1
|
Wang SQ, Li CL, Xu JQ, Chen LL, Xie YZ, Dai PD, Ren LJ, Yao WJ, Zhang TY. The Effect of Endolymphatic Hydrops and Mannitol Dehydration Treatment on Guinea Pigs. Front Cell Neurosci 2022; 16:836093. [PMID: 35480960 PMCID: PMC9035551 DOI: 10.3389/fncel.2022.836093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 01/14/2023] Open
Abstract
Background Endolymphatic hydrops (EH) is considered as the pathological correlate of Menière’s disease (MD) and cause of hearing loss. The mechanism of EH, remaining unrevealed, poses challenges for formalized clinical trials. Objective This study aims to investigate the development of hearing loss, as well as the effect of dehydration treatment on EH animal models. Methods In this study, different severity EH animal models were created. The laser Doppler vibrometer (LDV) and auditory brainstem responses (ABR) were used to study the effects of EH and the dehydration effects of mannitol. The LDV was used to measure the vibration of the round window membrane (RWM) reflecting the changes in inner ear impedance. ABR was used to evaluate the hearing changes. Furthermore, tissue section and scanning electron microscopy (SEM) observations were used to analyze the anatomical change to the cochlea and outer hair cells. Results The RWM vibrations decreased with the severity of EH, indicating an increase in the cochlear impedance. The dehydration therapy lowered the impedance to restore acoustic transduction in EH 10- and 20-day animal models. Simultaneously, the ABR thresholds increased in EH models and were restored after dehydration. Moreover, a difference in the hearing was found between ABR and LDV results in severe EH animal models, and the dehydration therapy was less effective, indicating a sensorineural hearing loss (SNHL). Conclusion Endolymphatic hydrops causes hearing loss by increasing the cochlear impedance in all tested groups, and mannitol dehydration is an effective therapy to restore hearing. However, SNHL occurs for the EH 30-day animal models, limiting the effectiveness of dehydration. Our results suggest the use of dehydrating agents in the early stage of EH.
Collapse
Affiliation(s)
- Shu-Qi Wang
- Department of Facial Plastic Reconstruction Surgery, Eye and ENT Hospital of Fudan University, Shanghai, China
- ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Chen-Long Li
- Department of Facial Plastic Reconstruction Surgery, Eye and ENT Hospital of Fudan University, Shanghai, China
- ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, China
- Hearing Medicine Key Laboratory, National Health Commission of China, Shanghai, China
| | - Jing-Qi Xu
- Department of Facial Plastic Reconstruction Surgery, Eye and ENT Hospital of Fudan University, Shanghai, China
- ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Li-Li Chen
- Department of Facial Plastic Reconstruction Surgery, Eye and ENT Hospital of Fudan University, Shanghai, China
- ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, China
- Hearing Medicine Key Laboratory, National Health Commission of China, Shanghai, China
| | - You-Zhou Xie
- Department of Facial Plastic Reconstruction Surgery, Eye and ENT Hospital of Fudan University, Shanghai, China
- ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, China
- Hearing Medicine Key Laboratory, National Health Commission of China, Shanghai, China
| | - Pei-Dong Dai
- Department of Facial Plastic Reconstruction Surgery, Eye and ENT Hospital of Fudan University, Shanghai, China
- ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Liu-Jie Ren
- Department of Facial Plastic Reconstruction Surgery, Eye and ENT Hospital of Fudan University, Shanghai, China
- ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, China
- Hearing Medicine Key Laboratory, National Health Commission of China, Shanghai, China
- *Correspondence: Liu-Jie Ren,
| | - Wen-Juan Yao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, China
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, China
- Wen-Juan Yao,
| | - Tian-Yu Zhang
- Department of Facial Plastic Reconstruction Surgery, Eye and ENT Hospital of Fudan University, Shanghai, China
- ENT Institute, Eye and ENT Hospital of Fudan University, Shanghai, China
- Hearing Medicine Key Laboratory, National Health Commission of China, Shanghai, China
- Tian-Yu Zhang,
| |
Collapse
|
2
|
Seo YJ, Brown D. Experimental Animal Models for Meniere's Disease: A Mini-Review. J Audiol Otol 2020; 24:53-60. [PMID: 32248670 PMCID: PMC7141995 DOI: 10.7874/jao.2020.00115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Several novel animal models that represent the pathophysiological process of endolymphatic hydrops (ELH) of Meniere's disease (MD) have been developed. Animal models are important to identify and characterize the pathophysiology of ELH and to corroborate molecular and genetic findings in humans. This review of the current animal models will be useful in understanding the pathophysiology of and developing proper treatments for MD. Surgical animal models will be replaced by medication-induced animal models. Study models previously developed in guinea pigs will be developed in several smaller animals for ease of conducting molecular analysis. In this review, we provided updated resources including our previous studies regarding the current and desirable animal models for MD.
