1
|
Reyes-García V, Botella-Martínez C, Juárez-Trujillo N, Muñoz-Tébar N, Viuda-Martos M. Pitahaya ( Hylocereus ocamponis)-Peel and -Flesh Flour Obtained from Fruit Co-Products-Assessment of Chemical, Techno-Functional and In Vitro Antioxidant Properties. Molecules 2024; 29:2241. [PMID: 38792103 PMCID: PMC11124103 DOI: 10.3390/molecules29102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The aim of this work was to assess the chemical composition and physico-chemical, techno-functional, and in vitro antioxidant properties of flours obtained from the peel and flesh of pitahaya (Hylocereus ocamponis) to determine their potential for use as ingredients for food enrichment. The chemical composition, including total betalains, mineral content, and polyphenolic profile, was determined. The techno-functional properties (water holding, oil holding, and swelling capacities) were also evaluated. For the antioxidant capacity, four different methodologies, namely ferrous ion-chelating ability assay, ferric-reducing antioxidant power assay; 1,1-Diphenyl-2-picrylhydrazyl radical scavenging ability assay, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical assay, were used. Pitahaya-peel flour had higher values for protein (6.72 g/100 g), ash (11.63 g/100 g), and dietary fiber 56.56 g/100 g) than pitahaya-flesh flour, with values of 6.06, 3.63, and 8.22 g/100 g for protein, ash, and dietary fiber, respectively. In the same way, pitahaya peel showed a higher content of minerals, betalains, and polyphenolic compounds than pitahaya-flesh flour, with potassium (4.43 g/100 g), catechin (25.85 mg/g), quercetin-3-rhamnoside (11.66 mg/g) and myricetrin (12.10 mg/g) as principal compounds found in the peel. Again, pitahaya-peel flour showed better techno-functional and antioxidant properties than pitahaya-flesh flour. The results obtained suggest that the flours obtained from the peel and pulp of pitahaya (H. ocamponis) constitute a potential material to be utilized as an ingredient in the food industry due to the high content of bioactive compounds such as betalains, phenolic acids, and flavonoids, with notable antioxidant capacity.
Collapse
Affiliation(s)
- Verónica Reyes-García
- Tecnológico Nacional de México/I.T. del Altiplano de Tlaxcala, Carr. Federal San Martin-Tlaxcala Km 7.5, San Diego Xocoyucan 90122, TL, Mexico;
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), 03312 Orihuela, Alicante, Spain; (C.B.-M.); (N.M.-T.)
| | - Carmen Botella-Martínez
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), 03312 Orihuela, Alicante, Spain; (C.B.-M.); (N.M.-T.)
| | - Naida Juárez-Trujillo
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n Industrial animas CP, Xalapa 91192, VC, Mexico;
| | - Nuria Muñoz-Tébar
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), 03312 Orihuela, Alicante, Spain; (C.B.-M.); (N.M.-T.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental, Universidad Miguel Hernández (CIAGRO-UMH), 03312 Orihuela, Alicante, Spain; (C.B.-M.); (N.M.-T.)
| |
Collapse
|
2
|
Rodrigues LDAP, Nunes DDG, Hodel KVS, Viana JD, Silva EP, Soares MBP. Exotic fruits patents trends: An overview based on technological prospection with a focus on Amazonian. Heliyon 2023; 9:e22060. [PMID: 38046170 PMCID: PMC10686867 DOI: 10.1016/j.heliyon.2023.e22060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
The Amazon rainforest encompasses one of the largest biodiversities of the world and is home to a wide variety of food and therapeutic plants. Due to the diversity of components, the fruits of the Amazon biome possess essential physicochemical, nutritional, and pharmacological properties, strengthening the idea that fruit consumption may provide benefits to human health. Thus, the objective of this study was to investigate the current scenario of the use of Amazonian fruits on the development of food, pharmaceutical, nutraceutical, or cosmetic products through the study of filed patents. A prospecting strategy conducted focusing on patents was used to investigate the application of the following fruits: Euterpe oleracea, Oenocarpus bacaba, Caryocar brasiliense, Garcinia gardneriana, Nephelium lappaceum, and Astrocaryum vulgare. A total of 264 patent documents were found. In 2016, a peak of 33 applications was reached, followed by a peak in 2019 with 32 applications. The study is distributed in three main application areas: cosmetics, pharmaceuticals, and food. The Asian continent was the region with the world leadership in this theme, followed by Brazil. Thus, technological prospection studies can foster investments in translational research to elucidate the effects and properties of Amazonian fruits, which can generate sustainable development of new products with industrial potential.
