nuclear import based on the elasticity of FG nups and on competition between individual chaperone proteins for FG nup binding. We develop a mathematical model to support our proposed mechanism. We suggest that the recycling of nuclear import factors back to the cytoplasm is important for driving high-speed import and predict the existence of an optimal cytoplasmic concentration of cargo for enhancing the rate of import over a purely diffusive rate.
Collapse
|
8
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
9
|
Hansen CV, Schroll HJ, Wüstner D. A discontinuous Galerkin model for fluorescence loss in photobleaching of intracellular polyglutamine protein aggregates. BMC BIOPHYSICS 2018; 11:7. [PMID: 30519460 PMCID: PMC6264036 DOI: 10.1186/s13628-018-0046-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/30/2018] [Indexed: 12/03/2022]
Abstract
Background Intracellular phase separation and aggregation of proteins with extended poly-glutamine (polyQ) stretches are hallmarks of various age-associated neurodegenerative diseases. Progress in our understanding of such processes heavily relies on quantitative fluorescence imaging of suitably tagged proteins. Fluorescence loss in photobleaching (FLIP) is particularly well-suited to study the dynamics of protein aggregation in cellular models of Chorea Huntington and other polyQ diseases, as FLIP gives access to the full spatio-temporal profile of intensity changes in the cell geometry. In contrast to other methods, also dim aggregates become visible during time evolution of fluorescence loss in cellular compartments. However, methods for computational analysis of FLIP data are sparse, and transport models for estimation of transport and diffusion parameters from experimental FLIP sequences are missing. Results In this paper, we present a computational method for analysis of FLIP imaging experiments of intracellular polyglutamine protein aggregates also called inclusion bodies (IBs). By this method, we can determine the diffusion constant and nuclear membrane transport coefficients of polyQ proteins as well as the exchange rates between aggregates and the cytoplasm. Our method is based on a reaction-diffusion multi-compartment model defined on a mesh obtained by segmentation of the cell images from the FLIP sequence. The discontinuous Galerkin (DG) method is used for numerical implementation of our model in FEniCS, which greatly reduces the computing time. The method is applied to representative experimental FLIP sequences, and consistent estimates of all transport parameters are obtained. Conclusions By directly estimating the transport parameters from live-cell image sequences using our new computational FLIP approach surprisingly fast exchange dynamics of mutant Huntingtin between cytoplasm and dim IBs could be revealed. This is likely relevant also for other polyQ diseases. Thus, our method allows for quantifying protein dynamics at different stages of the protein aggregation process in cellular models of neurodegeneration. Electronic supplementary material The online version of this article (10.1186/s13628-018-0046-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian V Hansen
- 1Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, 5230 Denmark
| | - Hans J Schroll
- 1Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, 5230 Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, Campusvej 55, Odense M, 5230 Denmark
| |
Collapse
|
10
|
Kapinos LE, Huang B, Rencurel C, Lim RYH. Karyopherins regulate nuclear pore complex barrier and transport function. J Cell Biol 2017; 216:3609-3624. [PMID: 28864541 PMCID: PMC5674887 DOI: 10.1083/jcb.201702092] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/16/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023] Open
Abstract
Kapinos et al. show that nuclear pore complex permeability and cargo release functionalities are concomitantly regulated by karyopherin occupancy and turnover in a systematic continuum. This highlights increasingly important roles for the soluble nucleocytoplasmic transport machinery that depart from established views of the nuclear pore complex selectivity mechanism. Nucleocytoplasmic transport is sustained by karyopherins (Kaps) and a Ran guanosine triphosphate (RanGTP) gradient that imports nuclear localization signal (NLS)–specific cargoes (NLS-cargoes) into the nucleus. However, how nuclear pore complex (NPC) barrier selectivity, Kap traffic, and NLS-cargo release are systematically linked and simultaneously regulated remains incoherent. In this study, we show that Kapα facilitates Kapβ1 turnover and occupancy at the NPC in a RanGTP-dependent manner that is directly coupled to NLS-cargo release and NPC barrier function. This is underpinned by the binding affinity of Kapβ1 to phenylalanine–glycine nucleoporins (FG Nups), which is comparable with RanGTP·Kapβ1, but stronger for Kapα·Kapβ1. On this basis, RanGTP is ineffective at releasing standalone Kapβ1 from NPCs. Depleting Kapα·Kapβ1 by RanGTP further abrogates NPC barrier function, whereas adding back Kapβ1 rescues it while Kapβ1 turnover softens it. Therefore, the FG Nups are necessary but insufficient for NPC barrier function. We conclude that Kaps constitute integral constituents of the NPC whose barrier, transport, and cargo release functionalities establish a continuum under a mechanism of Kap-centric control.
