1
|
Salcedo S, Di Marzio A, Martínez-López E. Biomonitoring of persistent pollutants in grey seal (Halichoerus seagrypus) pups from the Gulf of Riga, Baltic Sea. MARINE POLLUTION BULLETIN 2024; 209:117198. [PMID: 39486196 DOI: 10.1016/j.marpolbul.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
We analyzed for the first time the concentration of potentially toxic trace elements Hg, As, Pb, Cr and Se and POPs (PCBs and OCPs) in tissues of 41 grey seal pups (Halichoerus grypus) stranded on the shores of the Gulf of Riga. Lanugo was the sample with the highest concentrations of all trace elements except Hg. The concentrations found in this biological matrix appeared as follows: Hg (2.50 ± 1.43 μg/g); Se (1.22 ± 0.82 μg/g); Cr (0.96 ± 1.51 μg/g); As (0.95 ± 1.03 μg/g); Pb (0.50 ± 0.60 μg/g). POPs were∑PCB (0.566 ± 0.520 μg/g), ∑DDT (0.522 ± 0.454 μg/g), ∑HCH (0.043 ± 0.045 μg/g) and Chlordane (0.041 μg/g). We detected brain Hg levels above the threshold described for neurobehavioural changes and some individuals also exceeded the toxic threshold described for PCBs. Thus, the health of grey seal pups could be affected by both groups of pollutants.
Collapse
Affiliation(s)
- S Salcedo
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain
| | - A Di Marzio
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Department of Science and Education, Rigas Nacionalais zoologiskais darzs (Riga Zoo), Meza prospekts 1, LV-1014 Riga, Latvia
| | - E Martínez-López
- Area of Toxicology, Oceanosphera Group, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
2
|
Sonne C, Alstrup AKO, Pagh S, Thøstesen CB, Jensen TH, Jensen TK, Galatius A, Kyhn L, Søndergaard J, Siebert U, Lakemeyer J, Dietz R. Gross pathology and liver mercury concentrations in harbour porpoises, harbour seals and grey seals in Denmark, Northern Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176662. [PMID: 39362555 DOI: 10.1016/j.scitotenv.2024.176662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Here we report the first investigation of gross pathology and mercury (Hg) in liver tissue from harbour porpoises, harbour seals and grey seals from Denmark, Northern Europe. Mercury concentrations ranged between 0.2 and 248 μg/g wet weight (ww) with highest concentrations found in grey seals and subadult harbour seals from the Baltic Sea, with no relationship to body condition. Necropsy findings across all three species decreasing in the following order: pneumonia (n = 60) > respiratory parasitism (n = 56) > wounds (n = 18) > GI-parasites (stomach nematodes and/or parasitic colitis) (n = 16) > ectoparasites (skin lice) (n = 12) > hepatic parasites/lesions (n = 8) > focal alopecia (n = 5) > nephropathy (n = 4) > middle ear complex parasites (n = 3) > nasal parasites (n = 2). Heart and/or lung worms were significantly highest in subadult harbour porpoises, GI parasites and nephropathy significantly lowest in subadult harbour seals and focal alopecia significantly highest in subadult harbour seals. Most cases of pneumonia were associated with respiratory parasites (68 %), while nine cases of wounds led to signs of septicaemia. Significant positive relationships were observed between Hg and the presence of respiratory parasites in subadult harbour porpoises and between Hg and the presence of focal alopecia, nephropathy, and gastrointestinal parasites in subadult harbour seals. Levels of Hg were in the categories for low risk (16-64 μg/g ww) in 18 %, moderate risk (64-83 μg/g ww) in 3 %, high risk (83-123 μg/g ww) in 2 % and severe risk (>123 μg/g ww) in 3 % of all individuals for health effects in marine mammals. In conclusion, using marine mammals as integrative sentinel species for Danish North Sea, Inner Danish Waters and the Baltic Sea ecosystems provides monitoring of ocean health in terms of multiple stressors such as anthropogenic contaminants and infectious diseases all being important in the context of global change.