Collapse
Affiliation(s)
| | - Danielle Devequi Gomes Nunes
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Brazil
| | - Josiane Dantas Viana
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Brazil
| | - Edson Pablo Silva
- Centro de Biotecnologia da Amazônia – CBA/SUFRAMA – Avenida Governador Danilo de Matos Aerosa, Distrito Industrial, Manaus, Amazonas, Brazil
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
| |
Collapse
|
3
|
S Ramadan N, M Fayek N, M El-Sayed M, S Mohamed R, A Wessjohann L, Farag MA. Averrhoa carambola L. fruit and stem metabolites profiling and immunostimulatory action mechanisms against cyclosporine induced toxic effects in rat model as analyzed using UHPLC/MS-MS-based chemometrics and bioassays. Food Chem Toxicol 2023; 179:114001. [PMID: 37619832 DOI: 10.1016/j.fct.2023.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
The Averrhoa carambola L. tree encompasses a myriad of phytochemicals contributing to its nutritional and health benefits. The current study aims at investigating the A. carambola L. the metabolite profile grown in tropical and temperate regions represented by fruit and stem, for the first time using UPLC/MS-based molecular networking and chemometrics. Asides, assessment of the immunostimulatory effect of ripe fruit and stem, was compared in relation to metabolite fingerprints. Eighty metabolites were identified, 8 of which are first-time to be reported including 3 dihydrochalcone-C-glycosides, 4 flavonoids, and one phenolic. Multivariate data analysis revealed dihydrochalcones as origin-discriminating metabolites between temperate and tropical grown fruits. Further, an in vivo immunomodulatory assay in a cyclosporine A-induced rat model revealed a potential immune-enhancing effect as manifested by down-regulation of inflammatory markers (IL-6, INF-γ, IL-1, TLR4, and ESR) concurrent with the up-regulation of CD4 level and the CD4/CD8 ratio. Moreover, both extracts suppressed elevation of liver and kidney functions in serum as well as reduction in oxidative stress with concurrent increased levels of T-protein, albumin, globulin, and A/G ratio. This study pinpoints differences in secondary metabolite profiles amongst A. carambola L. accessions from different origins and organ type and its immunomodulatory action mechanisms.
Collapse
Affiliation(s)
- Nehal S Ramadan
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Nesrin M Fayek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., 11562, Cairo, Egypt
| | - Magdy M El-Sayed
- Dairy Science Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Rasha S Mohamed
- Nutrition and Food Science Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., 11562, Cairo, Egypt.
| |
Collapse
|
4
|
Pasdaran A, Hamedi A, Shiehzadeh S, Hamedi A. A review of citrus plants as functional foods and dietary supplements for human health, with an emphasis on meta-analyses, clinical trials, and their chemical composition. Clin Nutr ESPEN 2023; 54:311-336. [PMID: 36963879 DOI: 10.1016/j.clnesp.2023.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Fruits, flowers, leaves, essential oils, hydrosols, and juices of citrus spp. Are utilized to prepare various forms of food products. Along with their nutritional values, in the health industry, different parts of the plants of the citrus genus have been used as supplements or remedies to prevent or control diseases. This review focused on reported meta-analyses and clinical trials on the health benefits of citrus plants as functional foods. Also, chemical compounds of various citrus species were reviewed. The following information sources were used for data collection: Google Scholar, the Web of Science, Scopus, and PubMed. Various keywords, including "citrus AND chemical compounds," "citrus AND phytochemicals," "citrus species," "citrus AND meta-analysis," "nutritional and therapeutical values of citrus spp.," "clinical trials AND citrus," "clinical trials AND Rutaceae," "health benefits of citrus spp.," "citrus edible or non-edible applications," and scientific names of the citrus plants were utilized to collect data for the review. The scientific name and common name of all twenty-eight citrus species, along with any of the above keywords, were also searched in the mentioned databases. Scientific papers and data sources were sought to review and discuss the citrus plant's nutritional and therapeutic importance. Several meta-analyses and clinical trials have reported beneficial effects of citrus spices on a variety of cancer risks, cardiovascular risk factors, neurologic disorders, urinary tract conditions, and gastrointestinal tract conditions. They have shown anxiolytic, antimicrobial, and pain-alleviating effects. Some of them can be helpful in managing obesity and cardiovascular risk factors.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sara Shiehzadeh
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Polyphenol mediated non-enzymatic browning and its inhibition in apple juice. Food Chem 2023; 404:134504. [DOI: 10.1016/j.foodchem.2022.134504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
|
6
|
Quinone-mediated non-enzymatic browning in model systems during long-term storage. Food Chem X 2022; 16:100512. [DOI: 10.1016/j.fochx.2022.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/20/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
|
7
|
Elaboration and Characterization of Natural Deep Eutectic Solvents (NADESs): Application in the Extraction of Phenolic Compounds from pitaya. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238310. [PMID: 36500405 PMCID: PMC9739405 DOI: 10.3390/molecules27238310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/30/2022]
Abstract
In this paper, natural deep eutectic solvents (NADESs) with lactic acid, glycine, ammonium acetate, sodium acetate, and choline chloride were prepared with and without the addition of water. NADES formation was evaluated using FTIR and Raman, where hydrogen bonds were identified between the hydroxyl group of lactic acid and the amino and carboxyl groups of glycine. Acetate and ammonium ions were also identified as forming bonds with lactic acid. The addition of water did not cause changes in the vibrational modes of the FTIR and Raman spectra but contributed to a reduction in NADES viscosity and density. Viscosity ranged from 0.335 to 0.017 Pa s-1, and density ranged from 1.159 to 0.785 g mL-1. The best results for the extraction of phenolic compounds from pitaya (dragon fruit) were achieved with an organic solvent (450. 41 mg 100 g-1 dry bases-db) in comparison to NADESs lactic acid:glycine (193.18 mg 100 g-1 db) and lactic acid:ammonium acetate (186.08 mg 100 g-1 db). The antioxidant activity of the extracts obtained with the NADESs was not statistically different from that of the extract obtained with organic solvents.
