1
|
Ferraz MP. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114117. [PMID: 37297251 DOI: 10.3390/ma16114117] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
This review provides an overview of various materials used in dentistry and oral and maxillofacial surgeries to replace or repair bone defects. The choice of material depends on factors such as tissue viability, size, shape, and defect volume. While small bone defects can regenerate naturally, extensive defects or loss or pathological fractures require surgical intervention and the use of substitute bones. Autologous bone, taken from the patient's own body, is the gold standard for bone grafting but has drawbacks such as uncertain prognosis, surgery at the donor site, and limited availability. Other alternatives for medium and small-sized defects include allografts (from human donors), xenografts (from animals), and synthetic materials with osteoconductive properties. Allografts are carefully selected and processed human bone materials, while xenografts are derived from animals and possess similar chemical composition to human bone. Synthetic materials such as ceramics and bioactive glasses are used for small defects but may lack osteoinductivity and moldability. Calcium-phosphate-based ceramics, particularly hydroxyapatite, are extensively studied and commonly used due to their compositional similarity to natural bone. Additional components, such as growth factors, autogenous bone, and therapeutic elements, can be incorporated into synthetic or xenogeneic scaffolds to enhance their osteogenic properties. This review aims to provide a comprehensive analysis of grafting materials in dentistry, discussing their properties, advantages, and disadvantages. It also highlights the challenges of analyzing in vivo and clinical studies to select the most suitable option for specific situations.
Collapse
Affiliation(s)
- Maria Pia Ferraz
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
2
|
Amaral SS, Lima BSDS, Avelino SOM, Spirandeli BR, Campos TMB, Thim GP, Trichês EDS, Prado RFD, Vasconcellos LMRD. β-TCP/S53P4 Scaffolds Obtained by Gel Casting: Synthesis, Properties, and Biomedical Applications. Bioengineering (Basel) 2023; 10:bioengineering10050597. [PMID: 37237667 DOI: 10.3390/bioengineering10050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to investigate the osteogenic and antimicrobial effect of bioactive glass S53P4 incorporated into β-tricalcium phosphate (β-TCP) scaffolds in vitro and the bone neoformation in vivo. β-TCP and β-TCP/S53P4 scaffolds were prepared by the gel casting method. Samples were morphologically and physically characterized through X-ray diffraction (XRD) and scanning electron microscope (SEM). In vitro tests were performed using MG63 cells. American Type Culture Collection reference strains were used to determine the scaffold's antimicrobial potential. Defects were created in the tibia of New Zealand rabbits and filled with experimental scaffolds. The incorporation of S53P4 bioglass promotes significant changes in the crystalline phases formed and in the morphology of the surface of the scaffolds. The β-TCP/S53P4 scaffolds did not demonstrate an in vitro cytotoxic effect, presented similar alkaline phosphatase activity, and induced a significantly higher protein amount when compared to β-TCP. The expression of Itg β1 in the β-TCP scaffold was higher than in the β-TCP/S53P4, and there was higher expression of Col-1 in the β-TCP/S53P4 group. Higher bone formation and antimicrobial activity were observed in the β-TCP/S53P4 group. The results confirm the osteogenic capacity of β-TCP ceramics and suggest that, after bioactive glass S53P4 incorporation, it can prevent microbial infections, demonstrating to be an excellent biomaterial for application in bone tissue engineering.
