1
|
Abramova A, Berendonk TU, Bengtsson-Palme J. A global baseline for qPCR-determined antimicrobial resistance gene prevalence across environments. ENVIRONMENT INTERNATIONAL 2023; 178:108084. [PMID: 37421899 DOI: 10.1016/j.envint.2023.108084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
The environment is an important component in the emergence and transmission of antimicrobial resistance (AMR). Despite that, little effort has been made to monitor AMR outside of clinical and veterinary settings. Partially, this is caused by a lack of comprehensive reference data for the vast majority of environments. To enable monitoring to detect deviations from the normal background resistance levels in the environment, it is necessary to establish a baseline of AMR in a variety of settings. In an attempt to establish this baseline level, we here performed a comprehensive literature survey, identifying 150 scientific papers containing relevant qPCR data on antimicrobial resistance genes (ARGs) in environments associated with potential routes for AMR dissemination. The collected data included 1594 samples distributed across 30 different countries and 12 sample types, in a time span from 2001 to 2020. We found that for most ARGs, the typically reported abundances in human impacted environments fell in an interval from 10-5 to 10-3 copies per 16S rRNA, roughly corresponding to one ARG copy in a thousand bacteria. Altogether these data represent a comprehensive overview of the occurrence and levels of ARGs in different environments, providing background data for risk assessment models within current and future AMR monitoring frameworks.
Collapse
Affiliation(s)
- Anna Abramova
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance research (CARe) in Gothenburg, Sweden; Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Thomas U Berendonk
- Institute for Hydrobiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance research (CARe) in Gothenburg, Sweden; Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
2
|
Verhaegen M, Bergot T, Liebana E, Stancanelli G, Streissl F, Mingeot-Leclercq MP, Mahillon J, Bragard C. On the use of antibiotics to control plant pathogenic bacteria: a genetic and genomic perspective. Front Microbiol 2023; 14:1221478. [PMID: 37440885 PMCID: PMC10333595 DOI: 10.3389/fmicb.2023.1221478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Despite growing attention, antibiotics (such as streptomycin, oxytetracycline or kasugamycin) are still used worldwide for the control of major bacterial plant diseases. This raises concerns on their potential, yet unknown impact on antibiotic and multidrug resistances and the spread of their genetic determinants among bacterial pathogens. Antibiotic resistance genes (ARGs) have been identified in plant pathogenic bacteria (PPB), with streptomycin resistance genes being the most commonly reported. Therefore, the contribution of mobile genetic elements (MGEs) to their spread among PPB, as well as their ability to transfer to other bacteria, need to be further explored. The only well-documented example of ARGs vector in PPB, Tn5393 and its highly similar variants (carrying streptomycin resistance genes), is concerning because of its presence outside PPB, in Salmonella enterica and Klebsiella pneumoniae, two major human pathogens. Although its structure among PPB is still relatively simple, in human- and animal-associated bacteria, Tn5393 has evolved into complex associations with other MGEs and ARGs. This review sheds light on ARGs and MGEs associated with PPB, but also investigates the potential role of antibiotic use in resistance selection in plant-associated bacteria.
Collapse
Affiliation(s)
- Marie Verhaegen
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Thomas Bergot
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | | | | | - Marie-Paule Mingeot-Leclercq
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, UCLouvain, Woluwe-Saint-Lambert, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Plant Health Laboratory, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Hespanhol JT, Karman L, Sanchez-Limache DE, Bayer-Santos E. Intercepting biological messages: Antibacterial molecules targeting nucleic acids during interbacterial conflicts. Genet Mol Biol 2023; 46:e20220266. [PMID: 36880694 PMCID: PMC9990079 DOI: 10.1590/1678-4685-gmb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/25/2022] [Indexed: 03/08/2023] Open
Abstract
Bacteria live in polymicrobial communities and constantly compete for resources. These organisms have evolved an array of antibacterial weapons to inhibit the growth or kill competitors. The arsenal comprises antibiotics, bacteriocins, and contact-dependent effectors that are either secreted in the medium or directly translocated into target cells. During bacterial antagonistic encounters, several cellular components important for life become a weak spot prone to an attack. Nucleic acids and the machinery responsible for their synthesis are well conserved across the tree of life. These molecules are part of the information flow in the central dogma of molecular biology and mediate long- and short-term storage for genetic information. The aim of this review is to summarize the diversity of antibacterial molecules that target nucleic acids during antagonistic interbacterial encounters and discuss their potential to promote the emergence antibiotic resistance.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Lior Karman
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | | | - Ethel Bayer-Santos
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Adhimi R, Tayh G, Ghariani S, Chairat S, Chaouachi A, Boudabous A, Slama KB. Distribution, Diversity and Antibiotic Resistance of Pseudomonas spp. Isolated from the Water Dams in the North of Tunisia. Curr Microbiol 2022; 79:188. [PMID: 35551481 DOI: 10.1007/s00284-022-02859-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/29/2022] [Indexed: 11/03/2022]
Abstract
Natural environment is one of the important reservoirs to disseminate antibiotic resistance, most of the antibiotics resistance researches were focused on clinical isolates. Thus, this work aimed to analyze surface water samples collected from dams and rivers in the north of Tunisia. Pseudomonas species were confirmed using biochemical and molecular identifications. Resistance was studied by testing their susceptibility against 19 antibiotics using the disc diffusion method moreover the virulence factors were studied by PCR targeting 13 genes. 104 isolates were confirmed as Pseudomonas genera distributed into 21 species. The most abundant species is P. aeruginosa (22.11%), followed by P. protegens (12.5%). No resistance phenotypes were observed towards imipenem, meropenem, ceftazidime, colistin, ciprofloxacin and amikacin. A high resistance level was observed against cefoxitin (94.23%), amoxicillin-clavulanic acid (67.31%), nalidixic acid (62.5%), streptomycin (57.69%), ticarcillin (43.27%), fosfomycin (64.42%) and tetracycline (23.08%). A low rate of resistance was observed against cefotaxime (16.35%) and gentamicin (7.69%). The majority (70.19%) of isolates were Multidrug-resistant (MDR). 12 of virulence genes were found in all P. aeruginosa isolates. Our results showed that Pseudomonas isolates could be an important reservoir of antibiotic resistance from environment sites.