Collapse
Affiliation(s)
- Young Joon Seo
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Korea.,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Daniel Brown
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
3
|
Lichtenhan JT, Lee C, Dubaybo F, Wenrich KA, Wilson US. The Auditory Nerve Overlapped Waveform (ANOW) Detects Small Endolymphatic Manipulations That May Go Undetected by Conventional Measurements. Front Neurosci 2017; 11:405. [PMID: 28769744 PMCID: PMC5513905 DOI: 10.3389/fnins.2017.00405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/29/2017] [Indexed: 11/13/2022] Open
Abstract
Electrocochleography (ECochG) has been used to assess Ménière's disease, a pathology associated with endolymphatic hydrops and low-frequency sensorineural hearing loss. However, the current ECochG techniques are limited for use at high-frequencies only (≥1 kHz) and cannot be used to assess and understand the low-frequency sensorineural hearing loss in ears with Ménière's disease. In the current study, we use a relatively new ECochG technique to make measurements that originate from afferent auditory nerve fibers in the apical half of the cochlear spiral to assess effects of endolymphatic hydrops in guinea pig ears. These measurements are made from the Auditory Nerve Overlapped Waveform (ANOW). Hydrops was induced with artificial endolymph injections, iontophoretically applied Ca2+ to endolymph, and exposure to 200 Hz tones. The manipulations used in this study were far smaller than those used in previous investigations on hydrops. In response to all hydropic manipulations, ANOW amplitude to moderate level stimuli was markedly reduced but conventional ECochG measurements of compound action potential thresholds were unaffected (i.e., a less than 2 dB threshold shift). Given the origin of the ANOW, changes in ANOW amplitude likely reflect acute volume disturbances accumulate in the distensible cochlear apex. These results suggest that the ANOW could be used to advance our ability to identify initial stages of dysfunction in ears with Ménière's disease before the pathology progresses to an extent that can be detected with conventional measures.
Collapse
Affiliation(s)
- Jeffery T Lichtenhan
- Department of Otolaryngology Washington University School of MedicineSaint Louis, MO, United States
| | - Choongheon Lee
- Department of Otolaryngology Washington University School of MedicineSaint Louis, MO, United States
| | - Farah Dubaybo
- Department of Otolaryngology Washington University School of MedicineSaint Louis, MO, United States
| | - Kaitlyn A Wenrich
- Department of Otolaryngology Washington University School of MedicineSaint Louis, MO, United States
| | - Uzma S Wilson
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, IL, United States
| |
Collapse
|
4
|
Brown DJ, Pastras CJ, Curthoys IS, Southwell CS, Van Roon L. Endolymph movement visualized with light sheet fluorescence microscopy in an acute hydrops model. Hear Res 2016; 339:112-24. [PMID: 27377233 DOI: 10.1016/j.heares.2016.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
There are a variety of techniques available to investigate endolymph dynamics, primarily seeking to understand the cause of endolymphatic hydrops. Here we have taken the novel approach of injecting, via a glass micropipette, fluorescein isothiocyanate-dextran (FITC-dex) and artificial endolymph into scala media of anaesthetized guinea pigs, with subsequent imaging of the inner ear using Light Sheet Fluorescence Microscopy (LSFM) as a means to obtain highly resolved 3D visualization of fluid movements. Our results demonstrate endolymph movement into the utricle, semicircular canals and endolymphatic duct and sac when more than 2.5 μl of fluid had been injected into scala media, with no apparent movement of fluid into the perilymphatic compartments. There was no movement of endolymph into these compartments when less than 2.5 μl was injected. The remarkable uptake of the FITC-dex into the endolymphatic duct, including an absorption into the periductal channels surrounding the endolymphatic duct, highlights the functional role this structure plays in endolymph volume regulation.
Collapse
Affiliation(s)
- Daniel J Brown
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2050, Australia.
| | | | - Ian S Curthoys
- Vestibular Research Laboratory, The University of Sydney, School of Psychology, Sydney, NSW, 2050, Australia
| | | | - Lieke Van Roon
- University of Utrecht, Faculty Nature and Technique, Inst. for Life Sciences and Chemistry, Utrecht, 3508 AD, The Netherlands
| |
Collapse
|
5
|
Vasopressin induces endolymphatic hydrops in mouse inner ear, as evaluated with repeated 9.4 T MRI. Hear Res 2015; 330:119-24. [PMID: 26048336 DOI: 10.1016/j.heares.2015.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/09/2015] [Accepted: 05/25/2015] [Indexed: 11/24/2022]
Abstract
From histopathological specimens, endolymphatic hydrops has been demonstrated in association with inner ear disorders. Recent studies have observed findings suggestive of hydrops using MRI in humans. Previous studies suggest that vasopressin may play a critical role in endolymph homeostasis and may be involved in the development of Ménière's disease. In this study we evaluate the effect of vasopressin administration in vivo in longitudinal studies using two mouse strains. High resolution MRI at 9.4 T in combination with intraperitoneally delivered Gadolinium contrast, was performed before and after chronic subcutaneous administration of vasopressin via mini-osmotic pumps in the same mouse. A development of endolymphatic hydrops over time could be demonstrated in C57BL6 mice (5 mice, 2 and 4 weeks of administration) as well as in CBA/J mice (4 mice, 2 weeks of administration; 6 mice, 3 and 4 weeks of administration). In most C57BL6 mice hydrops developed first after more than 2 weeks while CBA/J mice had an earlier response. These results may suggest an in vivo model for studying endolymphatic hydrops and corroborates the future use of MRI as a tool in the diagnosis and treatment of inner ear diseases, such as Ménière's disease. MRI may also be developed as a critical tool in evaluating inner ear homeostasis in genetically modified mice, to augment the understanding of human disease.
Collapse
|