1
|
Wang QY, Xu BY, Wang Y, Lin YM, Zheng LF, Liu G, Li DZ, Jiang CS, Wang W, Zeng XP. Sodium aescinate promotes apoptosis of pancreatic stellate cells and alleviates pancreatic fibrosis by inhibiting the PI3K/Akt/FOXO1 signaling pathways. Front Pharmacol 2025; 16:1554260. [PMID: 40331192 PMCID: PMC12052937 DOI: 10.3389/fphar.2025.1554260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Chronic pancreatitis (CP) is an inflammatory disease of progressive pancreatic fibrosis, and pancreatic stellate cells (PSCs) are key cells involved in pancreatic fibrosis. To date, there are no clinical therapies available to reverse inflammatory damage or pancreatic fibrosis associated with CP. Sodium Aescinate (SA) is a natural mixture of triterpene saponins extracted from the dried and ripe fruits of horse chestnut tree. It has been shown to have anti-inflammatory and anti-edematous effects. This study aims to explore the therapeutic potential of SA in CP and the molecular mechanism of its modulation. Through in vivo animal models and experiments, we found that SA significantly alleviated pancreatic inflammation and fibrosis in caerulein-induced CP mice model. In addition, SA inhibited the proliferation, migration and activation of PSCs as well as promoted apoptosis of PSCs through a series of experiments on cells in vitro including CCK-8 assay, Western blotting, immunofluorescence staining, wound-healing assay, Transwell migration assays, flow cytometric analysis, etc. Further RNA sequencing and in vitro validation assays revealed that inhibition of the PI3K/AKT/FOXO1 signaling pathway was involved in the SA mediated promotion of PSCs apoptosis, thus alleviating pancreatic fibrosis. In conclusion, this study revealed that SA may have promising potential as therapeutic agent for the treatment of CP, and the PI3K/AKT/FOXO1 pathway is a potential therapeutic target for pancreatic inflammation and fibrosis.
Collapse
Affiliation(s)
- Qing-Yun Wang
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Bai-Yan Xu
- Department of Digestive Diseases, Huian County Hospital, Quanzhou, China
| | - Yi Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Mei Lin
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lin-Fu Zheng
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Gang Liu
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Da-Zhou Li
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chuan-Shen Jiang
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wen Wang
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiang-Peng Zeng
- Department of Digestive Diseases, Dongfang Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
- Department of Digestive Diseases, 900th Hospital of PLA Joint Logistic Support Force, Fuzhou, China
- Department of Digestive Diseases, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Qin H, Su L, Zhou B, Yang P, Zhu YL, Liang D. Remote Ischemic Postconditioning Improve Cerebral Ischemia-Reperfusion Injury Induced Cognitive Dysfunction through Suppressing Mitochondrial Apoptosis in Hippocampus via TK/BK/B2R-Mediated PI3K/AKT. Mol Neurobiol 2025:10.1007/s12035-025-04864-y. [PMID: 40229456 DOI: 10.1007/s12035-025-04864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025]
Abstract
Remote ischemic postconditioning (RIPostC) is known to improve motor function recovery in animal models, but its efficacy in alleviating cognitive impairment caused by ischemic stroke remains unclear. This study aims to investigate the beneficial role of RIPostC in recovering cognitive impairment induced by cerebral ischemia-reperfusion injury (CIRI). Building upon our previous research findings, we proved that the TK/BK/B2R pathway is crucial for understanding the crosstalk between cognitive impairment and RIPostC. Additionally, in vitro experiments were conducted using the oxygen glucose deprivation/re-oxygenation (OGD/r) HT-22 cell model, which revealed that the mechanism by which RIPostC suppressed mitochondrial apoptosis was mainly through the activation of the B2R/PI3K/AKT signaling pathway, thereby protecting neurons in the ischemic hippocampus from ischemic damage. To investigate the effect of RIPostC on cognitive function recovery following ischemic stroke, we established a rat model using left middle cerebral artery occlusion reperfusion (MCAO/r). 