Collapse
Affiliation(s)
- Rim Adhimi
- Laboratoire Des Microorganismes Et Biomolécules Actives, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisie
| | - Ghassan Tayh
- Laboratoire Des Microorganismes Et Biomolécules Actives, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisie
| | - Salma Ghariani
- Institut Supérieur Des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisie
| | - Sarra Chairat
- Laboratoire Des Microorganismes Et Biomolécules Actives, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisie.,Institut Supérieur Des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisie
| | - Abdelmonem Chaouachi
- Complexe Ghédir El Golla, Société Nationale d'Exploitation et de Distribution Des Eaux (SONEDE), Ministère de l'Agriculture, Tunis, Tunisie
| | - Abdellatif Boudabous
- Laboratoire Des Microorganismes Et Biomolécules Actives, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisie
| | - Karim Ben Slama
- Laboratoire Des Microorganismes Et Biomolécules Actives, Faculté Des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisie. .,Institut Supérieur Des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisie.
| |
Collapse
|
5
|
Baquero F, Martínez JL, F. Lanza V, Rodríguez-Beltrán J, Galán JC, San Millán A, Cantón R, Coque TM. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin Microbiol Rev 2021; 34:e0005019. [PMID: 34190572 PMCID: PMC8404696 DOI: 10.1128/cmr.00050-19] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolution is the hallmark of life. Descriptions of the evolution of microorganisms have provided a wealth of information, but knowledge regarding "what happened" has precluded a deeper understanding of "how" evolution has proceeded, as in the case of antimicrobial resistance. The difficulty in answering the "how" question lies in the multihierarchical dimensions of evolutionary processes, nested in complex networks, encompassing all units of selection, from genes to communities and ecosystems. At the simplest ontological level (as resistance genes), evolution proceeds by random (mutation and drift) and directional (natural selection) processes; however, sequential pathways of adaptive variation can occasionally be observed, and under fixed circumstances (particular fitness landscapes), evolution is predictable. At the highest level (such as that of plasmids, clones, species, microbiotas), the systems' degrees of freedom increase dramatically, related to the variable dispersal, fragmentation, relatedness, or coalescence of bacterial populations, depending on heterogeneous and changing niches and selective gradients in complex environments. Evolutionary trajectories of antibiotic resistance find their way in these changing landscapes subjected to random variations, becoming highly entropic and therefore unpredictable. However, experimental, phylogenetic, and ecogenetic analyses reveal preferential frequented paths (highways) where antibiotic resistance flows and propagates, allowing some understanding of evolutionary dynamics, modeling and designing interventions. Studies on antibiotic resistance have an applied aspect in improving individual health, One Health, and Global Health, as well as an academic value for understanding evolution. Most importantly, they have a heuristic significance as a model to reduce the negative influence of anthropogenic effects on the environment.
Collapse
Affiliation(s)
- F. Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. L. Martínez
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - V. F. Lanza
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Central Bioinformatics Unit, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - J. Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - J. C. Galán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A. San Millán
- National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - R. Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - T. M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Network Center for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
6
|
Nogueira T, Botelho A. Metagenomics and Other Omics Approaches to Bacterial Communities and Antimicrobial Resistance Assessment in Aquacultures. Antibiotics (Basel) 2021; 10:787. [PMID: 34203511 PMCID: PMC8300701 DOI: 10.3390/antibiotics10070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
The shortage of wild fishery resources and the rising demand for human nutrition has driven a great expansion in aquaculture during the last decades in terms of production and economic value. As such, sustainable aquaculture production is one of the main priorities of the European Union's 2030 agenda. However, the intensification of seafood farming has resulted in higher risks of disease outbreaks and in the increased use of antimicrobials to control them. The selective pressure exerted by these drugs provides the ideal conditions for the emergence of antimicrobial resistance hotspots in aquaculture facilities. Omics technology is an umbrella term for modern technologies such as genomics, metagenomics, transcriptomics, proteomics, culturomics, and metabolomics. These techniques have received increasing recognition because of their potential to unravel novel mechanisms in biological science. Metagenomics allows the study of genomes in microbial communities contained within a certain environment. The potential uses of metagenomics in aquaculture environments include the study of microbial diversity, microbial functions, and antibiotic resistance genes. A snapshot of these high throughput technologies applied to microbial diversity and antimicrobial resistance studies in aquacultures will be presented in this review.