Collapse
Affiliation(s)
- Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Binlu Huang
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Jang Y, Kim MA, Kim Y. Two faces of competition: target-mediated reverse signalling in microRNA and mitogen-activated protein kinase regulatory networks. IET Syst Biol 2017; 11:105-113. [PMID: 28721939 PMCID: PMC8687413 DOI: 10.1049/iet-syb.2016.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 11/19/2022] Open
Abstract
Biomolecular regulatory networks are organised around hubs, which can interact with a large number of targets. These targets compete with each other for access to their common hubs, but whether the effect of this competition would be significant in magnitude and in function is not clear. In this review, the authors discuss recent in vivo studies that analysed the system level retroactive effects induced by target competition in microRNA and mitogen-activated protein kinase regulatory networks. The results of these studies suggest that downstream targets can regulate the overall state of their upstream regulators, and thus cannot be ignored in analysing biomolecular networks.
Collapse
Affiliation(s)
- Yongjin Jang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Min A Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| |
Collapse
|
12
|
Joseph SR, Pálfy M, Hilbert L, Kumar M, Karschau J, Zaburdaev V, Shevchenko A, Vastenhouw NL. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos. eLife 2017; 6. [PMID: 28425915 PMCID: PMC5451213 DOI: 10.7554/elife.23326] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI:http://dx.doi.org/10.7554/eLife.23326.001 The DNA in a fertilized egg contains all the information required to form an animal’s body. In order for the animal to develop properly, particular genes encoded in the DNA are only active at specific times. The DNA is wrapped around proteins called histones, which allows the DNA to be tightly packed inside the cell. However, histones can block other proteins called transcription factors from binding to the DNA to activate the genes. Young embryos initially develop with all of their genes switched off, relying on the nutrients and other molecules provided by their mother. After some time, the embryo starts to switch on its own genes to take control of its own development, but it was not clear how this happens. Joseph et al. investigated how genes are activated in zebrafish embryos, which are often used as models to study how animals develop. The experiments show that competition between histones and transcription factors for binding to DNA controls when genes are switched on. In young fish embryos, there are so many histones present that transcription factors have no opportunity to bind to DNA. Over time, however, the numbers of histones decrease, allowing transcription factors to bind to DNA and switch on genes. Histones and transcription factors regulate the activity of genes throughout the life of the animal. Therefore, competition between these two types of protein may also control gene activity in other situations. A better understanding of how gene activity is controlled could allow researchers to more easily grow different types of cell in the laboratory or to reprogram specific cells in the body. As such, these new findings may aid the development of therapies to regenerate organs or tissues that have been damaged by injury or disease. DOI:http://dx.doi.org/10.7554/eLife.23326.002
Collapse
Affiliation(s)
- Shai R Joseph
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Máté Pálfy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lennart Hilbert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Mukesh Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jens Karschau
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Vasily Zaburdaev
- Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
13
|
Wang CH, Mehta P, Elbaum M. Thermodynamic Paradigm for Solution Demixing Inspired by Nuclear Transport in Living Cells. PHYSICAL REVIEW LETTERS 2017; 118:158101. [PMID: 28452496 PMCID: PMC5519409 DOI: 10.1103/physrevlett.118.158101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 06/01/2023]
Abstract
Living cells display a remarkable capacity to compartmentalize their functional biochemistry. A particularly fascinating example is the cell nucleus. Exchange of macromolecules between the nucleus and the surrounding cytoplasm does not involve traversing a lipid bilayer membrane. Instead, large protein channels known as nuclear pores cross the nuclear envelope and regulate the passage of other proteins and RNA molecules. Beyond simply gating diffusion, the system of nuclear pores and associated transport receptors is able to generate substantial concentration gradients, at the energetic expense of guanosine triphosphate hydrolysis. In contrast to conventional approaches to demixing such as reverse osmosis and dialysis, the biological system operates continuously, without application of cyclic changes in pressure or solvent exchange. Abstracting the biological paradigm, we examine this transport system as a thermodynamic machine of solution demixing. Building on the construct of free energy transduction and biochemical kinetics, we find conditions for the stable operation and optimization of the concentration gradients as a function of dissipation in the form of entropy production.