48 h after MCAO/r, rats were subjected to 3 circles of RIPostC therapy daily for 12 consecutive days. HOE140 was used to antagonize the bradykinin 2 receptor (B2R). Cognitive function was assessed using a modified neurological severity score, the Morris water maze, and the novel object recognition test. Local infarct volume in the hippocampus was measured through MRI scanning. The apoptosis rate of hippocampal neurons was quantified using TUNEL staining. Protein expression levels of kallikrein (TK) and mitochondrial apoptosis-related proteins, Cyt c, Bcl-2, Bax, cleaved caspase-3, and cleaved caspase-9, were detected in ischemic hippocampal tissue using Western blot (WB). The expression of bradykinin (BK) in serum and the ischemic penumbra was measured using an enzyme-linked immunosorbent (ELISA) assay. In the cell experiments, the HT-22 cell line and OGD/r model were used to simulate in vitro hippocampal ischemia. WB was performed to detect the expression of apoptosis-related proteins and PI3K/AKT pathway proteins. The apoptosis rate of HT-22 cells was detected using Annexin-V/PI flow cytometry and a cell viability kit. JC-1 staining and reactive oxygen species staining were used to evaluate mitochondrial condition. The PI3K/AKT pathway was inhibited using LY294002. RIPostC significantly upregulated the concentrations of TK and BK in the ischemic hippocampus. Behavioral function tests demonstrated that daily RIPostC therapy for 12 days significantly promoted cognitive function recovery in MCAO/r rats. Through MRI analysis, we found that RIPostC therapy effectively reduced the infarct volume in the hippocampus. Additionally, TUNEL staining and WB results of apoptosis-related proteins showed that RIPostC therapy significantly reduced apoptosis of hippocampal neurons. However, the therapeutic effect of RIPostC was reversed by the B2R antagonist HOE14, indicating that the TK/BK/B2R pathway mediated the neuroprotective effect of RIPostC. Cell experiments further confirmed that BK/B2R significantly attenuated mitochondrial apoptosis induced by ischemia-hypoxia injury in HT-22 cells. In vivo and in vitro results from WB demonstrated that the BK/B2R pathway activated the PI3K/AKT signaling pathway. Finally, the PI3K inhibitor LY294002 reversed the anti-apoptotic effect induced by BK/B2R. RIPostC therapy effectively inhibited mitochondrial apoptosis of hippocampal neurons and significantly alleviated cognitive dysfunction associated with CIRI by regulating the TK/BK/B2R-medated PI3K/AKT pathway. In conclusion, RIPostC represents a promising therapeutic strategy for combating cognitive dysfunction by inhibiting cell apoptosis in hippocampus. Moreover, our results suggest that RIPostC may have a broader protective effect against apoptosis in other ischemia-reperfusion-related diseases.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Lu Su
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bao Zhou
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Pengkun Yang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yu-Lian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Dan Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
3
|
Zhang X, Yang J, Lu Y, Liu Y, Wang T, Yu F. Human Urinary Kallidinogenase improves vascular endothelial injury by activating the Nrf2/HO-1 signaling pathway. Chem Biol Interact 2024; 403:111230. [PMID: 39244186 DOI: 10.1016/j.cbi.2024.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Vascular endothelial injury is closely related to the progression of various cardio-cerebrovascular diseases. Whether Human Urinary Kallidinogenase (HUK) has a protective effect on endothelial injury remains unclear. This study established an in vivo model of rat common carotid artery intima injury and an in vitro model of human umbilical vein endothelial cell (HUVECs) injury induced by hydrogen peroxide (H2O2). To explore the protective effect and mechanism of HUK on endothelial injury. In vivo, HUK can reduce the hyperplasia and lumen stenosis of rat common carotid artery after intimal injury, and promote the fluorescence expression of vWF in the common carotid artery. HUK also activated the Nrf2/HO-1 signaling pathway in rat common carotid artery tissue to reduce endothelial damage. In vitro, HUK can inhibit the H2O2-induced decline in HUVECs activity, improve the migration ability of HUVECs induced by H2O2, inhibit the apoptosis and necrosis of HUVECs and the generation of ROS, and regulate the expression of VEGFA, ET-1 and eNOS proteins related to endothelial function in cells. The Nrf2/HO-1 signaling pathway is activated, and the HO-1 specific inhibitor zinc porphyrin (ZnPP) can partially reverse the protective effect of HUK on H2O2-induced HUVECs injury in terms of cell migration, necrosis and oxidative stress. The Nrf2/HO-1 signaling pathway plays an important role in the regulation of migration, necrosis and oxidative stress of HUVECs cells. HUK has a protective effect on vascular endothelial injury. HUK can inhibit oxidative stress and apoptotic necrosis by activating Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210001, PR China
| | - Jiaying Yang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, 211100, PR China
| | - Yini Lu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, 211100, PR China
| | - Yi Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, 211100, PR China
| | - Tianyin Wang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, 211100, PR China
| | - Feng Yu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Jiangsu, 211100, PR China.
