1
|
Sun N, Wei R, Jia B, Lou T, Li Z, Nie X, Yu W, Zhao M, Li Q. Bibliometric analysis of orexin: A promising neuropeptide. Medicine (Baltimore) 2024; 103:e40213. [PMID: 39470537 PMCID: PMC11521092 DOI: 10.1097/md.0000000000040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Orexin is an excitatory neuropeptide produced in the lateral hypothalamus, playing a role in various physiological functions in humans. There is a growing body of literature on orexins. This paper utilizes CiteSpace software to organize and analyze a significant number of articles on orexin, providing readers with an intuitive overview of research trends and emerging hot topics in this field. METHODS The electronic database, Web of Science Core Collection (WoSCC), was searched for publications related to orexins. Annual publications, countries/regions, institutions, authors and keywords were analyzed, and the results were visualized via CiteSpace software. RESULTS A total of 5486 publications were included, with articles making up 85.30% and reviews 14.70%. The top 3 countries publishing the most papers on orexins were the United States (2057 papers), Japan (778), and China (556). The leading institutions included Research Libraries UK (278), Harvard University (250), and Stanford University (221). The most prolific authors in the field were Yves Dauvilliers (69), Abbas Haghparast (67), and Takeshi Sakurai (66). The most frequently used keywords were "neurons" (981), followed by "sleep" (824), "food intake" (612), "receptors" (547), and "neuropathology" (535). Recent research hotspots include melanin-concentrating hormone neurons, Alzheimer disease, gamma-aminobutyric acid neurons, oxidative stress, suvorexant, the orexin system, prevalence, and stress. Based on keyword clustering analysis, the top 5 research hotspots from 2003 to 2022 were: the effects of orexins on sleep and metabolism, potential pathways of orexin signaling, the relationship between orexin and immunity, new findings on depression and hypertension related to orexin, and possible targets for neurodegenerative diseases. CONCLUSION Orexin, a neuropeptide linked to various physiological and pathological processes, plays a crucial role in sleep/wakefulness, reward mechanisms, stress responses, and neurodegenerative diseases. Its significant research value and potential medical applications are underscored by the rapid expansion of studies, particularly in the USA and Japan. However, the lack of collaboration among researchers highlights the need for enhanced academic exchange and cooperation to further advance the field of orexin research.
Collapse
Affiliation(s)
- Ning Sun
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Post-Doctoral Research Station, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Wei
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bochao Jia
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Taiwei Lou
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zirong Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaowei Nie
- Beijing University of Chinese Medicine, Third Affiliated Hospital, Beijing, China
| | - Wenxiao Yu
- Department of Andrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Zhao
- Department of Andrology, Wang Jing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyan Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Rebassa JB, Capó T, Lillo J, Raïch I, Reyes-Resina I, Navarro G. Cannabinoid and Orexigenic Systems Interplay as a New Focus of Research in Alzheimer's Disease. Int J Mol Sci 2024; 25:5378. [PMID: 38791416 PMCID: PMC11121409 DOI: 10.3390/ijms25105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD) remains a significant health challenge, with an increasing prevalence globally. Recent research has aimed to deepen the understanding of the disease pathophysiology and to find potential therapeutic interventions. In this regard, G protein-coupled receptors (GPCRs) have emerged as novel potential therapeutic targets to palliate the progression of neurodegenerative diseases such as AD. Orexin and cannabinoid receptors are GPCRs capable of forming heteromeric complexes with a relevant role in the development of this disease. On the one hand, the hyperactivation of the orexins system has been associated with sleep-wake cycle disruption and Aβ peptide accumulation. On the other hand, cannabinoid receptor overexpression takes place in a neuroinflammatory environment, favoring neuroprotective effects. Considering the high number of interactions between cannabinoid and orexin systems that have been described, regulation of this interplay emerges as a new focus of research. In fact, in microglial primary cultures of APPSw/Ind mice model of AD there is an important increase in CB2R-OX1R complex expression, while OX1R antagonism potentiates the neuroprotective effects of CB2R. Specifically, pretreatment with the OX1R antagonist has been shown to strongly potentiate CB2R signaling in the cAMP pathway. Furthermore, the blockade of OX1R can also abolish the detrimental effects of OX1R overactivation in AD. In this sense, CB2R-OX1R becomes a new potential therapeutic target to combat AD.
