Shakhgeldyan K, Kuksin N, Domzhalov I, Geltser B. Performance of the Models Predicting In-Hospital Mortality in Patients with ST-Segment Elevation Myocardial Infarction with Predictors in Categorical and Continuous Forms.
Sovrem Tekhnologii Med 2024;
16:15-25. [PMID:
39421631 PMCID:
PMC11482098 DOI:
10.17691/stm2024.16.1.02]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Indexed: 10/19/2024] Open
Abstract
The aim of the study is to assess the performance of predictive models developed on the basis of predictors in the continuous and categorical forms to predict the probability of in-hospital mortality (IHM) in patients with ST-segment elevation myocardial infarction (STEMI) after percutaneous coronary intervention (PCI).
Materials and Methods
A single-center retrospective study has been conducted, within the framework of which data from 4674 medical records of patients with STEMI after PCI, treated at the Regional Vascular Center of Vladivostok (Russia), have been analyzed. Two groups of patients were identified: group 1 consisted of 318 (6.8%) individuals who died in the hospital, group 2 included 4356 (93.2%) patients with a favorable outcome of treatment. IHM prognostic models were developed using multivariate logistic regression (MLR), random forest (RF), and stochastic gradient boosting (SGB). 6-metric qualities were used to evaluate the accuracy of the models. Threshold values of IHM predictors were determined using a grid search to find the optimal cut-off points, calculating centroids, and Shapley additive explanations. The latter helped evaluate the degree to which the model predictors influence the endpoint.
Results
Based on the results of the multi-stage analysis of indicators of clinical and functional status of the STEMI patients, new predictors of IHM have been identified and validated, complementing the factors of the GRACE scoring system, their categorization has been carried out and prognostic models with continuous and categorical variables based on MLR, RF, and SGB have been developed. These models had a high (AUC - 0.88 to 0.90) and comparable predictive accuracy, but their predictors differed in various degrees of influence on the endpoint. The comparative analysis has shown that the Shapley additive explanation method has advantages in categorizing predictors compared to other methods and allows for detailing the structure of their relationships with IHM.
Conclusion
The use of modern data mining methods, including machine learning algorithms, categorization of predictors, and assessment of the degree of their effect on the endpoint, makes it possible to develop predictive models possessing high accuracy and the properties of explanation of the generated conclusions.
Collapse