Collapse
Affiliation(s)
- Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| | - Aage K O Alstrup
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, DK-8200 Aarhus, Denmark; Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark.
| | - Sussie Pagh
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, Aalborg East, DK-9220 Aalborg, Denmark
| | | | - Trine Hammer Jensen
- Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, Aalborg East, DK-9220 Aalborg, Denmark; Aalborg Zoo, Mølleparkvej 63, DK-9000 Aalborg, Denmark.
| | - Tim Kåre Jensen
- Department of Veterinary and Animal Sciences, Section for Pathobiology, University of Copenhagen, Ridebanevej 3, DK-1870 Frederiksberg, Denmark; Technical University of Denmark (DTU), National Veterinary Institute, DK-2800 Kongens Lyngby, Denmark.
| | - Anders Galatius
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| | - Line Kyhn
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| | - Jens Søndergaard
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| | - Ursula Siebert
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark; Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, Werftstr. 6, DE-25761 Büsum, Germany.
| | - Jan Lakemeyer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover Foundation, Werftstr. 6, DE-25761 Büsum, Germany
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| |
Collapse
|
3
|
Herzog I, Siebert U, Lehnert K. High prevalence and low intensity of Echinophthirius horridus infection in seals revealed by high effort sampling. Sci Rep 2024; 14:14258. [PMID: 38902289 PMCID: PMC11190234 DOI: 10.1038/s41598-024-64890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
Seal lice (Echinophthirius horridus) are bloodsucking ectoparasites of phocid seals and vectors of pathogens like the heartworm, Acanthocheilonema spirocauda. Grey and harbour seal populations are recovering in German waters and wildlife health surveillance is crucial for wildlife conservation. A new, high effort sampling protocol for seal lice was applied for grey and harbour seals along the German North- and Baltic Sea coast. Freshly dead seals were systematically sampled within a health monitoring of stranded seals over 12 months. Prevalence, intensity and distribution patterns of seal lice were analysed. 58% of harbour seals (n = 71) and 70% of grey seals (n = 10) were infected with seal lice. A majority of harbour seals displayed mild levels of infection, while three were moderately and two were severely infected. The head was the preferred predilection site, indicating that E. horridus prefers body areas with frequent access to atmospheric oxygen. Nits and different developmental stages were recorded in all age classes in grey and harbour seals in all seasons. For the first time, copulating specimens of E. horridus were recorded on a dead harbour seal, highlighting that E. horridus reproduces throughout the year on seals of all age classes in German waters.
Collapse
Affiliation(s)
- Insa Herzog
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Büsum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Büsum, Germany
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Büsum, Germany.
| |
Collapse
|
4
|
Herzog I, Wohlsein P, Preuss A, Gorb SN, Pigeault R, Ewers C, Prenger-Berninghoff E, Siebert U, Lehnert K. Heartworm and seal louse: Trends in prevalence, characterisation of impact and transmission pathways in a unique parasite assembly on seals in the North and Baltic Sea. Int J Parasitol Parasites Wildl 2024; 23:100898. [PMID: 38283886 PMCID: PMC10818207 DOI: 10.1016/j.ijppaw.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
The ectoparasitic seal louse, Echinophthirius horridus infects harbour (Phoca vitulina) and grey seals (Halichoerus grypus) in the North and Baltic Sea. The endoparasitic heartworm Acanthocheilonema spirocauda parasitizes the right heart and blood vessels of harbour seals. The complete lifecycle of the heartworm is not entirely understood although the seal louse is assumed to serve as vector for its transmission. Knowledge about the impact of both parasite species on host health are scarce. In this study, necropsy data and archived parasites of harbour and grey seals in German waters were analysed to determine long-term seal louse (SLP) and heartworm prevalence (HWP) from 2014 to 2021. Histology, microbiology and scanning electron microscopy (SEM) were applied on seal louse infected and uninfected skin to investigate associated lesions and the health impact. During the study period, HWP in harbour seals was 13%, the SLP in harbour seals was 4% and in grey seals 10%. HWP of harbour seals was significantly higher during the winter months compared to the summer. SLP in adults was significantly higher in comparison to juvenile harbour seals. SLP varied significantly between grey seals from the North and Baltic Sea. Filarial nematodes were detected in the haemocoel, pharynx, and intestine of E. horridus highlighting the seal louse as vector for heartworms. Alopecia and folliculitis were associated with the attachment posture of E. horridus and microbiological investigations isolated bacteria commonly associated with folliculitis.