Collapse
|
8
|
Structural characterization and in vitro analysis of the prebiotic activity of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds. Food Chem 2022; 388:133045. [PMID: 35486989 DOI: 10.1016/j.foodchem.2022.133045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
Abstract
In the present study, lotus seed oligosaccharides (LOSs) were isolated from lotus (Nelumbo nucifera Gaertn.) seeds using preparative liquid chromatography. LOS structures were characterized using fourier transform infrared spectroscopy (FT-IR), acid hydrolysis, tandemmass spectrometry (MS/MS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopy. Then, Lactobacillus acidophilus was used to evaluate the prebiotic activity of LOSs in vitro. The structural analysis revealed that the monosaccharide components of LOSs included glucose, mannose, fructose and galactose. The MS/MS results indicated that disaccharides, trisaccharides, trisaccharides and tetrasaccharides were the constituents of isolated oligosaccharide polymers LOS2, LOS3-1, LOS3-2, and LOS4, respectively. The FT-IR and 1D/2D NMR data confirmed that LOS3 and LOS4 had a linear structure consisting of (1 → 6)-α-d-mannopyranosyl and glucopyranosyl residues. LOS3-1 and LOS4 effectively and selectively promoted the growth of an L. acidophilus strain, according to the results of the assays of optical density and the short-chain fatty acid (SCFA) content in the culture broth.
Collapse
|
9
|
Biotransformation of the Brazilian Caatinga fruit-derived phenolics by Lactobacillus acidophilus La-5 and Lacticaseibacillus casei 01 impacts bioaccessibility and antioxidant activity. Food Res Int 2021; 146:110435. [PMID: 34119243 DOI: 10.1016/j.foodres.2021.110435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 01/23/2023]
Abstract
This study aims to evaluate the effect of fermentation of fruit purees (seriguela, mangaba, mango, and acerola) with Lacticaseibacillus casei 01 and/or Lactobacillus acidophilus LA-05 on the profile and bioaccessibility of phenolics and antioxidant activity. The physicochemical parameters and sugar and organic acid contents were also measured for evaluating the fermentation system. Fruit purees were adequate substrates for the growth of probiotic cultures, presenting high viability in the product and after simulated gastrointestinal conditions (≥7 log CFU/g). The fermentation with probiotic cultures increased the lactic acid (8.45-15.44 mg/mL), acetic acid (0.05-1.05 mg/mL), and phenolic contents and bioaccessibility, while the pH values and glucose and fructose contents were decreased (p < 0.05). L. acidophilus was found in higher counts in seriguela puree (8.00 ± 0.03), resulting in a higher consumption of maltose, fructose, and glucose, increased phenolic compounds content and bioacessibility and higher antioxidant activity (p < 0.05). The co-cultivation of both probiotic strains showed promising results for mango, mangaba and seriguela purees, resulting in an increased content and bioaccessibility of phenolics and higher antioxidant activity (p < 0.05). Our findings demonstrate for the first time that the Brazilian Caatinga fruit-derived phenolics can be biotransformed by Lactobacillus and amended genera probiotics to bioaccesible phenolics with antioxidant activity. The knowledge obtained from this study will provide fundamental concepts of the use of synergistic probiotics for future fermentation of other fruit purees to increase the bioaccesibility and antioxidant activity of biotransformed phenolic compounds.
Collapse
|