Collapse
Affiliation(s)
- Ching-Hao Wang
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Michael Elbaum
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7600001 Israel
| |
Collapse
|
14
|
Lolodi O, Yamazaki H, Otsuka S, Kumeta M, Yoshimura SH. Dissecting in vivo steady-state dynamics of karyopherin-dependent nuclear transport. Mol Biol Cell 2015; 27:167-76. [PMID: 26538027 PMCID: PMC4694755 DOI: 10.1091/mbc.e15-08-0601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/27/2015] [Indexed: 11/11/2022] Open
Abstract
The steady-state dynamics of karyopherin-dependent nuclear transport in a living cell is examined. The kinetic model established by a number of experimentally obtained parameters reveals how each step of the transport system contributes to maintaining steady-state cargo gradient and fluxes across the nuclear envelope. Karyopherin-dependent molecular transport through the nuclear pore complex is maintained by constant recycling pathways of karyopherins coupled with the Ran-dependent cargo catch-and-release mechanism. Although many studies have revealed the bidirectional dynamics of karyopherins, the entire kinetics of the steady-state dynamics of karyopherin and cargo is still not fully understood. In this study, we used fluorescence recovery after photobleaching and fluorescence loss in photobleaching on live cells to provide convincing in vivo proof that karyopherin-mediated nucleocytoplasmic transport of cargoes is bidirectional. Continuous photobleaching of the cytoplasm of live cells expressing NLS cargoes led to progressive decrease of nuclear fluorescence signals. In addition, experimentally obtained kinetic parameters of karyopherin complexes were used to establish a kinetic model to explain the entire cargo import and export transport cycles facilitated by importin β. The results strongly indicate that constant shuttling of karyopherins, either free or bound to cargo, ensures proper balancing of nucleocytoplasmic distribution of cargoes and establishes effective regulation of cargo dynamics by RanGTP.
Collapse
Affiliation(s)
| | - Hiroya Yamazaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Shotaro Otsuka
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Fuxreiter M, Tóth-Petróczy Á, Kraut DA, Matouschek AT, Lim RYH, Xue B, Kurgan L, Uversky VN. Disordered proteinaceous machines. Chem Rev 2014; 114:6806-43. [PMID: 24702702 PMCID: PMC4350607 DOI: 10.1021/cr4007329] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Monika Fuxreiter
- MTA-DE
Momentum Laboratory of Protein Dynamics, Department of Biochemistry
and Molecular Biology, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Ágnes Tóth-Petróczy
- Department
of Biological Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Daniel A. Kraut
- Department
of Chemistry, Villanova University, 800 East Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Andreas T. Matouschek
- Section
of Molecular Genetics and Microbiology, Institute for Cellular &
Molecular Biology, The University of Texas
at Austin, 2506 Speedway, Austin, Texas 78712, United States
| | - Roderick Y. H. Lim
- Biozentrum
and the Swiss Nanoscience Institute, University
of Basel, Klingelbergstrasse
70, CH-4056 Basel, Switzerland
| | - Bin Xue
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lukasz Kurgan
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Vladimir N. Uversky
- Department of Cell Biology,
Microbiology and Molecular Biology, College
of Fine Arts and Sciences, and Department of Molecular Medicine and USF Health
Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute
for Biological Instrumentation, Russian
Academy of Sciences, 142290 Pushchino, Moscow Region 119991, Russia
| |
Collapse
|
16
|
Kim S, Elbaum M. Enzymatically driven transport: a kinetic theory for nuclear export. Biophys J 2014; 105:1997-2005. [PMID: 24209844 DOI: 10.1016/j.bpj.2013.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022] Open
Abstract
Nuclear import and export are often considered inverse processes whereby transport receptors ferry protein cargo through the nuclear pore. In contrast to import, where the reversible binding of receptor to nuclear RanGTP leads to a balanced bidirectional exchange, termination of export by physiologically irreversible hydrolysis of the Ran-bound GTP leads to unidirectional transport. We present a concise mathematical model that predicts protein distributions and kinetic rates for receptor-mediated nuclear export, which further exhibit an unexpected pseudolinear relation one to the other. Predictions of the model are verified with permeabilized and live cell measurements.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
17
|
Kim S, Elbaum M. A simple kinetic model with explicit predictions for nuclear transport. Biophys J 2014; 105:565-9. [PMID: 23931304 DOI: 10.1016/j.bpj.2013.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022] Open