Collapse
Affiliation(s)
- Joan Biel Rebassa
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Institut de Neurociències UB, Campus Mundet, 08035 Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| | - Toni Capó
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Institut de Neurociències UB, Campus Mundet, 08035 Barcelona, Spain
- Departament de Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Iu Raïch
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Institut de Neurociències UB, Campus Mundet, 08035 Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Institut de Neurociències UB, Campus Mundet, 08035 Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos, 28029 Madrid, Spain; (J.B.R.); (T.C.); (J.L.); (I.R.)
- Institut de Neurociències UB, Campus Mundet, 08035 Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Cutuli D, Coccurello R. Editorial: The affective side of Alzheimer's disease (AD): neuropsychiatric symptoms as early sentinel of cognitive decline and pathogenetic factors in disease progression. Front Psychiatry 2023; 14:1197763. [PMID: 37555006 PMCID: PMC10406131 DOI: 10.3389/fpsyt.2023.1197763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Affiliation(s)
- Debora Cutuli
- Department of Psychology, University of Rome La Sapienza, Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | - Roberto Coccurello
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Institute for Complex Systems, National Council of Research, Rome, Italy
| |
Collapse
|
4
|
Que M, Li Y, Wang X, Zhan G, Luo X, Zhou Z. Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders? Front Cell Neurosci 2023; 17:1188306. [PMID: 37435045 PMCID: PMC10330732 DOI: 10.3389/fncel.2023.1188306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Sleep plays an essential role in all studied animals with a nervous system. However, sleep deprivation leads to various pathological changes and neurobehavioral problems. Astrocytes are the most abundant cells in the brain and are involved in various important functions, including neurotransmitter and ion homeostasis, synaptic and neuronal modulation, and blood-brain barrier maintenance; furthermore, they are associated with numerous neurodegenerative diseases, pain, and mood disorders. Moreover, astrocytes are increasingly being recognized as vital contributors to the regulation of sleep-wake cycles, both locally and in specific neural circuits. In this review, we begin by describing the role of astrocytes in regulating sleep and circadian rhythms, focusing on: (i) neuronal activity; (ii) metabolism; (iii) the glymphatic system; (iv) neuroinflammation; and (v) astrocyte-microglia cross-talk. Moreover, we review the role of astrocytes in sleep deprivation comorbidities and sleep deprivation-related brain disorders. Finally, we discuss potential interventions targeting astrocytes to prevent or treat sleep deprivation-related brain disorders. Pursuing these questions would pave the way for a deeper understanding of the cellular and neural mechanisms underlying sleep deprivation-comorbid brain disorders.
Collapse
Affiliation(s)
- Mengxin Que
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zhou M, Li Y. Effect of different doses of almorexant on learning and memory in 8-month-old APP/PS1 (AD) mice. Peptides 2023; 167:171044. [PMID: 37330110 DOI: 10.1016/j.peptides.2023.171044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE To explore the effects of different doses of almorexant (an dual orexin receptor antagonist) on learning and memory in Alzheimer's disease (AD) mice. METHODS Forty-four APP/PS1 (model of Alzheimer's disease; AD) mice were randomly divided into 4 groups: the control group (CON) and those that received 10mg/kg almorexant (low dose; LOW), 30mg/kg almorexant (medium dose; MED) and 60mg/kg almorexant (high dose; HIGH). During the 28-day intervention period, mice received an intraperitoneal injection at the beginning of the light period (6:00 am). The effects of different doses of almorexant on learning and memory and 24-hour sleep-wake behaviour were assessed by immunohistochemical staining. The above continuous variables are expressed as the mean ± standard deviation (SD), and then univariate regression analysis and generalized estimating equations were performed to compare the groups; these results are expressed as the mean difference (MD) and 95% confidence interval (CI). The statistical software used STATA 17.0 MP. RESULTS Forty-one mice completed the experiment (3 died: 2 mice in the HIGH group and 1 mouse in the CON group). Compared with the CON group, the LOW group (MD=6,803s, 95% CI: 4,470 to 9,137s), MED group (MD=14,473s, 95% CI: 12,140 to 16,806s) and the HIGH group (MD=24,505s, 95% CI: 22,052 to 26,959s) had