Collapse
Affiliation(s)
- Insa Herzog
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, 25761, Büsum, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Bünteweg 2, 30559, Hannover, Germany
| | - Anika Preuss
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1–9, 24118, Kiel, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1–9, 24118, Kiel, Germany
| | - Rémi Pigeault
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, 25761, Büsum, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Ellen Prenger-Berninghoff
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 1–9, 24118, Kiel, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, 25761, Büsum, Germany
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstraße 6, 25761, Büsum, Germany
| |
Collapse
|
5
|
Lehnert K, Herzog I, Boyi JO, Gross S, Wohlsein P, Ewers C, Prenger-Berninghoff E, Siebert U. Heartworms in Halichoerus grypus: first records of Acanthocheilonema spirocauda (Onchocercidae; Filarioidea) in 2 grey seals from the North Sea. Parasitology 2023; 150:781-785. [PMID: 37554107 PMCID: PMC10478062 DOI: 10.1017/s0031182023000501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 08/10/2023]
Abstract
The assumed definitive host of the heartworm Acanthocheilonema spirocauda (Onchocerdidae; Filarioidea) is the harbour seal (Phoca vitulina). This filaroid nematode parasitizing in cardiac ventricles and blood vessel lumina of harbour seals (P. vitulina) has a low prevalence and seldom causes severe health impacts. The seal louse (Echinophthirius horridus) is the assumed intermediate host for transmission of A. spirocauda filariae between seals, comprising a unique parasite assembly conveyed from the terrestrial ancestors of pinnipeds. Although grey seals (Halichoerus grypus) are infected by seal lice, heartworm infection was not verified. Analysing a longterm dataset compiled over decades (1996–2021) of health monitoring seals along the German coasts comprising post mortem investigations and archived parasites, 2 cases of A. spirocauda infected male grey seals were detected. Tentative morphological identification was confirmed with molecular tools by sequencing a section of mtDNA COI and comparing nucleotide data with available heartworm sequence. This is the first record of heartworm individuals collected from the heart of grey seals at necropsy. It remains puzzling why heartworm infection occur much less frequently in grey than in harbour seals, although both species use the same habitat, share mixed haul-outs and consume similar prey species. If transmission occurs directly via seal louse vectors on haul-outs, increasing seal populations in the North- and Baltic Sea could have density dependent effects on prevalence of heartworm and seal louse infections. It remains to be shown how species-specificity of filarial nematodes as well as immune system traits of grey seals influence infection patterns of A. spirocauda.
Collapse
Affiliation(s)
- Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover
| | - Insa Herzog
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover
| | - Joy Ometere Boyi
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover
| | - Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, Hannover
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ellen Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover
| |
Collapse
|
6
|
Screening for Influenza and Morbillivirus in Seals and Porpoises in the Baltic and North Sea. Pathogens 2023; 12:pathogens12030357. [PMID: 36986279 PMCID: PMC10054458 DOI: 10.3390/pathogens12030357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Historically, the seals and harbour porpoises of the Baltic Sea and North Sea have been subjected to hunting, chemical pollutants and repeated mass mortalities, leading to significant population fluctuations. Despite the conservation implications and the zoonotic potential associated with viral disease outbreaks in wildlife, limited information is available on the circulation of viral pathogens in Baltic Sea seals and harbour porpoises. Here, we investigated the presence of the influenza A virus (IAV), the phocine distemper virus (PDV) and the cetacean morbillivirus (CeMV) in tracheal swabs and lung tissue samples from 99 harbour seals, 126 grey seals, 73 ringed seals and 78 harbour porpoises collected in the Baltic Sea and North Sea between 2002–2019. Despite screening 376 marine mammals collected over nearly two decades, we only detected one case of PDV and two cases of IAV linked to the documented viral outbreaks in seals in 2002 and 2014, respectively. Although we find no evidence of PDV and IAV during intermediate years, reports of isolated cases of PDV in North Sea harbour seals and IAV (H5N8) in Baltic and North Sea grey seals suggest introductions of those pathogens within the sampling period. Thus, to aid future monitoring efforts we highlight the need for a standardized and continuous sample collection of swabs, tissue and blood samples across Baltic Sea countries.
