1
|
Bo T, Fukuda N, Ozaki J, Inoue A, Katahira K, Ito T. Double-decker cage reduces mount frequency and ejaculation latency, resulting in reduced weight loss in male rats after mating behavior. Exp Anim 2024; 73:412-420. [PMID: 38811231 PMCID: PMC11534486 DOI: 10.1538/expanim.24-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Rats were the first mammals to be domesticated for scientific research, and abundant physiological data are available on them. Rats are expected to continue to play an important role as experimental animals, especially with advancements such as CRISPR/Cas9 technology. Environmental enrichment aims to promote species-specific behaviors and psychological well-being. In the present study, we designed a double-decker (DD) cage, which utilizes two stacked plastic cages for rat enrichment, and investigated the influence of housing in the DD cage on rat mating behavior. The results indicated that mount frequency, total mount counts, and total ejaculation latency were significantly lower in the DD cages than in the single-decker (SD) cages. Notably, in the DD cages, the body weight loss of male rats after mating behavior was lower than that observed in the SD cage. Water consumption per day during mating behavior was also significantly lower in the DD cages, although no significant differences were observed in daily food intake during mating behavior. In addition, reproductive performance, including pregnancy rate and birth rate, did not change in the DD cages. In summary, our study demonstrated that DD cages reduce mount frequency and ejaculation latency during rat mating, resulting in decreased water consumption and weight loss in male rats. Therefore, housing in DD cages may serve as a beneficial enrichment for rats.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Naoki Fukuda
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Junko Ozaki
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Ayumi Inoue
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Kiyoaki Katahira
- Fukushima Translational Research Foundation, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tsunekata Ito
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| |
Collapse
|
2
|
Rudisch DM, Krasko MN, Barnett DGS, Mueller KD, Russell JA, Connor NP, Ciucci MR. Early ultrasonic vocalization deficits and related thyroarytenoid muscle pathology in the transgenic TgF344-AD rat model of Alzheimer's disease. Front Behav Neurosci 2024; 17:1294648. [PMID: 38322496 PMCID: PMC10844490 DOI: 10.3389/fnbeh.2023.1294648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurologic disease and the most common cause of dementia. Classic pathology in AD is characterized by inflammation, abnormal presence of tau protein, and aggregation of β-amyloid that disrupt normal neuronal function and lead to cell death. Deficits in communication also occur during disease progression and significantly reduce health, well-being, and quality of life. Because clinical diagnosis occurs in the mid-stage of the disease, characterizing the prodrome and early stages in humans is currently challenging. To overcome these challenges, we use the validated TgF344-AD (F344-Tg(Prp-APP, Prp-PS1)19/Rrrc) transgenic rat model that manifests cognitive, behavioral, and neuropathological dysfunction akin to AD in humans. Objectives The overarching goal of our work is to test the central hypothesis that pathology and related behavioral deficits such as communication dysfunction in part manifest in the peripheral nervous system and corresponding target tissues already in the early stages. The primary aims of this study are to test the hypotheses that: (1) changes in ultrasonic vocalizations (USV) occur in the prodromal stage at 6 months of age and worsen at 9 months of age, (2) inflammation as well as AD-related pathology can be found in the thyroarytenoid muscle (TA) at 12 months of age (experimental endpoint tissue harvest), and to (3) demonstrate that the TgF344-AD rat model is an appropriate model for preclinical investigations of early AD-related vocal deficits. Methods USVs were collected from male TgF344-AD (N = 19) and wildtype (WT) Fischer-344 rats (N = 19) at 6 months (N = 38; WT: n = 19; TgF344-AD: n = 19) and 9 months of age (N = 18; WT: n = 10; TgF344-AD: n = 8) and acoustically analyzed for duration, mean power, principal frequency, low frequency, high frequency, peak frequency, and call type. RT-qPCR was used to assay peripheral inflammation and AD-related pathology via gene expressions in the TA muscle of male TgF344-AD rats (n = 6) and WT rats (n = 6) at 12 months of age. Results This study revealed a significant reduction in mean power of ultrasonic calls from 6 to 9 months of age and increased peak frequency levels over time in TgF344-AD rats compared to WT controls. Additionally, significant downregulation of AD-related genes Uqcrc2, Bace2, Serpina3n, and Igf2, as well as downregulation of pro-inflammatory gene Myd88 was found in the TA muscle of TgF344-AD rats at 12 months of age. Discussion Our findings demonstrate early and progressive vocal deficits in the TgF344-AD rat model. We further provide evidence of dysregulation of AD-pathology-related genes as well as inflammatory genes in the TA muscles of TgF344-AD rats in the early stage of the disease, confirming this rat model for early-stage investigations of voice deficits and related pathology.
Collapse
Affiliation(s)
- Denis Michael Rudisch
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- UW Institute for Clinical and Translational Research, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Maryann N Krasko
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - David G S Barnett
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Kimberly D Mueller
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - John A Russell
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Nadine P Connor
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Michelle R Ciucci
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Stable long-term individual differences in 50-kHz vocalization rate and call subtype prevalence in adult male rats: Comparisons with sucrose preference. PLoS One 2022; 17:e0276743. [PMID: 36301879 PMCID: PMC9612506 DOI: 10.1371/journal.pone.0276743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Sucrose preference (SP) is a widely used measure of anhedonia in rat models of depression, yet depressed patients do not reliably show an analogous deficit. As an alternative affect-related measure, adult rat ultrasonic vocalizations (USVs) are attracting interest, but it is unclear whether SP and USVs provide independent measures. Here, we have assessed whether SP and USV emission are correlated in the absence of a depressogenic procedure. To this end, 24 male Long-Evans rats were tested daily for 24 days, with alternating SP tests and USV recordings; after a 3-month hiatus, USV emission was re-evaluated for 6 more days. SP was measured in simultaneous two-bottle choice tests, and USVs were recorded in an open field. The main measures were: SP, 50-kHz call rate, and relative prevalence of trill and flat call subtypes. These measures showed temporally-stable individual differences across the initial 24-day testing period, and at the 3-month USV follow-up tests. Correlational analysis revealed no significant relationships between SP and the three main USV measures. Rats differed consistently, not only in their 50-kHz call rates but also in their 50-kHz call profiles (i.e., the relative prevalence of 14 call subtypes); most rats preferentially emitted either trill or flat calls. Several inter-call subtype associations were detected, including a strong negative relationship between the relative prevalence of flat and trill calls. The 50-kHz call rate was correlated with the relative prevalence of only one call subtype (short calls, negative correlation), but was positively correlated with absolute emission rates for almost all subtypes. In conclusion, adult rats exhibited temporally-stable individual differences over weeks (SP) or months (USVs) of testing. This trait-like stability helped to reveal a lack of relationship between SP and the USV-related variables under study, suggesting that these measures may capture different constructs of possible relevance to animal models of depression.
Collapse
|