Collapse
Affiliation(s)
- Suelen Simões Amaral
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Beatriz Samara de Sousa Lima
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Sarah Oliveira Marco Avelino
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Bruno Roberto Spirandeli
- Bioceramics Laboratory, Federal University of São Paulo (UNIFESP), 330 Talim St, São José dos Campos 12231-280, SP, Brazil
| | - Tiago Moreira Bastos Campos
- Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, São José dos Campos 12228-900, SP, Brazil
| | - Gilmar Patrocínio Thim
- Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, São José dos Campos 12228-900, SP, Brazil
| | - Eliandra de Sousa Trichês
- Bioceramics Laboratory, Federal University of São Paulo (UNIFESP), 330 Talim St, São José dos Campos 12231-280, SP, Brazil
| | - Renata Falchete do Prado
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| |
Collapse
|
3
|
Insuasti‐Cruz E, Suárez‐Jaramillo V, Mena Urresta KA, Pila‐Varela KO, Fiallos‐Ayala X, Dahoumane SA, Alexis F. Natural Biomaterials from Biodiversity for Healthcare Applications. Adv Healthc Mater 2022; 11:e2101389. [PMID: 34643331 DOI: 10.1002/adhm.202101389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Natural biomaterials originating during the growth cycles of all living organisms have been used for many applications. They span from bioinert to bioactive materials including bioinspired ones. As they exhibit an increasing degree of sophistication, natural biomaterials have proven suitable to address the needs of the healthcare sector. Here the different natural healthcare biomaterials, their biodiversity sources, properties, and promising healthcare applications are reviewed. The variability of their properties as a result of considered species and their habitat is also discussed. Finally, some limitations of natural biomaterials are discussed and possible future developments are provided as more natural biomaterials are yet to be discovered and studied.
Collapse
Affiliation(s)
- Erick Insuasti‐Cruz
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | | | | | - Kevin O. Pila‐Varela
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Xiomira Fiallos‐Ayala
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Si Amar Dahoumane
- Department of Chemical Engineering Polytech Montreal Montreal Quebec H3C 3A7 Canada
- Center for Advances in Water and Air Quality (CAWAQ) Lamar University Beaumont TX 77710 USA
| | - Frank Alexis
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| |
Collapse
|
4
|
Bellato CP, de Oliveira DL, Kasaya MVS, Moreira D, Cini MA, Saraiva PP, Gulinelli JL, Santos PL. Effect of S53P4 bioactive glass and low-level laser therapy on calvarial bone repair in rats submitted to zoledronic acid therapy. Acta Cir Bras 2021; 36:e360603. [PMID: 34259788 PMCID: PMC8275060 DOI: 10.1590/acb360603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 05/16/2021] [Indexed: 10/01/2023] Open
Abstract
PURPOSE To evaluate the influence of bioactive glass and photobiomodulation therapy (PBMT) in calvarial bone repair process in rats submitted to zoledronic acid therapy. METHODS Twenty-four rats were selected and treated with the dose of 0.035 mg/kg of zoledronic acid every two weeks, totalizing eight weeks, to induce osteonecrosis. After the drug therapy, surgical procedure was performed to create 5-mm diameter parietal bone defects in the calvarial region. The rats were then randomly assigned to groups according to the following treatments: AZC: control group, treated with blood clot; AZBIO: bone defect filled with bioactive glass; AZL: treated with blood clot and submitted to PBMT; and AZBIOL: treated with bioactive glass S53P4 and submitted to PBMT. Tissue samples were collected and submitted to histomorphometric analysis after 14 and 28 days. RESULTS At 14 days, bone neoformation in the AZBIO (52.15 ± 9.77) and AZBIOL (49.77 ± 13.58) groups presented higher values (p ≤ 0.001) compared to the AZC (23.35 ± 10.15) and AZL groups (23.32 ± 8.75). At 28 days, AZBIO (80.24 ± 5.41)still presented significant higher bone recovery values when compared to AZC (59.59 ± 16.92)and AZL (45.25 ± 5.41) groups (p = 0.048). In the 28-day period, the AZBIOL group didn't show statistically significant difference with the other groups (71.79 ± 29.38). CONCLUSIONS The bioactive glass is an effective protocol to stimulate bone neoformation in critical defects surgically created in rats with drug induced osteonecrosis, in the studied periods of 14 and 28 days.
