1
|
Hou M, Han J, Li G, Kwon MY, Jiang J, Emani S, Taglauer ES, Park JA, Choi EB, Vodnala M, Fong YW, Emani SM, Rosas IO, Perrella MA, Liu X. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther 2020; 11:55. [PMID: 32054514 PMCID: PMC7020558 DOI: 10.1186/s13287-020-1567-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In a number of disease processes, the body is unable to repair injured tissue, promoting the need to develop strategies for tissue repair and regeneration, including the use of cellular therapeutics. Trophoblast stem cells (TSCs) are considered putative stem cells as they differentiate into other subtypes of trophoblast cells. To identify cells for future therapeutic strategies, we investigated whether TSCs have properties of stem/progenitor cells including self-renewal and the capacity to differentiate into parenchymal cells of fetal organs, in vitro and in vivo. METHODS TSCs were isolated using anti-CD117 micro-beads, from embryonic day 18.5 placentas. In vitro, CD117+ TSCs were cultured, at a limiting dilution in growth medium for the development of multicellular clones and in specialized medium for differentiation into lung epithelial cells, cardiomyocytes, and retinal photoreceptor cells. CD117+ TSCs were also injected in utero into lung, heart, and the sub-retinal space of embryonic day 13.5 fetuses, and the organs were harvested for histological assessment after a natural delivery. RESULTS We first identified CD117+ cells within the labyrinth zone and chorionic basal plate of murine placentas in late pregnancy, embryonic day 18.5. CD117+ TSCs formed multicellular clones that remained positive for CD117 in vitro, consistent with self-renewal properties. The clonal cells demonstrated multipotency, capable of differentiating into lung epithelial cells (endoderm), cardiomyocytes (mesoderm), and retinal photoreceptor cells (ectoderm). Finally, injection of CD117+ TSCs in utero into lungs, hearts, and the sub-retinal spaces of fetuses resulted in their engraftment on day 1 after birth, and the CD117+ TSCs differentiated into lung alveolar epithelial cells, heart cardiomyocytes, and retina photoreceptor cells, corresponding with the organs in which they were injected. CONCLUSIONS Our findings demonstrate that CD117+ TSCs have the properties of stem cells including clonogenicity, self-renewal, and multipotency. In utero administration of CD117+ TSCs engraft and differentiate into resident cells of the lung, heart, and retina during mouse development.
Collapse
Affiliation(s)
- Minmin Hou
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Junwen Han
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Gu Li
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Min-Young Kwon
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Jiani Jiang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Sirisha Emani
- Department of Cardiovascular Surgery, Children's Hospital, Boston, MA, USA
| | | | - Jin-Ah Park
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Eun-Bee Choi
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Munender Vodnala
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Yick W Fong
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Sitaram M Emani
- Department of Cardiovascular Surgery, Children's Hospital, Boston, MA, USA
| | - Ivan O Rosas
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
| | - Mark A Perrella
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaoli Liu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Boettcher AN, Li Y, Ahrens AP, Kiupel M, Byrne KA, Loving CL, Cino-Ozuna AG, Wiarda JE, Adur M, Schultz B, Swanson JJ, Snella EM, Ho CS(S, Charley SE, Kiefer ZE, Cunnick JE, Putz EJ, Dell'Anna G, Jens J, Sathe S, Goldman F, Westin ER, Dekkers JCM, Ross JW, Tuggle CK. Novel Engraftment and T Cell Differentiation of Human Hematopoietic Cells in ART-/-IL2RG-/Y SCID Pigs. Front Immunol 2020; 11:100. [PMID: 32117254 PMCID: PMC7017803 DOI: 10.3389/fimmu.2020.00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
Pigs with severe combined immunodeficiency (SCID) are an emerging biomedical animal model. Swine are anatomically and physiologically more similar to humans than mice, making them an invaluable tool for preclinical regenerative medicine and cancer research. One essential step in further developing this model is the immunological humanization of SCID pigs. In this work we have generated T- B- NK- SCID pigs through site directed CRISPR/Cas9 mutagenesis of IL2RG within a naturally occurring DCLRE1C (ARTEMIS)-/- genetic background. We confirmed ART-/-IL2RG-/Y pigs lacked T, B, and NK cells in both peripheral blood and lymphoid tissues. Additionally, we successfully performed a bone marrow transplant on one ART-/-IL2RG-/Y male SCID pig with bone marrow from a complete swine leukocyte antigen (SLA) matched donor without conditioning to reconstitute porcine T and NK cells. Next, we performed in utero injections of cultured human CD34+ selected cord blood cells into the fetal ART-/-IL2RG-/Y SCID pigs. At birth, human CD45+ CD3ε+ cells were detected in cord and peripheral blood of in utero injected SCID piglets. Human leukocytes were also detected within the bone marrow, spleen, liver, thymus, and mesenteric lymph nodes of these animals. Taken together, we describe critical steps forwards the development of an immunologically humanized SCID pig model.
Collapse
Affiliation(s)
| | - Yunsheng Li
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Amanda P. Ahrens
- Laboratory Animal Resources, Iowa State University, Ames, IA, United States
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Kristen A. Byrne
- Food Safety and Enteric Pathogen Unit, National Animal Disease Center, US Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogen Unit, National Animal Disease Center, US Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - A. Giselle Cino-Ozuna
- Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Jayne E. Wiarda
- Food Safety and Enteric Pathogen Unit, National Animal Disease Center, US Department of Agriculture, Agricultural Research Service, Ames, IA, United States
- Immunobiology Graduate Program, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States
| | - Malavika Adur
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Blythe Schultz
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Elizabeth M. Snella
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Chak-Sum (Sam) Ho
- Gift of Hope Organ and Tissue Donor Network, Itasca, IL, United States
| | - Sara E. Charley
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Zoe E. Kiefer
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Joan E. Cunnick
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Ellie J. Putz
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Giuseppe Dell'Anna
- Laboratory Animal Resources, Iowa State University, Ames, IA, United States
| | - Jackie Jens
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Swanand Sathe
- Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Frederick Goldman
- Department of Pediatrics, University of Alabama, Birmingham, AL, United States
| | - Erik R. Westin
- Department of Pediatrics, University of Alabama, Birmingham, AL, United States
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|