Collapse
|
7
|
Ovegård M, Ljungberg P, Orio A, Öhman K, Norrman EB, Lunneryd SG. The effects of Contracaecum osculatum larvae on the growth of Atlantic cod (Gadus morhua). Int J Parasitol Parasites Wildl 2022; 19:161-168. [PMID: 36157126 PMCID: PMC9489476 DOI: 10.1016/j.ijppaw.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022]
Abstract
Atlantic cod (Gadus morhua) from the Eastern Baltic stock have decreased in numbers and condition since the 1990′s. Among several causes, an increased prevalence and intensity of the nematode Contracaecum osculatum has been discussed. This increase has been attributed to a population increase of the parasites final host, the grey seal (Halichoerus grypus). Other studies have looked at the role of Contracaecum osculatum on cod growth and condition on recently caught cod, or done short term experimental studies in lab. This study instead investigated the importance of Contracaecum osculatum for cod growth in a sea pen based experiment, where cod were kept and fed in order to monitor growth. The results show that a higher density (number of nematodes per gram liver) decreases cod growth potential. If the number of nematodes exceeded 8 per gram liver cod did not grow in length, even when given generous amounts of food. Accounting for the lack of growth due to Contracaecum osculatum may improve stock assessments and increase the possibility to reach management targets. High C. osculatum density limits cod growth potential, even if generously fed. A higher C. osculatum density result in less, and at a point no growth in weight. If exceeding eight C. osculatum per gram liver, cod do not grow in length.
Collapse
Affiliation(s)
- Maria Ovegård
- Swedish University of Agricultural Research, Institute of Marine Research, Turistgatan 5, 453 30, Lysekil, Sweden
- Corresponding author.
| | - Peter Ljungberg
- Swedish University of Agricultural Research, Institute of Coastal Research, Skolgatan 6, 742 42, Öregrund, Sweden
| | - Alessandro Orio
- Swedish University of Agricultural Research, Institute of Marine Research, Turistgatan 5, 453 30, Lysekil, Sweden
| | - Kristin Öhman
- Swedish University of Agricultural Research, Institute of Coastal Research, Skolgatan 6, 742 42, Öregrund, Sweden
| | - Emilia Benavente Norrman
- Swedish University of Agricultural Research, Institute of Coastal Research, Skolgatan 6, 742 42, Öregrund, Sweden
| | - Sven-Gunnar Lunneryd
- Swedish University of Agricultural Research, Institute of Coastal Research, Skolgatan 6, 742 42, Öregrund, Sweden
| |
Collapse
|
8
|
Siebert U, Grilo ML, Kesselring T, Lehnert K, Ronnenberg K, Pawliczka I, Galatius A, Kyhn LA, Dähne M, Gilles A. Variation of blubber thickness for three marine mammal species in the southern Baltic Sea. Front Physiol 2022; 13:880465. [PMID: 36505079 PMCID: PMC9726720 DOI: 10.3389/fphys.2022.880465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Evaluating populational trends of health condition has become an important topic for marine mammal populations under the Marine Strategy Framework Directive (MSFD). In the Baltic Sea, under the recommendation of Helsinki Commission (HELCOM), efforts have been undertaken to use blubber thickness as an indicator of energy reserves in marine mammals. Current values lack geographical representation from the entire Baltic Sea area and a large dataset is only available for grey seals (Halichoerus grypus) from Sweden and Finland. Knowledge on variation of blubber thickness related to geography throughout the Baltic Sea is important for its usage as an indicator. Such evaluation can provide important information about the energy reserves, and hence, food availability. It is expected that methodological standardization under HELCOM should include relevant datasets with good geographical coverage that can also account for natural variability in the resident marine mammal populations. In this study, seasonal and temporal trends of blubber thickness were evaluated for three marine mammal species-harbor seal (Phoca vitulina), grey seal (Halichoerus grypus) and harbor porpoise (Phocoena phocoena)-resident in the southern Baltic Sea collected and investigated under stranding networks. Additionally, the effects of age, season and sex were analyzed. Seasonal variation of blubber thickness was evident for all species, with harbor seals presenting more pronounced effects in adults and grey seals and harbor porpoises presenting more pronounced effects in juveniles. For harbor seals and porpoises, fluctuations were present over the years included in the analysis. In the seal species, blubber thickness values were generally higher in males. In harbor seals and porpoises, blubber thickness values differed between the age classes: while adult harbor seals displayed thicker blubber layers than juveniles, the opposite was observed for harbor porpoises. Furthermore, while an important initial screening tool, blubber thickness assessment cannot be considered a valid methodology for overall health assessment in marine mammals and should be complemented with data on specific health parameters developed for each species.