significantly longer sleep durations. The Y maze results showed that LOW group (MD=0.14,95%CI: 0.078 to 0.20) and MED group (MD=0.14,95%CI = 0.074 to 0.20) mice compared to the CON group, and the low-medium dose of Almorexant did not damage the short-term learning and memory performance of APP / PS1 (AD) mice.Compared with the CON, LOW, and MED groups, the HIGH group exhibited a significant decrease in the Aβ plaque-positive area in the cortex (MD= -0.030, 95% CI: -0.035 to -0.025; MD=-0.049, 95% CI: -0.054 to -0.044; and MD=-0.07, 95% CI: -0.076 to -0.066, respectively). CONCLUSION The moderate dose of almorexant (30mg/kg) prolonged the sleep duration of APP/PS1 (AD) mice to a greater extent than the low dose (10mg/kg) without altering learning and memory. The MED mice showed a good sleep response and a small residual effect on the next day. High-dose (60mg / kg) almorexant impaired behavioral learning and memory performance in mice.Compared to the CON group and the LOW group, the MED group exhibited improved working memory. Thus, treatment with almorexant may reduce β-amyloid deposition in AD, slowing neurodegeneration. Additional studies are needed to determine the mechanism of action.
Collapse
Affiliation(s)
- Mengzhen Zhou
- Department of Neurology, Qianfo Mountain Hospital affiliated to Shandong First Medical University ,Jinan, Shandong, China.
| | - Yanran Li
- Department of Neurology, Qianfo Mountain Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
6
|
Lozano-Tovar S, Rodríguez-Agudelo Y, Dávila-Ortiz de Montellano DJ, Pérez-Aldana BE, Ortega-Vázquez A, Monroy-Jaramillo N. Relationship between APOE, PER2, PER3 and OX2R Genetic Variants and Neuropsychiatric Symptoms in Patients with Alzheimer's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4412. [PMID: 36901420 PMCID: PMC10001852 DOI: 10.3390/ijerph20054412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disease (AD) is characterized by the presence of neuropsychiatric or behavioral and psychological symptoms of dementia (BPSD). BPSD have been associated with the APOE_ε4 allele, which is also the major genetic AD risk factor. Although the involvement of some circadian genes and orexin receptors in sleep and behavioral disorders has been studied in some psychiatric pathologies, including AD, there are no studies considering gene-gene interactions. The associations of one variant in PER2, two in PER3, two in OX2R and two in APOE were evaluated in 31 AD patients and 31 cognitively healthy subjects. Genotyping was performed using real-time PCR and capillary electrophoresis from blood samples. The allelic-genotypic frequencies of variants were calculated for the sample study. We explored associations between allelic variants with BPSD in AD patients based on the NPI, PHQ-9 and sleeping disorders questionnaires. Our results showed that the APOE_ε4 allele is an AD risk variant (p = 0.03). The remaining genetic variants did not reveal significant differences between patients and controls. The PER3_rs228697 variant showed a nine-fold increased risk for circadian rhythm sleep-wake disorders in Mexican AD patients, and our gene-gene interaction analysis identified a novel interaction between PERIOD and APOE gene variants. These findings need to be further confirmed in larger samples.
Collapse
Affiliation(s)
- Susana Lozano-Tovar
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Circuito Ciudad Universitaria Avenida, C.U., Mexico City 04510, Mexico
| | - Yaneth Rodríguez-Agudelo
- Laboratorio de Neuropsicología Clínica, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| | | | - Blanca Estela Pérez-Aldana
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía, “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
7
|
Ghrelin system in Alzheimer's disease. Curr Opin Neurobiol 2023; 78:102655. [PMID: 36527939 PMCID: PMC10395051 DOI: 10.1016/j.conb.2022.102655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in seniors. Current efforts to understand the etiopathogenesis of this neurodegenerative disorder have brought forth questions about systemic factors in the development of AD. Ghrelin is a brain-gut peptide that is activated by ghrelin O-acyltransferase (GOAT) and signals via its receptor, growth hormone secretagogue receptor (GHSR). With increasing recognition of the neurotropic effects of ghrelin, the role of ghrelin system deregulation in the development of AD has been accentuated in recent years. In this review, we summarized recent research progress regarding the mechanisms of ghrelin signaling dysregulation and its contribution to AD brain pathology. In addition, we also discussed the therapeutic potential of strategies targeting ghrelin signaling for the treatment of this neurological disease.
