1
|
Doschek-Held K, Krammer AC, Steindl FR, Sattler T, Juhart J. Recycling of mineral wool waste as supplementary cementitious material through thermochemical treatment. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:806-813. [PMID: 38695365 PMCID: PMC11370154 DOI: 10.1177/0734242x241237199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/09/2024] [Indexed: 09/02/2024]
Abstract
Mineral wool is commonly used in construction as thermal insulation material. After the product's lifetime, it is classified as hazardous waste if no trademark of the European Certification Board for Mineral Wool Products (EUCEB) or the German Institute for Quality Assurance and Labelling (RAL) exists. Mineral Wool Waste (MWW) is typically landfilled in Europe, which is challenging due to its low bulk density and dimensional stability. This circumstance highlights the need for alternative recycling methods that increase the recycling rate of construction and demolition (C&D) waste. This article outlines the recycling opportunities of MWW and focuses on the use of thermochemical treatment of different mixtures of input materials to produce a supplementary cementitious material (SCM). The material characterisation results and investigations on the binder suitability demonstrate that the slag fractions after the thermochemical treatment are well-qualified to be used as reactive binder components. Additionally, a material flow analysis was conducted to estimate the substitution potential of MWW as SCM in the Austrian cement industry.
Collapse
Affiliation(s)
- Klaus Doschek-Held
- Chair of Thermal Processing Technology, Montanuniversität Leoben, Leoben, Austria
| | | | - Florian Roman Steindl
- Institute for Technology and Testing of Building Materials, Graz University of Technology, Graz, Austria
- Institute of Applied Geosciences, Graz University of Technology, Graz, Austria
| | - Theresa Sattler
- Chair of Waste Processing Technology and Waste Management, Montanuniversität Leoben, Leoben, Austria
| | - Joachim Juhart
- Institute for Technology and Testing of Building Materials, Graz University of Technology, Graz, Austria
| |
Collapse
|
2
|
Łaźniewska-Piekarczyk B, Smyczek D. The Effect of Mineral Wool Fiber Additive on Several Mechanical Properties and Thermal Conductivity in Geopolymer Binder. MATERIALS (BASEL, SWITZERLAND) 2024; 17:483. [PMID: 38276422 PMCID: PMC10820291 DOI: 10.3390/ma17020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
The article discusses the effect of additives of waste mineral wool fibers on geopolymer binder. This is an important study in terms of the possibility of recycling mineral wool waste. The paper describes an effective method for pulverizing the wool and the methodology for forming geopolymer samples, labeled G1 for glass-wool-based geopolymer and G2 for stone-wool-based geopolymer. The compressive and flexural strengths and thermal conductivity coefficient of the geopolymer with the addition of mineral fibers were determined. The key element of the article is to verify whether the addition of mineral wool fibers positively affects the properties of the geopolymer. The results obtained prove that the addition of fibers significantly improves the flexural strength. For the G1 formulation, the ratio of compressive strength to flexural strength is 18.7%. However, for G2 samples, an even better ratio of compressive strength to flexural strength values of 26.3% was obtained. The average thermal conductivity coefficient obtained was 1.053 W/(m·K) for the G1 series samples and 0.953 W/(m·K) for the G2 series samples. The conclusions obtained show a correlation between the porosity and compressive strength and thermal conductivity coefficient. The higher the porosity, the better the thermal insulation of the material and the weaker the compressive strength.
Collapse
Affiliation(s)
- Beata Łaźniewska-Piekarczyk
- Department of Building Processes and Building Physics, Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland;
| | - Dominik Smyczek
- Department of Building Processes and Building Physics, Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland;
- Saint Gobain Construction Products Polska Sp. z o.o., Okrężna 16, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
4
|
Experimental Survey of the Sound Absorption Performance of Natural Fibres in Comparison with Conventional Insulating Materials. SUSTAINABILITY 2022. [DOI: 10.3390/su14074258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The purpose of this research is to investigate the acoustic properties of natural fibres and compare them with the values achieved by common insulation materials used in the construction of buildings. Three materials based on biomass were used for testing, namely cork, hemp and fibreboard. From the group of conventional materials, mineral wool, propylat and polyurethane foam were selected. For the purpose of determining the values of the sound absorption coefficient (α), the absorber specimens were tested using the impedance tube and two microphones method, according to standard ISO 10534-2. The measurement was performed for thicknesses of 20, 40, 60, 80 and 100 mm. The highest sound absorption of all materials was measured with a hemp sample at a frequency of 2000 Hz (α = 0.99) and a thickness of 20 mm. The lowest performance was achieved by cork at the same thickness and frequency of 100 Hz (α = 0.02). Among biomass materials, hemp dominated in the entire frequency range and at all thicknesses. The lowest values were for cork, from 160 to 500 Hz with a tendency to exceed the values of the fibreboard sample. Among conventional materials, mineral wool achieved the best results, while the lowest values were recorded for propylat with the occasional exception of the highest frequencies from 1600 to 2500 Hz.