Collapse
Affiliation(s)
- Teresa Nogueira
- Laboratory of Bacteriology and Mycology, INIAV-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Evolutionary Ecology of Microorganisms Group, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Botelho
- Laboratory of Bacteriology and Mycology, INIAV-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
| |
Collapse
|
7
|
Khmelevtsova LE, Sazykin IS, Azhogina TN, Sazykina MA. The dissemination of antibiotic resistance in various environmental objects (Russia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43569-43581. [PMID: 32935217 DOI: 10.1007/s11356-020-10231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental objects (surface and groundwater, soil, bottom sediments, wastewater) are reservoirs in which large-scale multidirectional exchange of determinants of antibiotic resistance between clinical strains and natural bacteria takes place. The review discusses the results of studies on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) isolated from environmental objects (water, soil, sewage, permafrost) of the Russian Federation. Despite the relevance of the topic, the number of available publications examining the resistomes of Russian water bodies and soils is small. The most studied environmental objects are surface waters (rivers, lakes), permafrost deposits. Soil resistomes are less studied. Data on ARG and ARB in wastewater are the least covered in publications. In most of the studies, antibiotic resistance of isolated pure bacterial cultures was determined phenotypically. A significant number of publications are devoted to the resistance of natural isolates of Vibrio cholerae, since the lower reaches of the Volga and Don rivers are endemic to cholera. Molecular genetic methods were used in a small number of studies. Geographically, the south of the European part of Russia is the most studied. There are also publications on the distribution of ARG in water bodies of Siberia and the Russian Far East. There are practically no publications on such developed regions of Russia as the center and northwest of the European part of Russia. The territory of the country is very large, anthropogenic and natural factors in its various regions vary significantly; therefore, it seems interesting to combine all available data in one work.
Collapse
Affiliation(s)
| | - Ivan Sergeevich Sazykin
- Southern Federal University, 194/2, Stachki Avenue, Rostov-on-Don, Russian Federation, 344090
| | | | | |
Collapse
|
8
|
Xue Y, Jonassen I, Øvreås L, Taş N. Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost. FEMS Microbiol Ecol 2020; 96:5821278. [PMID: 32301987 PMCID: PMC7174036 DOI: 10.1093/femsec/fiaa057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Permafrost underlies a large portion of the land in the Northern Hemisphere. It is proposed to be an extreme habitat and home for cold-adaptive microbial communities. Upon thaw permafrost is predicted to exacerbate increasing global temperature trend, where awakening microbes decompose millennia old carbon stocks. Yet our knowledge on composition, functional potential and variance of permafrost microbiome remains limited. In this study, we conducted a deep comparative metagenomic analysis through a 2 m permafrost core from Svalbard, Norway to determine key permafrost microbiome in this climate sensitive island ecosystem. To do so, we developed comparative metagenomics methods on metagenomic-assembled genomes (MAG). We found that community composition in Svalbard soil horizons shifted markedly with depth: the dominant phylum switched from Acidobacteria and Proteobacteria in top soils (active layer) to Actinobacteria, Bacteroidetes, Chloroflexi and Proteobacteria in permafrost layers. Key metabolic potential propagated through permafrost depths revealed aerobic respiration and soil organic matter decomposition as key metabolic traits. We also found that Svalbard MAGs were enriched in genes involved in regulation of ammonium, sulfur and phosphate. Here, we provide a new perspective on how permafrost microbiome is shaped to acquire resources in competitive and limited resource conditions of deep Svalbard soils.
Collapse
Affiliation(s)
- Yaxin Xue
- Computational Biology Unit, Department of Informatics, University of Bergen,Thormøhlensgt 55 N-5008, Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen,Thormøhlensgt 55 N-5008, Bergen, Norway
| | - Lise Øvreås
- Department of Biological Sciences, University of Bergen, Thormøhlensgt 53 N-5020, Bergen, Norway.,University Center in Svalbard, UNIS, N-9171, Longyearbyen, Norway
| | - Neslihan Taş
- Ecology Department, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.,Environmental Genomics and Systems Biology, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Kudinova AG, Soina VS, Maksakova SA, Petrova MA. Basic Antibiotic Resistance of Bacteria Isolated from Different Biotopes. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261719050084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|