Collapse
|
8
|
Zhou M, Tang S. Effect of a dual orexin receptor antagonist on Alzheimer's disease: Sleep disorders and cognition. Front Med (Lausanne) 2023; 9:984227. [PMID: 36816725 PMCID: PMC9929354 DOI: 10.3389/fmed.2022.984227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/18/2022] [Indexed: 02/04/2023] Open
Abstract
Orexin is a neuropeptide produced by the lateral hypothalamus that plays an important role in regulating the sleep-wake cycle. The overexpression of the orexinergic system may be related to the pathology of sleep/wakefulness disorders in Alzheimer's disease (AD). In AD patients, the increase in cerebrospinal fluid orexin levels is associated with parallel sleep deterioration. Dual orexin receptor antagonist (DORA) can not only treat the sleep-wakefulness disorder of AD but also improve the performance of patients with cognitive behavior disorder. It is critical to clarify the role of the orexin system in AD, study its relationship with cognitive decline in AD, and evaluate the safety and efficacy of DORA.
Collapse
Affiliation(s)
- Mengzhen Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Shi Tang
| |
Collapse
|
9
|
Zagórska A, Czopek A, Fryc M, Jaromin A, Boyd BJ. Drug Discovery and Development Targeting Dementia. Pharmaceuticals (Basel) 2023; 16:151. [PMID: 37259302 PMCID: PMC9965722 DOI: 10.3390/ph16020151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 08/04/2023] Open
Abstract
Dementia, most often associated with neurodegenerative diseases, affects millions of people worldwide, predominantly the elderly. Unfortunately, no treatment is still available. Therefore, there is an urgent need to address this situation. This review presents the state of the art of drug discovery and developments in targeting dementia. Several approaches are discussed, such as drug repurposing, the use of small molecules, and phosphodiesterase inhibitors. Furthermore, the review also provides insights into clinical trials of these molecules. Emphasis has been placed on small molecules and multi-target-directed ligands, as well as disease-modifying therapies. Finally, attention is drawn to the possibilities of applications of nanotechnology in managing dementia.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Fryc
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Ben J. Boyd
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
10
|
Abdelmissih S. A Bitter Experience That Enlightens the Future: COVID-19 Neurological Affection and Perspectives on the Orexigenic System. Cureus 2022; 14:e30788. [DOI: 10.7759/cureus.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
|
11
|
Acupuncture Interventions for Alzheimer’s Disease and Vascular Cognitive Disorders: A Review of Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6080282. [PMID: 36211826 PMCID: PMC9534683 DOI: 10.1155/2022/6080282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Cognitive impairment (CI) related to Alzheimer's disease (AD) and vascular cognitive disorders (VCDs) has become a key problem worldwide. Importantly, CI is a neuropsychiatric abnormality mainly characterized by learning and memory impairments. The hippocampus is an important brain region controlling learning and memory. Recent studies have highlighted the effects of acupuncture on memory deficits in AD and VCDs. By reviewing the literature published on this topic in the past five years, the present study intends to summarize the effects of acupuncture on memory impairment in AD and VCDs. Focusing on hippocampal synaptic plasticity, we reviewed the mechanisms underlying the effects of acupuncture on memory impairments through regulation of synaptic proteins, AD characteristic proteins, intestinal microbiota, neuroinflammation, microRNA expression, orexin system, energy metabolism, etc., suggesting that hippocampal synaptic plasticity may be the common as well as the core link underlying the above mechanisms. We also discussed the potential strategies to improve the effect of acupuncture. Additionally, the effects of acupuncture on synaptic plasticity through the regulation of vascular–glia–neuron unit were further discussed.