Collapse
|
5
|
The Effect of Alkaline Treatment on Poly(Lactic Acid)/Date Palm Wood Green Composites for Thermal Insulation. Polymers (Basel) 2022; 14:polym14061143. [PMID: 35335474 PMCID: PMC8954477 DOI: 10.3390/polym14061143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this work, the effect of alkaline treatment on the thermal insulation and mechanical properties of date palm wood fibers (DPWF) and polylactic acid (PLA) green composite was studied. Alkaline treatment was applied to DPWF using two different solutions: sodium hydroxide (NaOH) and potassium hydroxide (KOH), with concentration of 2 vol.%. The fibers were later incorporated into PLA with weight percentages from 10 to 40 wt.%, to form three composite types: PLA with untreated fibers (PLA-UTDPWF), PLA with KOH treated fibers (PLA-KOH), and PLA with NaOH treated fibers (PLA-NaOH). The prepared composites were for use as a green thermal insulation material. The composites were tested to assess the effect of treatment on their physical (density and degree of crystallization), thermal (thermal conductivity, specific heat capacity, thermal diffusivity, thermal degradation, glass transition, and melting temperature), and mechanical properties. Moreover, the composite structural characteristics were investigated using FTIR and SEM analysis. The alkaline treatment significantly increased the crystallinity of the composites, specifically for higher filler loadings of 30 and 40 wt.%. The crystallinity for the 40 wt.% increased from 33.2% for PLA-UTDPWF, to 41% and 51%, for PLA-NaOH and PLA-KOH, respectively. Moreover, the alkaline treatment reduced the density and produced lighter composites than the untreated specimens. For instance, the density of 40 wt.% composite was reduced from 1.43, to 1.22 and 1.30 gcm3 for PLA-NaOH and PLA-KOH, respectively.
Collapse
|
6
|
Yliniemi J, Ramaswamy R, Luukkonen T, Laitinen O, de Sousa ÁN, Huuhtanen M, Illikainen M. Characterization of mineral wool waste chemical composition, organic resin content and fiber dimensions: Aspects for valorization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:323-330. [PMID: 34218065 DOI: 10.1016/j.wasman.2021.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Despite mineral wool waste is only a small fraction of total construction and demolition waste (CDW) by mass, it requires large transportation and landfilling capacities due to its low bulk density, and its utilization remains low compared to other CDW types. It is essential to understand the physical and chemical properties of this waste fraction in order to utilize it, e.g. as fiber reinforcement in composites or as supplementary cementitious material. Here, we provide a chemical and physical characterization of 15 glass wool and 12 stone wool samples of different ages collected from various locations across Europe. In addition, the chemical compositions of 61 glass and stone wool samples obtained from the literature are presented. Glass wool samples show little variation in their chemical composition, which resembles the composition of typical soda-lime silicate glass. Stone wool presents a composition similar to basaltic glass but with variability between samples in terms of calcium, magnesium, and iron content. Potentially toxic elements, such as Cr, Ba, and Ni, are present in mineral wools, but in low concentrations (<0.2%). Both wool types contain organic resin, which may decompose into smaller molecular fragments and ammonia upon heating or contact with alkaline solution. Mineral wool wastes have relatively similar length and width distributions, despite the age and type of the mineral wool. Overall, both mineral wool waste types have homogenous chemical and physical properties as compared to many other mineral wastes which makes their utilization as a secondary raw material promising.
Collapse
Affiliation(s)
- Juho Yliniemi
- Faculty of Technology, Fibre and Particle Engineering Research Unit, University of Oulu, PO Box 4300 90014, Finland.
| | - Rajeswari Ramaswamy
- Faculty of Technology, Fibre and Particle Engineering Research Unit, University of Oulu, PO Box 4300 90014, Finland
| | - Tero Luukkonen
- Faculty of Technology, Fibre and Particle Engineering Research Unit, University of Oulu, PO Box 4300 90014, Finland
| | - Ossi Laitinen
- Faculty of Technology, Fibre and Particle Engineering Research Unit, University of Oulu, PO Box 4300 90014, Finland
| | - Álvaro Nunes de Sousa
- CloverStrategy, Lda, Inst, Pedro Nunes, Ed.C, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mika Huuhtanen
- Faculty of Technology, Environmental and Chemical Engineering, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Mirja Illikainen
- Faculty of Technology, Fibre and Particle Engineering Research Unit, University of Oulu, PO Box 4300 90014, Finland
| |
Collapse
|