1
|
Florio MC, Fusini L, Tamborini G, Morrell C, McDonald A, Walcott M, Ridley K, Vaughan KL, Mattison JA, Pepi M, Lakatta EG, Capogrossi MC. Echocardiographic characterization of age- and sex-associated differences in cardiac function and morphometry in nonhuman primates. GeroScience 2024; 46:4615-4634. [PMID: 38689157 PMCID: PMC11335998 DOI: 10.1007/s11357-024-01172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
Aging per se is a major risk factor for cardiovascular diseases and is associated with progressive changes in cardiac structure and function. Rodent models are commonly used to study cardiac aging, but do not closely mirror differences as they occur in humans. Therefore, we performed a 2D echocardiographic study in non-human primates (NHP) to establish age- and sex-associated differences in cardiac function and morphometry in this animal model. M mode and 2D echocardiography and Doppler analyses were performed cross-sectionally in 38 healthy rhesus monkeys (20 females and 18 males), both young (age 7-12 years; n = 20) and old (age 19-30 years; n = 18). The diameters of the cardiac chambers did not differ significantly by age group, but males had larger left ventricular diameters (2.43 vs 2.06 cm in diastole and 1.91 vs 1.49 cm in systole, p = 0.0004 and p = 0.0001, respectively) and left atrial diameter (1.981 vs 1.732 cm; p = 0.0101). Left ventricular mass/body surface area did not vary significantly with age and sex. Ejection fraction did not differ by age and females presented a higher ejection fraction than males (54.0 vs 50.8%, p = 0.0237). Diastolic function, defined by early to late mitral peak flow velocity ratio (E/A), was significantly lower in old rhesus monkeys (2.31 vs 1.43, p = 0.0020) and was lower in females compared to males (1.595 vs 2.230, p = 0.0406). Right ventricular function, evaluated by measuring the Tricuspid Annular Plane Systolic Excursion, did not differ by age or sex, and Right Ventricular Free Wall Longitudinal Strain, did not differ with age but was lower in males than in females (-22.21 vs -17.95%, p = 0.0059). This is the first echocardiographic study to evaluate age- and sex-associated changes of cardiac morphometry and function in young and old NHP. The findings of this work will provide a reference to examine the effect of age and sex on cardiac diseases in NHP.
Collapse
Affiliation(s)
- Maria Cristina Florio
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute On Aging, NIH, Baltimore, MD, USA.
| | - Laura Fusini
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino - IRCCS, Milan, Italy
| | - Gloria Tamborini
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino - IRCCS, Milan, Italy
| | - Christopher Morrell
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute On Aging, NIH, Baltimore, MD, USA
| | - Alise McDonald
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Michelle Walcott
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Kenneth Ridley
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, NIH Animal Center, Dickerson, MD, USA
| | - Mauro Pepi
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino - IRCCS, Milan, Italy
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute On Aging, NIH, Baltimore, MD, USA
| | - Maurizio C Capogrossi
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute On Aging, NIH, Baltimore, MD, USA.
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Scholz J, Secreto FJ, Wobig J, Kurian J, Hagen C, Zinnen A, Vu D, Johnson SJ, Cetta F, Qureshi Y, Reams R, Cannon B, Heyer CM, Chang M, Fadra N, Coonen J, Simmons HA, Mejia A, Hayes JM, Basu P, Capuano S, Bondarenko V, Metzger JM, Nelson TJ, Emborg ME. Human Stem Cell-Derived Cardiomyocytes Integrate Into the Heart of Monkeys With Right Ventricular Pressure Overload. Cell Transplant 2024; 33:9636897241290367. [PMID: 39487759 PMCID: PMC11531674 DOI: 10.1177/09636897241290367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 11/04/2024] Open
Abstract
Cardiac ventricular pressure overload affects patients with congenital heart defects and can cause cardiac insufficiency. Grafts of stem cell-derived cardiomyocytes are proposed as a complementary treatment to surgical repair of the cardiac defect, aiming to support ventricular function. Here, we report successful engraftment of human induced pluripotent stem cell-derived cardiac lineage cells into the heart of immunosuppressed rhesus macaques with a novel surgical model of right ventricular pressure overload. The human troponin+ grafts were detected in low-dose (2 × 106 cells/kg) and high-dose (10 × 106 cells/kg) treatment groups up to 12 weeks post-injection. Transplanted cells integrated and progressively matched the organization of the surrounding host myocardium. Ventricular tachycardia occurred in five out of 16 animals receiving cells, with episodes of incessant tachycardia observed in two animals; ventricular tachycardia events resolved within 19 days. Our results demonstrate that grafted cardiomyocytes mature and integrate into the myocardium of nonhuman primates modeling right ventricular pressure overload.