| |
Collapse
|
4
|
Liu R, Wang W, Li W. Bezafibrate mitigates cardiac injury against coronary microembolization by preventing activation of p38 MAPK/NF-κB signaling. Aging (Albany NY) 2024; 16:12769-12780. [PMID: 39383058 PMCID: PMC11501380 DOI: 10.18632/aging.205707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 10/11/2024]
Abstract
Coronary microembolization (CME)-induced inflammatory response and cardiomyocyte apoptosis are the main contributors to CME-associated myocardial dysfunction. Bezafibrate, a peroxisome proliferator-activated receptors (PPARs) agonist, has displayed various benefits in different types of diseases. However, it is unknown whether Bezafibrate possesses a protective effect in myocardial dysfunction against CME. In this study, we aimed to investigate the pharmacological function of Bezafibrate in CME-induced insults in myocardial injury and progressive cardiac dysfunction and explore the underlying mechanism. A CME model was established in rats, and cardiac function was detected. The levels of injury biomarkers in serum including CK-MB, AST, and LDH were determined using commercial kits, and pro-inflammatory mediators including TNF-α and IL-6 were detected using ELISA kits. Our results indicate that Bezafibrate improved cardiac function after CME induction. Bezafibrate reduced the release of myocardial injury indicators such as CK-MB, AST, and LDH in CME rats. We also found that Bezafibrate ameliorated oxidative stress by increasing the levels of the antioxidant GPx and the activity of SOD and reducing the levels of TBARS and the activity of NOX. Bezafibrate inhibited the expression of pro-inflammatory cytokines such as TNF-α and IL-6. Importantly, Bezafibrate was found to mitigate CME-induced myocardial apoptosis by increasing the expression of Bcl-2 and reducing the levels of Bax and cleaved caspase-3. Mechanistically, Bezafibrate could prevent the activation of p38 MAPK/NF-κB signaling. These findings suggest that Bezafibrate may be a candidate therapeutic agent for cardioprotection against CME in clinical applications.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Cardiology, Dongguan Songshan Lake Central Hospital, Dongguan 523326, Guangdong Province, China
| | - Wenfang Wang
- Department of Cardiology, The First Affiliated Hospital of Ji’nan University, Guangzhou 510627, Guangdong Province, China
| | - Wenfeng Li
- Department of Cardiology, Chongyi People’s Hospital, Ganzhou 341399, Jiangxi Province, China
| |
Collapse
|
5
|
Li H, Yang H, Qin Z, Wang Q, Li L. Colchicine ameliorates myocardial injury induced by coronary microembolization through suppressing pyroptosis via the AMPK/SIRT1/NLRP3 signaling pathway. BMC Cardiovasc Disord 2024; 24:23. [PMID: 38172692 PMCID: PMC10765930 DOI: 10.1186/s12872-023-03697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Coronary microembolization(CME)is a common complication in acute coronary syndrome and percutaneous coronary intervention, which is closely related to poor prognosis. Pyroptosis, as an inflammatory programmed cell death, has been found to be associated with CME-induced myocardial injury. Colchicine (COL) has potential benefits in coronary artery disease due to its anti-inflammatory effect. However, the role of colchicine in pyroptosis-related CME-induced cardiomyocyte injury is unclear. This study was carried out to explore the effects and mechanisms of colchicine on myocardial pyroptosis induced by CME. METHODS The CME animal model was constructed by injecting microspheres into the left ventricle with Sprague-Dawley rats, and colchicine (0.3 mg/kg) pretreatment seven days before and on the day of modeling or compound C(CC)co-treatment was given half an hour before modeling. The study was divided into 4 groups: Sham