Collapse
Affiliation(s)
- Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover Foundation, Büsum, Germany,*Correspondence: Ursula Siebert,
| | - Miguel L. Grilo
- MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, Lisbon, Portugal
| | - Tina Kesselring
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover Foundation, Büsum, Germany
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover Foundation, Büsum, Germany
| | - Katrin Ronnenberg
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover Foundation, Büsum, Germany
| | - Iwona Pawliczka
- Department of Oceanography and Geography, Krzysztof Skóra Hel Marine Station, University of Gdansk, Hel, Poland
| | - Anders Galatius
- Marine Mammal Research, Institute of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Line A. Kyhn
- Marine Mammal Research, Institute of Ecoscience, Aarhus University, Roskilde, Denmark
| | | | - Anita Gilles
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover Foundation, Büsum, Germany
| |
Collapse
|
9
|
Managed culls mean extinction for a marine mammal population when combined with extreme climate impacts. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
van Beest FM, Dietz R, Galatius A, Kyhn LA, Sveegaard S, Teilmann J. Forecasting shifts in habitat suitability of three marine predators suggests a rapid decline in inter-specific overlap under future climate change. Ecol Evol 2022; 12:e9083. [PMID: 35813921 PMCID: PMC9257519 DOI: 10.1002/ece3.9083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding how environmental and climate change can alter habitat overlap of marine predators has great value for the management and conservation of marine ecosystems. Here, we estimated spatiotemporal changes in habitat suitability and inter-specific overlap among three marine predators: Baltic gray seals (Halichoerus grypus), harbor seals (Phoca vitulina), and harbor porpoises (Phocoena phocoena) under contemporary and future conditions. Location data (>200 tagged individuals) were collected in the southwestern region of the Baltic Sea; one of the fastest-warming semi-enclosed seas in the world. We used the maximum entropy (MaxEnt) algorithm to estimate changes in total area size and overlap of species-specific habitat suitability between 1997-2020 and 2091-2100. Predictor variables included environmental and climate-sensitive oceanographic conditions in the area. Sea-level rise, sea surface temperature, and salinity data were taken from representative concentration pathways [RCPs] scenarios 6.0 and 8.5 to forecast potential climate change effects. Model output suggested that habitat suitability of Baltic gray seals will decline over space and time, driven by changes in sea surface salinity and a loss of currently available haulout sites following sea-level rise in the future. A similar, although weaker, effect was observed for harbor seals, while suitability of habitat for harbor porpoises was predicted to increase slightly over space and time. Inter-specific overlap in highly suitable habitats was also predicted to increase slightly under RCP scenario 6.0 when compared to contemporary conditions, but to disappear under RCP scenario 8.5. Our study suggests that marine predators in the southwestern Baltic Sea may respond differently to future climatic conditions, leading to divergent shifts in habitat suitability that are likely to decrease inter-specific overlap over time and space. We conclude that climate change can lead to a marked redistribution of area use by marine predators in the region, which may influence local food-web dynamics and ecosystem functioning.
Collapse
Affiliation(s)
| | - Rune Dietz
- Department of EcoscienceAarhus UniversityRoskildeDenmark
| | | | | | | | - Jonas Teilmann
- Department of EcoscienceAarhus UniversityRoskildeDenmark
| |
Collapse
|