Collapse
Affiliation(s)
- Caio Peres Bellato
- Fellow PhD degree. Postgraduate Program in Oral and Maxillofacial Surgery. Assistant Professor. Department Oral and Maxillofacial Surgery – Dental School – Universidade do Oeste Paulista – Presidente Prudente (SP), Brazil
| | - Danilo Louzada de Oliveira
- PhD, Assistant Professor. Oral and Maxillofacial Surgery – Department Oral and Maxillofacial Surgery – Dental School – Universidade do Oeste Paulista – Presidente Prudene (SP), Brazil
| | - Marcus Vinicius Satoru Kasaya
- PhD. Oral and Maxillofacial Surgery – Department of Postgraduate – Dental School – Centro Universitário Sagrado Coração – Bauru (SP), Brazil
| | - David Moreira
- PhD. Oral and Maxillofacial Surgery – Department of Postgraduate – Dental School – Centro Universitário Sagrado Coração – Bauru (SP), Brazil
| | - Marcelo Augusto Cini
- PhD. Oral and Maxillofacial Surgery – Department of Postgraduate – Dental School – Centro Universitário Sagrado Coração – Bauru (SP), Brazil
| | - Patricia Pinto Saraiva
- PhD, Assistant Professor. Basic Science – Oral Biology – Universidade do Oeste Paulista – Jau (SP), Brazil
| | | | - Pâmela Leticia Santos
- PhD, Assistant Professor. Oral and Maxillofacial Surgery – Department of Health Sciences – Dental School – Universidade de Araraquara – Araraquara (SP), Brazil
| |
Collapse
|
5
|
Xu P, Jiang F, Zhang H, Yin R, Cen L, Zhang W. Calcium Carbonate/Gelatin Methacrylate Microspheres for 3D Cell Culture in Bone Tissue Engineering. Tissue Eng Part C Methods 2020; 26:418-432. [DOI: 10.1089/ten.tec.2020.0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Pengwei Xu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Fuliang Jiang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Lian Cen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Wenjun Zhang
- School of Mechatronics and Automation, Shanghai University, Shanghai, China
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
6
|
Salonius E, Muhonen V, Lehto K, Järvinen E, Pyhältö T, Hannula M, Aula AS, Uppstu P, Haaparanta A, Rosling A, Kellomäki M, Kiviranta I. Gas‐foamed poly(lactide‐co‐glycolide) and poly(lactide‐co‐glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects. J Tissue Eng Regen Med 2019; 13:406-415. [DOI: 10.1002/term.2801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Eve Salonius
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
| | - Virpi Muhonen
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
| | - Kalle Lehto
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Elina Järvinen
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
| | - Tuomo Pyhältö
- Department of Orthopaedics and TraumatologyHelsinki University Hospital Helsinki Finland
| | - Markus Hannula
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Antti S. Aula
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
- Department of Medical Physics, Imaging CentreTampere University Hospital Tampere Finland
| | - Peter Uppstu
- Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological InterfacesÅbo Akademi University Turku Finland
| | - Anne‐Marie Haaparanta
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Ari Rosling
- Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological InterfacesÅbo Akademi University Turku Finland
| | - Minna Kellomäki
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Ilkka Kiviranta
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
- Department of Orthopaedics and TraumatologyHelsinki University Hospital Helsinki Finland
| |
Collapse
|
7
|
Neto AS, Ferreira JMF. Synthetic and Marine-Derived Porous Scaffolds for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1702. [PMID: 30216991 PMCID: PMC6165145 DOI: 10.3390/ma11091702] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/27/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022]
Abstract
Bone is a vascularized and connective tissue. The cortical bone is the main part responsible for the support and protection of the remaining systems and organs of the body. The trabecular spongy bone serves as the storage of ions and bone marrow. As a dynamic tissue, bone is in a constant remodelling process to adapt to the mechanical demands and to repair small lesions that may occur. Nevertheless, due to the increased incidence of bone disorders, the need for bone grafts has been growing over the past decades and the development of an ideal bone graft with optimal properties remains a clinical challenge. This review addresses the bone properties (morphology, composition, and their repair and regeneration capacity) and puts the focus on the potential strategies for developing bone repair and regeneration materials. It describes the requirements for designing a suitable scaffold material, types of materials (polymers, ceramics, and composites), and techniques to obtain the porous structures (additive manufacturing techniques like robocasting or derived from marine skeletons) for bone tissue engineering applications. Overall, the main objective of this review is to gather the knowledge on the materials and methods used for the production of scaffolds for bone tissue engineering and to highlight the potential of natural porous structures such as marine skeletons as promising alternative bone graft substitute materials without any further mineralogical changes, or after partial or total transformation into calcium phosphate.