Collapse
|
12
|
Sun YY, Wang Z, Zhou HY, Huang HC. Sleep-Wake Disorders in Alzheimer's Disease: A Review. ACS Chem Neurosci 2022; 13:1467-1478. [PMID: 35507669 DOI: 10.1021/acschemneuro.2c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disease, and it has become a serious health problem in the world. Senile plaques (SPs) and neurofibrillary tangles (NFTs) are two main pathological characters of AD. SP mainly consists of aggregated β-amyloid (Aβ), and NFT is formed by hyperphosphorylated tau protein. Sleep-wake disorders are prevalent in AD patients; however, the links and mechanisms of sleep-wake disorders on the AD pathogenesis remain to be investigated. Here, we referred to the sleep-wake disorders and reviewed some evidence to demonstrate the relationship between sleep-wake disorders and the pathogenesis of AD. On one hand, the sleep-wake disorders may lead to the increase of Aβ production and the decrease of Aβ clearance, the spreading of tau pathology, as well as oxidative stress and inflammation. On the other hand, the ApoE4 allele, a risk gene for AD, was reported to participate in sleep-wake disorders. Furthermore, some neurotransmitters, such as acetylcholine, glutamate, serotonin, melatonin, and orexins, and their receptors were suggested to be involved in AD development and sleep-wake disorders. We discussed and suggested some possible therapeutic strategies for AD treatment based on the view of sleep regulation. In general, this review explored different views to find novel targets of diagnosis and therapy for AD.
Collapse
Affiliation(s)
- Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| | - Zhun Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| | - He-Yan Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, , Beijing 100191, China
- Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing 100023, China
| |
Collapse
|
13
|
Recent trends of natural based therapeutics for mitochondria targeting in Alzheimer’s disease. Mitochondrion 2022; 64:112-124. [DOI: 10.1016/j.mito.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
|
14
|
Elahdadi Salmani M, Sarfi M, Goudarzi I. Hippocampal orexin receptors: Localization and function. VITAMINS AND HORMONES 2022; 118:393-421. [PMID: 35180935 DOI: 10.1016/bs.vh.2021.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Orexin (hypocretin) is secreted from the perifornical/lateral hypothalamus and is well known for sleep regulation. Orexin has two, orexin A and B, transcripts and two receptors, type 1 and 2 (OX1R and OX2R), located in the plasma membrane of neurons in different brain areas, including the hippocampus involved in learning, memory, seizures, and epilepsy, as physiologic and pathologic phenomena. OX1R is expressed in the dentate gyrus and CA1 and the OX2R in the CA3 areas. Orexin enhances learning and memory as well as reward, stress, seizures, and epilepsy, partly through OX1Rs, while either aggravating or alleviating those phenomena via OX2Rs. OX1Rs activation induces long-term changes of synaptic responses in the hippocampus, an age and concentration-dependent manner. Briefly, we will review the localization and functions of hippocampal orexin receptors, their role in learning, memory, stress, reward, seizures, epilepsy, and hippocampal synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran
| |
Collapse
|
15
|
Azhar L, Kusumo RW, Marotta G, Lanctôt KL, Herrmann N. Pharmacological Management of Apathy in Dementia. CNS Drugs 2022; 36:143-165. [PMID: 35006557 DOI: 10.1007/s40263-021-00883-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 12/11/2022]
Abstract
Apathy is a highly prevalent symptom of dementia. Despite its association with faster cognitive and functional decline, decreased quality of life and increased mortality, no therapies are currently approved to treat apathy. The objective of this review was to summarize the drugs that have been studied for apathy treatment in patients with dementia (specifically Alzheimer's disease [AD], Huntington's disease [HD] and Parkinson's disease [PD] dementia; dementia with Lewy bodies [DLB]; vascular dementia [VaD]; and frontotemporal dementia [FTD]) based on their putative mechanisms of action. A search for relevant studies was performed using ClinicalTrials.gov and PubMed. Eligible studies were randomized controlled trials that were available in English and included at least one drug intervention and an apathy measure scale. A total of 52 studies that included patients with AD (n = 33 studies), PD (n = 5), HD (n = 1), DLB (n = 1), FTD (n = 3), VaD (n = 1), VaD and AD (n = 4), VaD and mixed dementia (n = 1), and AD, VaD and mixed dementia (n = 3) were eligible for inclusion. These studies showed that