group, CME group, CME + COL group, and CME + COL + CC group (10 rats for each group). Cardiac function, serum myocardial injury markers, myocardial histopathology, and pyroptosis-related indicators were used to evaluate the effects of colchicine. RESULTS Colchicine pretreatment improved cardiac dysfunction and reduced myocardial injury induced by CME. The main manifestations were the improvement of left ventricular systolic function, the decrease of microinfarction area, and the decrease of mRNA and protein indexes related to pyroptosis. Mechanistically, colchicine increased the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK), promoted the expression of silent information regulation T1 (SIRT1), and inhibited the expression of NOD-like receptor pyrin containing 3 (NLRP3) to reduce myocardial pyroptosis. However, after CC co-treatment with COL, the effect of colchicine was partially reversed. CONCLUSION Colchicine improves CME-induced cardiac dysfunction and myocardial injury by inhibiting cardiomyocyte pyroptosis through the AMPK/SIRT1/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Hongqing Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, 530021, China
| | - Huafeng Yang
- Cardiothoracic Surgery Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhenbai Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, 530021, China
| | - Qiang Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, 530021, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, 530021, China.
| |
Collapse
|
6
|
Wang R, Zhang Y, Shao Y, Yang X, Chen L. Efficacy and Safety of Human Urinary Kallidinogenase for Acute Ischemic Stroke: A Retrospective Single-Center Study. Neurologist 2024; 29:36-40. [PMID: 37582684 DOI: 10.1097/nrl.0000000000000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
BACKGROUND The aim of this study was to investigate the outcomes of human urinary kallidinogenase (HUK) after recombinant tissue-type plasminogen activator treatment in patients with acute ischemic stroke (AIS). METHODS In this retrospective study conducted from December 2018 to August 2020, 313 patients with AIS patients who received recombinant tissue-type plasminogen activator treatment were enrolled. Among them, 148 patients received basic therapy, and 165 patients received HUK treatment. Demographics and clinical characteristics were analyzed after treatment, and patients were monitored for stroke recurrence for 12 months. National Institute of Health Stroke Scale (NIHSS) and modified Rankin Scale scores were used to assess the efficacy of treatment. Logistic regression analysis was used to identify risk factors for recurrence. RESULTS There were no differences in baseline clinical characteristics between the 2 groups in the database. After 14 days of treatment, the HUK group had significantly lower NIHSS and modified Rankin Scale scores than the control group ( P <0.01). The recurrence rates in the HUK and control groups were 12.84% and 21.82%, respectively, with patients treated with HUK having better outcomes ( P <0.001). Logistic analysis indicated that high homocysteine levels and high NIHSS scores at diagnosis were risk factors for AIS recurrence. In addition, HUK treatment was found to reduce the risk of recurrence. CONCLUSION Treatment with HUK after intravenous thrombolysis can significantly improve the neurological function of AIS patients and reduce stroke recurrence.
Collapse
Affiliation(s)
- Ruixian Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin
| | - Yanjun Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin
| | - Yajuan Shao
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin
| | - Xiujuan Yang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin
| | - Lei Chen
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|