Collapse
Affiliation(s)
- Ana S Neto
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - José M F Ferreira
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
Hulsen DJW, Geurts J, van Gestel NAP, van Rietbergen B, Arts JJ. Mechanical behaviour of Bioactive Glass granules and morselized cancellous bone allograft in load bearing defects. J Biomech 2016; 49:1121-1127. [PMID: 26972764 DOI: 10.1016/j.jbiomech.2016.02.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 01/21/2016] [Accepted: 02/20/2016] [Indexed: 11/17/2022]
Abstract
Bioactive Glass (BAG) granules are osteoconductive and possess unique antibacterial properties for a synthetic biomaterial. To assess the applicability of BAG granules in load-bearing defects, the aim was to compare mechanical behaviour of graft layers consisting of BAG granules and morselized cancellous bone allograft in different volume mixtures under clinically relevant conditions. The graft layers were mechanically tested, using two mechanical testing modalities with simulated physiological loading conditions: highly controllable confined compression tests (CCT) and more clinically realistic in situ compression tests (ISCT) in cadaveric porcine bone defects. Graft layer impaction strain, residual strain, aggregate modulus, and creep strain were determined in CCT. Graft layer porosity was determined using micro computed tomography. The ISCT was used to determine graft layer subsidence in bone environment. ANOVA showed significant differences (p<0.001) between different graft layer compositions. True strains absolutely decreased for increasing BAG content: impaction strain -0.92 (allograft) to -0.39 (BAG), residual strain -0.12 to -0.01, and creep strain -0.09 to 0.00 respectively. Aggregate modulus increased with increasing BAG content from 116 to 653MPa. Porosity ranged from 66% (pure allograft) to 15% (pure BAG). Subsidence was highest for allograft, and remarkably low for a 1:1 BAG-allograft volume mixture. Both BAG granules and allograft morsels as stand-alone materials exhibit suboptimal mechanical behaviour for load-bearing purpose. BAG granules are difficult to handle and less porous, whereas allograft subsides and creeps. A 1:1 volume mixture of BAG and allograft is therefore proposed as the best graft material in load-bearing defects.
Collapse
Affiliation(s)
- D J W Hulsen
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Orthopaedic Biomechanics, Faculty of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; MICT Department, Jeroen Bosch Ziekenhuis, ׳s-Hertogenbosch, The Netherlands.
| | - J Geurts
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - N A P van Gestel
- Department of Orthopaedic Biomechanics, Faculty of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - B van Rietbergen
- Department of Orthopaedic Biomechanics, Faculty of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J J Arts
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Orthopaedic Biomechanics, Faculty of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Park JW, Kang DG, Hanawa T. New bone formation induced by surface strontium-modified ceramic bone graft substitute. Oral Dis 2015; 22:53-61. [PMID: 26458092 DOI: 10.1111/odi.12381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/16/2015] [Accepted: 10/07/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study assessed the effect of surface strontium ion (Sr) modification on the osteogenic activity of an osteoconductive ceramic bone graft substitute with the hope of using the bone healing effect of Sr for potential application in periodontal and maxillofacial regenerative surgery. MATERIALS AND METHODS A simple wet chemical treatment was employed to deliver Sr to the surface of particulate porcine bone graft. The osteogenic activity of surface Sr-modified bone substitute was compared in vitro and in vivo with that of unmodified ceramic bone, other clinically available synthetic bone or osteoinductive allograft bone. RESULTS The resultant bone substitute showed the formation of Sr-containing microstructured surface layer along with the formation of additional nanostructures and displayed sustained Sr release. Sr modification promoted the osteogenic differentiation of bipotential ST2 stem cells. Sr-modified bone substitute increased the amount of newly formed bone at early healing period in calvarial defect of rabbits. CONCLUSIONS These results suggest that the surface Sr modification by wet chemical treatment is a promising approach to enhance the early bone healing capacity of osteoconductive ceramic bone substitutes.