methylphenidate, olanzapine, cholinesterase inhibitors, choline alphoscerate, citalopram, memantine, and mibampator are the only beneficial drugs in AD-related apathy. For PD-related apathy, only methylphenidate, rotigotine and rivastigmine showed benefits. Regarding FTD- and DLB-related apathy, initial studies with agomelatine and rivastigmine showed benefits, respectively. As for HD- and only-VaD-related apathy, no drugs demonstrated benefits. With regards to mixed populations, memantine, galantamine and gingko biloba showed effects on apathy in the AD plus VaD populations and nimodipine in the VaD plus mixed dementia populations. Of the drugs with positive results, some are already prescribed to patients with dementia to target other symptoms, some have characteristics-such as medical contraindications (e.g., cardiovascular) and adverse effects (e.g., gastrointestinal disturbances)-that limit their clinical use and some require further study. Future studies should investigate apathy as a primary outcome, making use of appropriate sample sizes and study durations to ensure durability of results. There should also be a consensus on using scales with high test/retest and interrater reliabilities to limit the inconsistencies between clinical trials. In conclusion, there are currently no US FDA-approved drugs that target apathy in dementia, so there is an ongoing need for the development of such drugs.
Collapse
Affiliation(s)
- Laiba Azhar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Raphael W Kusumo
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Giovanni Marotta
- Geriatric Medicine Division, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Orexin A peptidergic system: comparative sleep behavior, morphology and population in brains between wild type and Alzheimer’s disease mice. Brain Struct Funct 2022; 227:1051-1065. [PMID: 35066609 PMCID: PMC8930968 DOI: 10.1007/s00429-021-02447-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 12/16/2021] [Indexed: 11/13/2022]
Abstract
Sleep disturbance is common in patients with Alzheimer’s disease (AD), and orexin A is a pivotal neurotransmitter for bidirectionally regulating the amyloid-β (Aβ) deposition of AD brain and poor sleep. In the present study, we examined the characteristic of sleep–wake architecture in APPswe/PSldE9 (APP/PS1) and Aβ-treated mice using electroencephalogram (EEG) and electromyographic (EMG) analysis. We compared the expression of orexin A, distribution, and morphology of the corresponding orexin A-positive neurons using innovative methods including three-dimensional reconstruction and brain tissue clearing between wild type (WT) and APP/PS1 mice. Results from our study demonstrated that increased wakefulness and reduced NREM sleep were seen in APP/PS1 and Aβ treated mice, while the expression of orexin A was significantly upregulated. Higher density and distribution of orexin A-positive neurons were seen in APP/PS1 mice, with a location of 1.06 mm–2.30 mm away from the anterior fontanelle compared to 1.34 mm–2.18 mm away from the anterior fontanelle in WT mice. These results suggested that the population and distribution of orexin A may play an important role in the progression of AD.
Collapse
|
17
|
Subramanian S, Ravichandran M. Orexin receptors: Targets and applications. Fundam Clin Pharmacol 2021; 36:72-80. [PMID: 34464995 DOI: 10.1111/fcp.12723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023]
Abstract
Over the years, elucidating targets from the neural circuits that can be used to treat disorders pertaining to the nervous system and extending their scope to other systems have always proved interesting to researchers. The role of various peptides and neurotransmitters has been elucidated and is being developed as therapeutic targets. Out of these, orexins are neuropeptides produced in the hypothalamus that stimulate a specific type of G-Protein coupled receptors (GPCR) called orexin receptors and bring about various physiological and pathological roles. Orexin receptors are of interest not only because of their wide applications such as insomnia, obesity, and inflammatory disorders but also because of their contribution to promising aspects of drug discovery such as optogenetics and their tremendous growth from the stage of being orphans to orexins. This review will discuss in detail the structure of orexin receptors, their physiological role, and various applications in disease states adding a note on agonists and antagonists and finally summarizing the recent drug approvals in the field.
Collapse
Affiliation(s)
- Subhiksha Subramanian
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Mirunalini Ravichandran
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|