Collapse
Affiliation(s)
- Jodi Scholz
- Department of Comparative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Frank J. Secreto
- Department of Medicine, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Joan Wobig
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
| | - Joe Kurian
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Clint Hagen
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
| | - Alexandra Zinnen
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Don Vu
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Steven J. Johnson
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Frank Cetta
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yasir Qureshi
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Bryan Cannon
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christina M. Heyer
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
| | | | - Numrah Fadra
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Jennifer M. Hayes
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Puja Basu
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Viktoriya Bondarenko
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Jeanette M. Metzger
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Timothy J. Nelson
- Department of Medicine, Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Todd and Karen Wanek Family Program for HLHS at Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
3
|
Rivas VN, Ueda Y, Stern JA. Sex-specific differences and predictors of echocardiographic measures of diastolic dysfunction in rhesus macaques (Macaca mulatta). J Med Primatol 2023; 52:374-383. [PMID: 37461241 PMCID: PMC10792101 DOI: 10.1111/jmp.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Diastolic dysfunction in humans is an age-related process with an overrepresentation in women. In rhesus macaques (Macaca mulatta), the incidence and predictors of diastolic dysfunction have yet to be reported. METHODS Data from routine echocardiographic evaluations on clinically healthy rhesus macaques was obtained and used for univariate, bivariate, hypothesis testing, and linear regression statistical analyses interrogating differences and predictors of diastolic function. RESULTS Rhesus macaques fully recapitulate previously reported human hemodynamic studies. Female monkeys display impaired diastology and are at an increased risk for developing diastolic dysfunction. Age, sex, and proxies of exercise activity are confirmed predictors for measures of diastolic dysfunction, regardless of specific pathogen-free status. CONCLUSIONS Rhesus macaques share common sex- and age-related echocardiographic findings as humans, therefore, serve as a valuable translational nonhuman primate model for future studies of diastolic dysfunction. These findings confirm the importance of sex- and age-matching within future rhesus macaque cardiovascular research.
Collapse
Affiliation(s)
- Victor N. Rivas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Yu Ueda
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Joshua A. Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- California National Primate Research Center, University of California-Davis, Davis, CA, United States of America
| |
Collapse
|
4
|
Ueda Y, Kovacs S, Reader R, Roberts JA, Stern JA. Heritability and Pedigree Analyses of Hypertrophic Cardiomyopathy in Rhesus Macaques ( Macaca Mulatta). Front Vet Sci 2021; 8:540493. [PMID: 34150876 PMCID: PMC8206789 DOI: 10.3389/fvets.2021.540493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/10/2021] [Indexed: 01/07/2023] Open
Abstract
In a colony of rhesus macaques at California National Primate Research Center (CNPRC), naturally occurring hypertrophic cardiomyopathy (HCM) classified by left ventricular hypertrophy without obvious underlying diseases has been identified during necropsy over the last two decades. A preliminary pedigree analysis suggested a strong genetic predisposition of this disease with a founder effect. However, the mode of inheritance was undetermined due to insufficient pedigree data. Since 2015, antemortem examination using echocardiographic examination as well as other cardiovascular analyses have been performed on large numbers of rhesus macaques at the colony. Based on antemortem examination, HCM was diagnosed in additional 65 rhesus macaques. Using HCM cases diagnosed based on antemortem and postmortem examinations, the heritability (h2) was estimated to determine the degree of genetic and environmental contributions to the development of HCM in rhesus macaques at the CNPRC. The calculated mean and median heritability (h2) of HCM in this colony of rhesus macaques were 0.5 and 0.51 (95% confidence interval; 0.14-0.82), respectively. This suggests genetics influence development of HCM in the colony of rhesus macaques. However, post-translational modifications and environmental factors are also likely to contribute the variability of phenotypic expression. Based on the pedigree analysis, an autosomal recessive trait was suspected, but an autosomal dominant mode of inheritance with incomplete penetrance was also possible. Further investigation with more data from siblings, offspring, and parents of HCM-affected rhesus macaques are warranted. Importantly, the findings of the present study support conducting genetic investigations such as whole genome sequencing to identify the causative variants of inherited HCM in rhesus macaques.
Collapse
Affiliation(s)
- Yu Ueda
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States,Yu Ueda
| | - Samantha Kovacs
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rachel Reader
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Jeffrey A. Roberts
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Joshua A. Stern
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States,California National Primate Research Center, University of California, Davis, Davis, CA, United States,*Correspondence: Joshua A. Stern
| |
Collapse
|