Collapse
Affiliation(s)
- J-W Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - D-G Kang
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - T Hanawa
- Department of Metals, Institute of Biomaterials & Bioengineering, Tokyo Medical & Dental University, Tokyo, Japan
| |
Collapse
|
10
|
A first approach to evaluate the cell dose in highly porous scaffolds by using a nondestructive metabolic method. Future Sci OA 2015; 1:FSO58. [PMID: 28031911 PMCID: PMC5137907 DOI: 10.4155/fso.15.58] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: In cell-based therapies, in vitro studies on biomimetic cell–scaffold constructs can facilitate the determination of the cell dose, a key factor in guaranteeing the effectiveness of the treatment. However, highly porous scaffolds do not allow a nondestructive evaluation of the cell number. Our objective was to develop a nondestructive method for human mesenchymal stem cells dose evaluation in a highly porous scaffold for bone regeneration. Materials & measurement method: Proliferation trend of human mesenchymal stem cells on Biocoral® scaffolds was measured by a resazurin-based assay here optimized for 3D cultures. The method allows to noninvasively follow the cell proliferation on biocorals over 3 weeks with very high reproducibility. Conclusion: This reliable method could be a powerful tool in cell-based therapies for cell dose determination. Stem cells regenerate damaged tissues when transplanted into the patient within matrices mimicking the tissues architecture and mechanical properties. Cell number needs to be appropriate to allow the cell survival in the new environment and to stimulate the cell differentiation into the new tissue. In vitro experiments give important hints to determine the appropriate number to transplant in the patient: in this study cells are grown on highly porous matrices for bone regeneration and their number is monitored over time by a method which does not perturb the system and which was here optimized and evaluated as highly reliable.
Collapse
|
11
|
Sheikh Z, Sima C, Glogauer M. Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation. MATERIALS 2015. [PMCID: PMC5455762 DOI: 10.3390/ma8062953] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-514-224-7490
| | - Corneliu Sima
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; E-Mail:
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
| |
Collapse
|
12
|
Sarkar SK, Lee BT. Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med 2015; 30:279-93. [PMID: 25995658 PMCID: PMC4438282 DOI: 10.3904/kjim.2015.30.3.279] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 12/15/2022] Open
Abstract
Bone is a unique organ composed of mineralized hard tissue, unlike any other body part. The unique manner in which bone can constantly undergo self-remodeling has created interesting clinical approaches to the healing of damaged bone. Healing of large bone defects is achieved using implant materials that gradually integrate with the body after healing is completed. Such strategies require a multidisciplinary approach by material scientists, biological scientists, and clinicians. Development of materials for bone healing and exploration of the interactions thereof with the body are active research areas. In this review, we explore ongoing developments in the creation of materials for regenerating hard tissues.
Collapse
Affiliation(s)
- Swapan Kumar Sarkar
- Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Byong Taek Lee
- Institute of Tissue Regeneration, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
13
|
Park JW, Kim JM, Lee HJ, Jeong SH, Suh JY, Hanawa T. Bone healing with oxytocin-loaded microporous β-TCP bone substitute in ectopic bone formation model and critical-sized osseous defect of rat. J Clin Periodontol 2013; 41:181-90. [PMID: 24256613 DOI: 10.1111/jcpe.12198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 12/26/2022]
Abstract
AIM This study investigated the efficacy of the hypothalamic nonapeptide oxytocin (OT) by direct delivery to local defects using a microporous β-tricalcium phosphate (TCP) as the carrier for the future applications as a method to achieve predictable bone regeneration of large osseous defects requiring sinus bone graft and guided bone regeneration procedures for implant placement. MATERIAL AND METHODS Both the ectopic and new bone formation induced by the OT-loaded microporous β-TCP powder was histomorphometrically compared with unloaded β-TCP in a subcutaneous ectopic bone formation model and calvarial critical-sized defects (CSDs) in 45 rats. RESULTS The OT-loaded β-TCP clearly enhanced ectopic bone formation compared with the unloaded control group. A High initial OT dose (250 μg) significantly increased ectopic bone formation at an early healing time-point compared with a lower OT dose (50 μg). The OT-loaded samples displayed greater new bone formation in the rat calvarial CSDs. Extensive new bone formation was achieved in the calvarial CSDs with the higher OT dose. CONCLUSION These results suggest that local OT delivery to bone substitute promotes new bone formation via an osteoinductive mode of action.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | |
Collapse
|