Abstract
Molecular exchange between the cell nucleus and cytoplasm is one of the most fundamental features of eukaryotic cell biology. The nuclear pores act as a conduit of this transport, both for cargo that crosses the pore autonomously as well as that whose translocation requires an intermediary receptor. The major class of such receptors is regulated by the small GTPase Ran, via whose interaction the nucleo-cytoplasmic transport system functions as a selective molecular pump. We propose a simple analytical model for transport that includes both translocation and receptor binding kinetics. The model is suitable for steady-state kinetics such as fluorescence recovery after photobleaching. Time constants appear as a combination of parameters whose effects on measured kinetics are not separable. Competitive cargo binding to receptors and large cytoplasmic volume buffer the transport properties of any particular cargo. Specific limits to the solutions provide a qualitative insight and interpretation of nuclear transport in the cellular context. Most significantly, we find that under realistic conditions receptor binding, rather than permeability of the nuclear pores, may be rate-limiting for nucleo-cytoplasmic exchange.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
18
|
Bellapadrona G, Elbaum M. Supramolecular Protein Assemblies in the Nucleus of Human Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Bellapadrona G, Elbaum M. Supramolecular protein assemblies in the nucleus of human cells. Angew Chem Int Ed Engl 2014; 53:1534-7. [PMID: 24453074 DOI: 10.1002/anie.201309163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Indexed: 01/29/2023]
Abstract
Genetically encoded supramolecular protein assemblies (SMPAs) are induced to form in living cells by combination of distinct self-assembly properties. A single fusion construct contains genes encoding the heavy chain (H) of human ferritin and the citrine fluorescent protein, the latter exposing a weak dimerization interface, as well as a nuclear localization signal. Upon expression in HeLa cells, in vivo confocal fluorescence and differential interference contrast imaging revealed extended SMPA structures exclusively in the nuclei. Assemblies were typically round and took alveolar, shell-like, or hybrid structure. Transmission electron microscopy revealed a crystalline packing. Site-specific mutagenesis of the citrine dimerization interface clarified the mechanism of SMPA formation. The constituent proteins retained their activity in iron binding and fluorescence emission, thus suggesting a general strategy for formation of synthetic cellular bodies with specific biochemical function.
Collapse
Affiliation(s)
- Giuliano Bellapadrona
- Dept of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel)
| | | |
Collapse
|
20
|
Raschbichler V, Lieber D, Bailer SM. NEX-TRAP, a novel method for in vivo analysis of nuclear export of proteins. Traffic 2012; 13:1326-34. [PMID: 22708827 DOI: 10.1111/j.1600-0854.2012.01389.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/01/2022]
Abstract
Transport of proteins between cytoplasm and nucleus is mediated by transport factors of the importin α- and β-families and occurs along a gradient of the small GTPase Ran. To date, in vivo analysis as well as prediction of protein nuclear export remain tedious and difficult. We generated a novel bipartite assay called NEX-TRAP (Nuclear EXport Trapped by RAPamycin) for in vivo analysis of protein nuclear export. The assay is based on the rapamycin-induced dimerization of the modules FRB (FK506-rapamycin (FR)-binding domain) and FKBP (FK506-binding protein-12): a potential nuclear export cargo is fused to FRB, to EYFP for direct visualization as well as to an SV40-derived nuclear localization signal (NLS) for constitutive nuclear import. An integral membrane protein that resides at the trans Golgi network (TGN) is fused to a cytoplasmically exposed FKBP and serves as reporter. EYFP-NLS-FRB fusion proteins with export activity accumulate in the nucleus at steady state but continuously shuttle between nucleus and cytoplasm. Rapamycin-induced dimerization of FRB and FKBP at the TGN traps the shuttling protein outside of the nucleus, making nuclear export permanent. Using several example cargoes, we show that the NEX-TRAP is superior to existing assays owing to its ease of use, its sensitivity and accuracy. Analysis of large numbers of export cargoes is facilitated by recombinational cloning. The NEX-TRAP holds the promise of applicability in automated fluorescence imaging for systematic analysis of nuclear export, thereby improving in silico prediction of nuclear export sequences.
Collapse
Affiliation(s)
- Verena Raschbichler
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Pettenkoferstr. 9a, 80336, München, Germany
| | | | | |
Collapse
|
21
|
Grünwald D, Singer RH. Multiscale dynamics in nucleocytoplasmic transport. Curr Opin Cell Biol 2011; 24:100-6. [PMID: 22196930 DOI: 10.1016/j.ceb.2011.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/24/2011] [Indexed: 01/06/2023]
Abstract
The nuclear pore complex (NPC) has long been viewed as a point-like entry and exit channel between the nucleus and the cytoplasm. New data support a different view whereby the complex displays distinct spatial dynamics of variable duration ranging from milliseconds to events spanning the entire cell cycle. Discrete interaction sites outside the central channel become apparent, and transport regulation at these sites seems to be of greater importance than currently thought. Nuclear pore components are highly active outside the NPC or impact the fate of cargo transport away from the nuclear pore. The NPC is a highly dynamic, crowded environment-constantly loaded with cargo while providing selectivity based on unfolded proteins. Taken together, this comprises a new paradigm in how we view import/export dynamics and emphasizes the multiscale nature of NPC-mediated cellular transport.
Collapse
Affiliation(s)
- David Grünwald
- Delft University of Technology, Kavli Institute of Nanoscience, Department of Bionanoscience, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | | |
Collapse
|
22
|
Abstract
The central dogma of molecular biology - DNA makes RNA makes proteins - is a flow of information that in eukaryotes encounters a physical barrier: the nuclear envelope, which encapsulates, organizes and protects the genome. Nuclear-pore complexes, embedded in the nuclear envelope, regulate the passage of molecules to and from the nucleus, including the poorly understood process of the export of RNAs from the nucleus. Recent imaging approaches focusing on single molecules have provided unexpected insight into this crucial step in the information flow. This review addresses the latest studies of RNA export and presents some models for how this complex process may work.
Collapse
|
23
|
Cangiani A, Natalini R. A spatial model of cellular molecular trafficking including active transport along microtubules. J Theor Biol 2010; 267:614-25. [DOI: 10.1016/j.jtbi.2010.08.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 06/02/2010] [Accepted: 08/13/2010] [Indexed: 01/26/2023]
|
24
|
Lachish-Zalait A, Lau CK, Fichtman B, Zimmerman E, Harel A, Gaylord MR, Forbes DJ, Elbaum M. Transportin mediates nuclear entry of DNA in vertebrate systems. Traffic 2010; 10:1414-28. [PMID: 19761539 DOI: 10.1111/j.1600-0854.2009.00968.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Delivery of DNA to the cell nucleus is an essential step in many types of viral infection, transfection, gene transfer by the plant pathogen Agrobacterium tumefaciens and in strategies for gene therapy. Thus, the mechanism by which DNA crosses the nuclear pore complex (NPC) is of great interest. Using nuclei reconstituted in vitro in Xenopus egg extracts, we previously studied DNA passage through the nuclear pores using a single-molecule approach based on optical tweezers. Fluorescently labeled DNA molecules were also seen to accumulate within nuclei. Here we find that this import of DNA relies on a soluble protein receptor of the importin family. To identify this receptor, we used different pathway-specific cargoes in competition studies as well as pathway-specific dominant negative inhibitors derived from the nucleoporin Nup153. We found that inhibition of the receptor transportin suppresses DNA import. In contrast, inhibition of importin beta has little effect on the nuclear accumulation of DNA. The dependence on transportin was fully confirmed in assays using permeabilized HeLa cells and a mammalian cell extract. We conclude that the nuclear import of DNA observed in these different vertebrate systems is largely mediated by the receptor transportin. We further report that histones, a known cargo of transportin, can act as an adaptor for the binding of transportin to DNA.
Collapse
Affiliation(s)
- Aurelie Lachish-Zalait
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|